THE CHEMISTRY OF ATMOSPHERIC BROMINE

Steven C. Wofsy, Michael B. McElroy and Yuk Ling Yung

Center for Earth and Planetary Physics
Harvard University, Cambridge, Massachusetts

Abstract. Bromine may act as a catalyst for recombination of ozone and could be more efficient than either nitric oxide or chlorine. The lower atmosphere contains small concentrations of gaseous bromine produced in part by marine activity, in part by volatilization of particulate material released during the combustion of leaded gasoline, with an additional contribution due to the use of methyl bromide as an agricultural fumigant. Observations by Lazrus et al. (1975) indicate small concentrations of bromine, \(10^{-11}\) (v/v), in the contemporary stratosphere and appear to imply a reduction of approximately 0.3% in the global budget of \(O_3\). Estimates are given for future reductions in \(O_3\) which might occur if the use of \(CH_3Br\) as an agricultural fumigant were to continue to grow at present rates.

The chemistry of atmospheric ozone may be influenced to a remarkable extent by exceedingly small quantities of select stratospheric gases. Attention has focused in recent years on nitric oxide released by SST's (Johnston, 1971; Crutzen, 1972) and on chlorine produced by photodecomposition of chlorofluoromethanes (Molina and Rowland, 1974). This paper is devoted to a discussion of bromine. As we shall see, concentrations of bromine as small as 1 part in \(10^{11}\) (v/v) can have an appreciable influence on ozone.

There are indications that the mixing ratio of gaseous forms of acidic bromine, represented most probably by \(HBr\), according to the discussion below, may approach \(10^{-11}\) in today's stratosphere (Lazrus et al., 1975) with similar values observed in the troposphere (see below). The mixing ratio of acidic bromine appears to increase with increasing altitude between 15 and 19 km and there is evidence for similar behavior in the height distribution of particulate bromine (Lazrus et al., 1975; Delany et al., 1974). It is difficult to escape the conclusion that there must be a stratospheric source for particulate and gaseous acidic bromine. Decomposition of methyl bromide offers a plausible explanation. Methyl bromide has been detected recently in surface waters of the ocean and in antarctic snow (R. Rasmussen, private communication, 1975). It is used extensively as a fumigant and there may be additional natural sources as discussed below.

Bromine is present in both gas and particulate phases in the atmosphere, with the gas phase dominant by a factor which ranges typically between 4 and 20. The mixing ratio of gaseous bromine is about 1.5 \(10^{-11}\) over Hawaii (Moyers and Duce, 1972) and it seems probable that the major constituent is \(HBr\) (see below). Measurements near the South Pole (Duce et al., 1973) suggest values much smaller than 1 part in \(10^{12}\) would have appreciable effects on \(O_3\).

Hydrogen bromide could be produced by

\[\text{Br} + \text{H}_2\text{O}_2 \rightarrow \text{HBr} + \text{O}_2 \] (3)

and

\[\text{Br} + \text{H}_2\text{O}_2 \rightarrow \text{HBr} + \text{HO}_2 \] (4)

and would be removed by

\[\text{OH} + \text{HBr} \rightarrow \text{H}_2\text{O} + \text{Br} \] (5)

with an additional contribution from

\[\text{hv} + \text{HBr} \rightarrow \text{H} + \text{Br} \] (6)

†The contribution from gasoline to the gaseous bromine budget of the northern hemisphere could be as large as 20%. In carrying out the computations summarized here we assumed a gasoline-related bromine source of \(1.8 \times 10^{6}\) tons yr\(^{-1}\) (Klingman, 1974) and estimated that half of this bromine would be volatilized before removal from the atmosphere. We adopted a lifetime for inorganic gaseous bromine of 2 weeks, consistent with the analysis by Moyers and Duce (1972).
The chemical model adopted for this study, taken for the most part from Watson (1975), is given in Table 1. Methyl bromide is removed by

$$\text{OH} + \text{CH}_3\text{Br} \rightarrow \text{H}_2\text{O} + \text{CH}_2\text{Br}. \quad (7)$$

The bromine atom is subsequently released, and inorganic bromide (HBr + Br + BrO) is carried out of the lower atmosphere by rain as discussed earlier.

The major uncertainties in the chemical model relate to reactions (3) and (7), for which we adopt rate constants $10^{-11} \text{ cm}^3 \text{ sec}^{-1}$ and $2 \times 10^{-12} \exp (-1200/K)$ respectively. The rate for (3) was suggested by a consideration of high temperature data reported by Day et. al., (1971). The rate for (7) is consistent with preliminary measurements for the reaction at 300K (Watson and Davis, 1975) and agrees also with the high temperature data by Wilson (1965).

