CaltechAUTHORS
  A Caltech Library Service

Influence of attractive van der Waals interactions on the optimal excitations in thermocapillary-driven spreading

Davis, Jeffrey M. and Troian, Sandra M. (2003) Influence of attractive van der Waals interactions on the optimal excitations in thermocapillary-driven spreading. Physical Review E, 67 (1). Art. No. 016308. ISSN 1063-651X. http://resolver.caltech.edu/CaltechAUTHORS:DAVpre03

[img]
Preview
PDF
See Usage Policy.

105Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:DAVpre03

Abstract

Recent investigations of microfluidic flows have focused on manipulating the motion of very thin liquid films by modulating the surface tension through an applied streamwise temperature gradient. The extent to which the choice of contact line model affects the flow and stability of such thermocapillary-driven films is not completely understood. Regardless of the contact line model used, the linearized disturbance operator corresponding to the evolution of the film height is non-normal, and a generalized non-modal stability analysis is required. Surprisingly, early predictions of frontal instability that stemmed from conventional modal analysis of thermocapillary flow on a flat, infinite precursor film showed excellent agreement with experiment. Within the more rigorous framework provided by a generalized stability analysis, this work investigates the transient dynamics and amplification of optimal disturbances subject to a finite precursor film generated by attractive van der Waals forces. Convergence of the disturbance growth rates and perturbed shapes to the asymptotic solutions obtained by conventional linear stability analysis occurs early in the spreading process. In addition, the level of transient disturbance amplification is minimal. The equations governing thermocapillary-driven spreading exhibit a small degree of non-normality, which explains the source of agreement between modal theory and experiment. The more rigorous generalized stability analysis presented here, however, affords critical insight into the types of disturbances leading to maximum unstable growth and the exact influence of the contact line model used.


Item Type:Article
Additional Information:©2003 The American Physical Society (Received 9 March 2002; revised 12 November 2002; published 30 January 2003) The authors gratefully acknowledge financial support from the Department of Defense (JMD), the National Science Foundation XYZ on a Chip program, and a Princeton University MRSEC grant.
Subject Keywords:wetting; van der Waals forces; capillarity; surface tension; liquid films; microfluidics; flow instability
Record Number:CaltechAUTHORS:DAVpre03
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:DAVpre03
Alternative URL:http://dx.doi.org/10.1103/PhysRevE.67.016308
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:4988
Collection:CaltechAUTHORS
Deposited By: Archive Administrator
Deposited On:18 Sep 2006
Last Modified:26 Dec 2012 09:03

Repository Staff Only: item control page