Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs

CERN Collaboration*

CERN, Switzerland

A R T I C L E I N F O

Article history:
Received 14 May 2014
Received in revised form 12 June 2014
Accepted 30 June 2014
Available online 3 July 2014
Editor: M. Doser

Keywords:
CMS
Physics
Higgs
Diboson
Properties

A B S T R A C T

Constraints are presented on the total width of the recently discovered Higgs boson, \(\Gamma _{\text{H}} \), using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The analysis is based on the data collected by the CMS experiment at the LHC in 2011 and 2012, corresponding to integrated luminosities of 5.1 fb\(^{-1}\) at a center-of-mass energy \(\sqrt{s} = 7 \) TeV and 19.7 fb\(^{-1}\) at \(\sqrt{s} = 8 \) TeV. A simultaneous maximum likelihood fit to the measured kinematic distributions near the resonance peak and above the Z-boson pair production threshold leads to an upper limit on the Higgs boson width of \(\Gamma _{\text{H}} < 22 \) MeV at a 95% confidence level, which is 5.4 times the expected value in the standard model at the measured mass of \(m_{\text{H}} = 125.6 \) GeV.

The discovery of a new boson consistent with the standard model (SM) Higgs boson by the ATLAS and CMS Collaborations was recently reported [1–3]. The mass of the new boson \((m_{\text{H}}) \) was measured to be near 125 GeV, and the spin-parity properties were further studied by both experiments, favoring the scalar, \(J^{PC} = 0^{++} \), hypothesis [4–7]. The measurements were found to be consistent with a narrow resonance, and an upper limit of 3.4 GeV at a 95% confidence level (CL) on its decay width \((\Gamma _{\text{H}}) \) was reported by the CMS experiment in the four-lepton decay channel [7]. A direct width measurement at the resonance peak is limited by experimental resolution, and is only sensitive to values far larger than the expected width of around 4 MeV for the SM Higgs boson [8,9].

It was recently proposed [10] to constrain the Higgs boson width using its off-shell production and decay to two Z bosons away from the resonance peak [11]. In the dominant gluon fusion production mode the off-shell production cross section is known to be sizable. This arises from an enhancement in the decay amplitude from the vicinity of the Z-boson pair production threshold. A further enhancement comes in gluon fusion production, from the top-quark pair production threshold. The zero-width approximation is inadequate and the ratio of the off-shell cross section above \(2m_{\text{Z}} \) to the on-shell signal is of the order of 8% [11,12]. Further developments to the measurement of the Higgs boson width were proposed in Refs. [13,14].

The gluon fusion production cross section depends on \(\Gamma _{\text{H}} \) through the Higgs boson propagator

\[
\frac{d\sigma _{gg\to H\to ZZ}}{dm_{ZZ}^2} \sim \frac{g_{ggH}^2}{(m_{ZZ}^2 - m_{H}^2)^2 + m_{H}^2 I_{H}^2},
\]

where \(g_{ggH} \) and \(g_{HZZ} \) are the couplings of the Higgs boson to gluons and Z bosons, respectively. Integrating either in a small region around \(m_{H} \), or above the mass threshold \(m_{ZZ} > 2m_{Z} \), where \((m_{ZZ} - m_{H}) \gg \Gamma _{H} \), the cross sections are, respectively,

\[
\sigma _{\text{on-shell}}^{\text{on-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{m_{H} I_{H}} \quad \text{and} \quad \sigma _{\text{off-shell}}^{\text{off-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{(2m_{Z})^2}.
\]

From Eq. (2), it is clear that a measurement of the relative off-shell and on-shell production in the \(H \to ZZ \) channel provides direct information on \(\Gamma _{H} \), as long as the coupling ratios remain unchanged, i.e. the gluon fusion production is dominated by the top-quark loop and there are no new particles contributing. In particular, the on-shell production cross section is unchanged under a common scaling of the squared product of the couplings and of the total width \(\Gamma _{H} \), while the off-shell production cross section increases linearly with this scaling factor.

The dominant contribution for the production of a pair of Z bosons comes from the quark-initiated process, \(q\bar{q} \to ZZ \), the diagram for which is displayed in Fig. 1(left). The gluon-induced diboson production involves the \(gg \to ZZ \) continuum background production from the box diagrams, as illustrated in Fig. 1(center). An
example of the signal production diagram is shown in Fig. 1(right). The interference between the two gluon-induced contributions is significant at high m_{ZZ} [15], and is taken into account in the analysis of the off-shell signal.

Vector boson fusion (VBF) production, which contributes at the level of about 7% to the on-shell cross section, is expected to increase above 2m_\gamma. The above formalism describing the ratio of off-shell and on-shell cross sections is applicable to the VBF production mode. In this analysis we constrain the fraction of VBF production using the properties of the events in the on-shell region. The other main Higgs boson production mechanisms, t\bar{t}H and VH (V = Z, W), which contribute at the level of about 5% to the on-shell signal, are not expected to produce a significant off-shell contribution as they are suppressed at high mass [8,9]. They are therefore neglected in the off-shell analysis.