Height profiles computed for major bromine species are given in Figure 1. The computations summarized by this and subsequent figures were carried out using procedures described elsewhere (McElroy et. al., 1974; Wofsy and McElroy, 1974; Wofsy et. al., 1975), with the eddy profile taken from Hunten (1975), but multiplied by 1.5 above 16 km to obtain agreement with CH$_4$ observations. The chemical scheme allowed for 95 reactions, including those listed in Table 1. The flux of inorganic bromine at ground level was taken equal to 5.3×10^7 molecules cm$^{-2}$ sec$^{-1}$ and the flux of CH$_3$Br was adjusted to agree with Lazrus et. al., (1975). The surface flux of CH$_3$Br was estimated in this manner at 3.0×10^6 molecules cm$^{-2}$ sec$^{-1}$, approximately four times the value we inferred from Klingman (1974) for the net amount of bromine consumed in the manufacture of CH$_3$Br during 1974. Plonka (private communication, 1975) is of the opinion that only 25% of the industrial CH$_3$Br is released to the atmosphere, mainly as a byproduct of fumigation.

Table 1

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Expression</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_1 \text{Br} + \text{O}_3 \rightarrow \text{BrO} + \text{O}_2$</td>
<td>$1.2 \times 10^{-12}(300\text{K})$</td>
<td>Watson (1975)</td>
</tr>
<tr>
<td></td>
<td>$1 \times 10^{-10} \exp (-1320/T)$ [A,C]</td>
<td>Watson (1975)</td>
</tr>
<tr>
<td></td>
<td>$2.5 \times 10^{-11} \exp (-900/T)$ [B]</td>
<td>Watson (1975)</td>
</tr>
<tr>
<td>$k_2 \text{NO} + \text{BrO} \rightarrow \text{NO}_2 + \text{Br}$</td>
<td>2×10^{-11}</td>
<td>Watson (1975)</td>
</tr>
<tr>
<td>$k_3 \text{Br} + \text{HO}_2 \rightarrow \text{HBr} + \text{O}_2$</td>
<td>1×10^{-10} [C]</td>
<td>Day et. al., (1971)</td>
</tr>
<tr>
<td></td>
<td>1×10^{-11} [B]</td>
<td>(see text)</td>
</tr>
<tr>
<td>$k_4 \text{BrO} + \text{O} \rightarrow \text{Br} + \text{O}_2$</td>
<td>8×10^{-11}</td>
<td>Watson (1975)</td>
</tr>
<tr>
<td>$k_5 \text{BrO} + \text{Br} + \text{O}_2 \rightarrow 2\text{Br} + \text{O}_2$</td>
<td>6.4×10^{-12}</td>
<td>Watson (1975)</td>
</tr>
<tr>
<td>BrO + hv \rightarrow Br + O</td>
<td>rate unknown in the atmosphere, probably slower than k_2 according to Watson (1975)</td>
<td></td>
</tr>
<tr>
<td>$k_6 \text{OH} + \text{HBr} \rightarrow \text{H}_2\text{O} + \text{Br}$</td>
<td>$3.7 \times 10^{-11} \exp (-600/T)$</td>
<td>Watson (1975)</td>
</tr>
<tr>
<td>$k_7 \text{OH} + \text{CH}_3\text{Br} \rightarrow \text{H}_2\text{O} + \text{CH}_2\text{Br}$ (c)</td>
<td>$2 \times 10^{-12} \exp (-1200/T)$</td>
<td>(see text)</td>
</tr>
<tr>
<td></td>
<td>$5.5 \times 10^{-12} \exp (-1900/T)$</td>
<td>(see text)</td>
</tr>
<tr>
<td>$k_8 \text{Br} + \text{H}_2\text{O}_2 \rightarrow \text{HBr} + \text{HO}_2$</td>
<td>$1 \times 10^{-11} \exp (-1200/T)$</td>
<td>(see text)</td>
</tr>
<tr>
<td>$J_1 \text{HBr} + \text{hv} \rightarrow \text{H} + \text{Br}$ (b)</td>
<td>$0, 0, 2.8 \times 10^9, 4.9 \times 10^6, 3.8 \times 10^6, 6.7 \times 10^6$</td>
<td>Romand and Vodor (1948)</td>
</tr>
<tr>
<td>$J_2 \text{CH}_3\text{Br} + \text{hv} \rightarrow \text{CH}_3 + \text{Br}$</td>
<td>$0, 0, 2.2 \times 10^9, 4.1 \times 10^8, 7.5 \times 10^6, 1.8 \times 10^5$</td>
<td>Davidson (1951)</td>
</tr>
<tr>
<td>$R_1 \text{HBr} + \text{rain, aerosol removed from atmosphere}$</td>
<td>$1.7 \times 10^6, 0 \leq Z \leq 4$ km</td>
<td>(see text)</td>
</tr>
<tr>
<td></td>
<td>$8.5 \times 10^7, 4$ km $\leq Z \leq 6$ km</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$4.3 \times 10^7, 6$ km $\leq Z \leq 8$ km</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1.7 \times 10^7, 8$ km $\leq Z \leq 10$ km</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$0, 10$ km $\leq Z$</td>
<td></td>
</tr>
<tr>
<td>$k_9 \text{O} + \text{HBr} \rightarrow \text{OH} + \text{Br}$</td>
<td>$4.0 \times 10^{-12} \exp (-1360/T)$</td>
<td>Brown and Smith (1975)</td>
</tr>
</tbody>
</table>

