SPECTROSCOPIC SIGNATURES OF CRYSTAL MOMENTUM FRACTIONALIZATION: SUPPLEMENTAL MATERIAL

Andrew M. Essin and Michael Hermele

A. Relations for square lattice space group and time reversal symmetry

Following Ref. [8] of the main text [Phys. Rev. B 87, 104406 (2013), arXiv:1212.0593], we list the 10 relations that define the symmetry group consisting of square lattice space group and time reversal operations, in terms of the generators T_x, P_x, P_y, and T defined in the main text (recall that $T_y = P_{xy}T_xP_{xy}$). The relations are:

\begin{align}
T_xT_yT_x^{-1}T_y^{-1} &= 1, \\
T_xP_yT_x^{-1} &= 1, \\
T_yP_yT_y^{-1}P_x^{-1} &= 1, \\
T_xT_y^{-1}T_x^{-1} &= 1, \\
P_x^2 &= P_y^2 = T^2, \\
(P_xP_y)^4 &= 1, \\
T_xP_yT_y^{-1}P_x^{-1} &= 1, \\
T_yP_y^{-1}P_x^{-1} &= 1.
\end{align}

B. No subtypes of Type D spectral periodicity

Here, we consider the four choices of σ_i satisfying $\sigma_{txty} = 1$, $\sigma_{txpz} = -1$, with Type D spectral periodicity. We show that each of these four cases has the same spectral periodicity, and thus there are no subtypes of Type D.

Since $\sigma_{txsz} = -1$, single-spinon eigenstates can be grouped into degenerate doublets with crystal momenta k and $k + (\pi, \pi)$. Therefore, each two-spinon state with single-spinon crystal momenta k, k' is part of a degenerate quadruplet, in which the crystal momenta q and $q + (\pi, \pi)$ each appear twice. Making a shift $k \rightarrow k + (\pi, \pi)$ has no effect on the quadruplet.

The four choices of the σ_i under consideration can be specified by the ordered triple $(\sigma_{Tzx}, \sigma_{txpz}, \sigma_{txpz})$, and are

\begin{align}
D_A &= (-1, -1, -1), \\
D_B &= (1, 1, -1), \\
D_C &= (-1, 1, 1), \\
D_D &= (1, -1, 1).
\end{align}

First, we note that D_A and D_B can be mapped into one another by shifting the origin of k by $(\pi/2, \pi/2)$, as discussed in the main text, and thus have the same spectral periodicity. The same holds for D_C and D_D. It is thus sufficient to focus on D_A and D_C.

We now consider the effect of acting with P_x^s, P_{xy}^s and T^s on one spinon in the quadruplet described above. This action is given in Eq. (17) of the main text, and we see that for both D_A and D_C, the only effect of the non-trivial σ_i’s is to augment the ordinary symmetry transformation of k with a shift of (π, π) in some cases. For D_A this shift is present for both P_x^s and T^s, while for D_C it is only present for T^s. Because such shifts have no effect on the quadruplet, and because the presence/absence of the (π, π) shift for P_x^s is the only difference between D_A and D_C, the spectral periodicity is the same in both cases.

C. Parton mean-field \mathbb{Z}_2 spin liquid states

Here, we use fermionic parton theory to exhibit mean-field, gapped \mathbb{Z}_2 spin liquid states with Type D and D1d spectral periodicity. We dub these State-D and State-D1d, respectively. The PSG is specified by the action of symmetry generators on the two-component fermionic spinon field $\psi = (\psi_1, \phi_1)^T$ [X.-G. Wen, Phys. Rev. B 65, 165113 (2002), arXiv:cond-mat/0107071], which can be chosen to be

\begin{align}
T^s \psi(x, y) &= \sigma_{txty}^y \psi(x + 1, y), \\
T^s \psi(x, y) &= \sigma_{txty}^x \psi(x, y), \\
P_x^s \psi(x, y) &= \sigma_{txpz} \sigma_{txpy} \psi \mathcal{P}_{zy}^{-1} \psi(-x, y), \\
P_x^s \psi(x, y) &= \sigma_{txty} \mathcal{P}_{xy}^{-1} \sigma_{txpy} \psi(x, y).
\end{align}

Here \mathcal{P}_{xy}, \mathcal{P}_{zy}, and \mathcal{P}_{ty} are 2×2 matrices and $\tau^{x,y,z}$ are the 2×2 Pauli matrices. It is straightforward to construct Hamiltonians quadratic in ψ that are invariant under these transformations.

To construct State-D, we set $\sigma_{txty} = 1$, $\sigma_{txpz} = \sigma_{txpy} = -1$, and construct a Bogoliubov–de Gennes Hamiltonian $\psi^\dagger \mathcal{H}_D \psi$ that involves hopping and pairing terms to next-nearest-neighbor, with

\begin{align}
\mathcal{H}_D(k) &= (u_0 + u_2 \cos k_x \cos k_y) \tau^x \\
+ u_1 (\cos k_x + \cos k_y) \tau^z + u_2 \sin k_x \sin k_y \tau^y.
\end{align}

In this PSG, $g_{P_y} = \pi^0$ (the 2×2 identity matrix), $g_{P_z} = i\pi^x$, and $g_T = i\pi^y$. The physical (two-spinon) spectrum is shown in Fig. 2(a) of the main text for parameters $u_1 = u_0/4$, $u_2 = -u_0/2$, and $u_2' = u_0/4$. As expected, it has Type D spectral periodicity, with equivalent minima at $(0, 0)$ and (π, π). As discussed in the main text, when we include fluctuations about this mean-field state, we arrive at a \mathbb{Z}_2 spin liquid which we term State-D.

To construct State-D1d, we modify the above PSG by setting $\sigma_{txty} = 1$. Only pairing terms appear now, and a generic Hamiltonian with the same range is

\begin{align}
\mathcal{H}_{D1d}(k) &= (u_0 + u_2 \cos k_x \cos k_y) \tau^x \\
+ [u_1 (\cos k_x + \cos k_y) + u_2' \sin k_x \sin k_y] \tau^y.
\end{align}

An example spectrum is shown in Figs. 2(b) and 2(c) of the main text, with the same parameters as for State-D. As expected, the global minima at $(0, 0)$ and (π, π) are degenerate but inequivalent, and the projection of the density of states to q_x is periodic under $q_x \rightarrow q_x + \pi$.