aUnits are cm3 sec$^{-1}$. Letters A, B, C refer to curves in Figure 2.

bPhotodissociation rate is given as a function of altitude (in km), units of sec$^{-1}$ (0, 10, ..., 50 km). A 24 hour average is used at 30ø latitude, 0ø solar declination.

cBr atom assumed released during subsequent chemistry of CH$_3$Br.
Taked at face value, the analysis given here implies both natural and industrial sources of CH$_3$Br. The sea is the most probable natural source, providing 75-95% of the CH$_3$Br shown in Figure 1. We cannot however exclude the possibility of additional anthropogenic contributions to stratospheric bromine, associated for example with the escape of (CH Br)$_2$ from gasoline storage tanks or with the production of relatively insoluble bromine species during the combustion of leaded gasoline.

According to the model, the mixing ratio of inorganic bromine decreases by only a factor of 5 between ground and tropopause. This profile results from the choice of heterogeneous loss coefficient (cf. Wofsy et al., 1972), and is consistent with observational data for other soluble species, HC$_1$ (Farmer, 1975), NH$_3$ (Georgii and Muller, 1974) and HNO$_3$ (Lazrus et al., 1974), and in agreement also with radioactivity removal rates summarized by Junge (1963).

The results in Figure 1 imply a reduction of magnitude 0.3% in the global concentration of O$_3$ due to bromine catalysis, of which approximately 0.2% may be attributed to CH$_3$Br and 0.02% to bromine release from auto exhausts. Reductions in O$_3$, computed with various values for k_1 and k_4, are shown in Figure 2. The results in Figure 2 were derived subject to the constraint of a height independent value for the mixing ratio of HBr + Br + BrO, and illustrate the dependence of the computed ozone deficit on this parameter.

Figure 3 gives several conceivable time profiles for the ozone deficit associated with agricultural use of CH$_3$Br. The results in Figure 1 imply a reduction of magnitude 0.2% in the global concentration of O$_3$ due to bromine catalysis, of which approximately 0.2% may be attributed to CH$_3$Br and 0.02% to bromine release from auto exhausts. Reductions in O$_3$, computed with various values for k_1 and k_4, are shown in Figure 2. The results in Figure 2 were derived subject to the constraint of a height independent value for the mixing ratio of HBr + Br + BrO, and illustrate the dependence of the computed ozone deficit on this parameter.

Figure 3 gives several conceivable time profiles for the ozone deficit associated with agricultural use of CH$_3$Br. Curves D and E differ in choice of rate constant for reaction of OH with CH$_3$Br. Curve E employs the value suggested by analogy with the OH-CH$_3$C$_1$ reaction and is consistent also with the preliminary measurement by Watson and Davis. Curve D uses the OH-CH$_4$ reaction rate. Production and use of CH$_3$Br is assumed to grow in curves D7 and E7 at a rate of 7% per annum, a value close to the historical trend. Curves D15 and E15 envisage a somewhat larger growth rate, approximately 15% per annum. A growth rate of this magnitude may not be unreasonable however, since cost factors currently limit fumigation to a very few high value crops. Approximately 10% of world bromine production is used in the manufacture of CH$_3$Br, with roughly 63% employed in the production of ethylene dibromide.

It seems clear that an unconstrained growth in the use of methyl bromide could cause future problems for ozone. Measurements of bromine compounds in the atmosphere, together with laboratory studies of several key reactions, notably k_1, k_3 and k_7, should be pursued in order to clarify these matters.

Acknowledgements

We are indebted to C. Kolb, I. Chet and R. Mitchell for valuable discussions, and to S. Coroniti and J. Plonka for useful communications. This work was supported by the National Aeronautics and Space Administration under Grant NASA NSG 2031 and by the Atmospheric Sciences Division of the National Science Foundation under Grant GA33990X to Harvard University.
References

Crutzen, P.J., SST's, a threat to the earth's ozone shield, Ambio, 1, p. 41, 1972.

Watson, R.T., Chlorine, the chlorine oxides and other halogen species, CIAP Monograph, vol. 1, to be published.

(Received April 22, 1975; accepted May 16, 1975)