In this Letter, we present constraints on the Higgs boson width using its off-shell production and decay to Z-boson pairs, in the final states where one Z boson decays to an electron or a muon pair and the other to either an electron or a muon pair, H \to ZZ \to 4\ell (4\ell channel), or a pair of neutrinos, H \to ZZ \to 2\ell \ell (2\ell\ell channel). Relying on the observed Higgs boson signal in the resonance peak region [7], the simultaneous measurement of the signal in the high-mass region leads to constraints on the Higgs boson width \Gamma_{H} in the 4\ell decay channel. The 2\ell\ell decay channel, which benefits from a higher branching fraction [16,17], is used in the high-mass region to further increase the sensitivity to the Higgs boson width. The analysis is performed for the tree-level HVV coupling of a scalar Higgs boson, consistent with our observations [4,7], and implications for the anomalous HVV interactions are discussed. The Higgs boson mass is set to the measured value in the 4\ell decay channel of m_{H} = 125.6 GeV [7] and the Higgs boson width is set to the corresponding expected value in the SM of \Gamma_{H}^{\text{SM}} = 4.15 MeV [8,9].

The measurement is based on pp collision data collected with the CMS detector at the LHC in 2011, corresponding to an integrated luminosity of 5.1 fb^{-1} at the center-of-mass energy of \sqrt{s} = 7 TeV (4\ell channel), and in 2012, corresponding to an integrated luminosity of 19.7 fb^{-1} at \sqrt{s} = 8 TeV (4\ell and 2\ell\ell channels). The CMS detector, described in detail elsewhere [18], provides excellent resolution for the measurement of electron and muon transverse momenta (p_T) over a wide range. The signal candidates are selected using well-identified and isolated prompt leptons. The online selection and event reconstruction are described elsewhere [2,3,7,15]. The analysis presented here is based on the same event selection as used in Refs. [7,16].

The analysis in the 4\ell channel uses the four-lepton invariant mass distribution as well as a matrix element likelihood discriminant to separate the ZZ components originating from gluon- and quark-initiated processes. We define the on-shell signal region as 105.6 < m_{4\ell} < 140.6 GeV and the off-shell signal region as m_{4\ell} > 220 GeV. The analysis in the 2\ell\ell channel relies on the transverse mass distribution m_T, where \vec{p}_{T,4\ell} and m_{4\ell} are the measured transverse momentum and invariant mass of the dilepton system, respectively. The missing transverse energy, E_T^{miss}, is defined as the magnitude of the transverse momentum imbalance evaluated as the negative of the vectorial sum of transverse momenta of all the reconstructed particles in the event. In the 2\ell\ell channel, the off-shell signal region is defined as m_{T} > 180 GeV. The choice of the off-shell regions in both channels is done prior to looking at the data, based on the expected sensitivity.

Simulated Monte Carlo (MC) samples of gg \to 4\ell and gg \to 2\ell\ell events are generated at leading order (LO) in perturbative quantum chromodynamics (QCD), including the Higgs boson signal, the continuum background, and the interference contributions using recent versions of two different MC generators, gg2VV 3.15 [13,19] and mc@nlo 6.7 [20], in order to cross-check theoretical inputs. The QCD renormalization and factorization scales are set to m_{4\ell}/2 (dynamic scales) and MSTW2008 LO parton distribution functions (PDFs) [21] are used. Higher-order QCD corrections for the gluon fusion signal process are known to an accuracy of next-to-next-to-leading order (NNLO) and next-to-next-to-leading logarithms for the total cross section [8,9] and to NLO as a function of m_{4\ell} [14]. These correction factors to the LO cross section (K factors) are typically in the range of 2.0 to 2.5. After the application of the m_{4\ell}-dependent K factors, the event yield is normalized to the cross section from Refs. [8,9]. For the gg \to ZZ continuum background, although no exact calculation exists beyond LO, it has been recently shown [22] that the soft collinear approximation is able to describe the background cross section and therefore the inter-ference term at NNLO. Following this calculation, we assign to the LO background cross section (and, consequently, to the interference contribution) a K factor equal to that used for the signal [14]. The limited theoretical knowledge of the background K factor at NNLO is taken into account by including an additional systematic uncertainty, the impact of which on the measurement is nevertheless small.

Vector boson fusion events are generated with PHANTOM [23]. Off-shell and interference effects with the resonant production are included at LO in these simulations. The event yield is normalized to the cross section at NNLO QCD and next-to-leading order (NLO) electroweak (EW) accuracy, with a normalization factor shown to be independent of m_{4\ell}.

In order to parameterize and validate the distributions of all the components for both gluon fusion and VBF processes, specific simulated samples are also produced that describe only the signal or the continuum background, as well as several scenarios with scaled couplings and width. For the on-shell analysis, signal events are generated either with POWHEG [24–27] production at NLO in QCD and JHUGen [28,29] decay (gluon fusion and VBF), or with PYTHIA 6.4 [30] (VH and t\bar{t}H production).

In both the 4\ell and 2\ell\ell channels the dominant background is q\bar{q} \to ZZ. We assume SM production rates for this background, the contribution of which is evaluated by powheg simulation at NLO in QCD [31]. Next-to-leading order EW calculations [32,33], which predict negative and m_{4\ell}-dependent corrections to the q\bar{q} \to ZZ process for on-shell Z-boson pairs, are taken into account.

All simulated events undergo parton showering and hadronization using PYTHIA. As is done in Ref. [7] for LO samples, the parton
Fig. 2. Distribution of the four-lepton invariant mass in the range 100 < m_{4\ell} < 800 GeV. Points represent the data, filled histograms the expected contributions from the reducible (Z + X) and q\bar{q} backgrounds, and from the sum of the gluon fusion (gg) and vector boson fusion (VV) processes, including the Higgs boson mediated contributions. The inset shows the distribution in the low mass region after a selection requirement on the MELA likelihood discriminant $D_{gg}^{\text{tot}} > 0.5$ [7]. In this region, the contribution of the tH and VH production processes is added to the dominant gluon fusion and VBF contributions.

showering settings are tuned to approximately reproduce the ZZ p_T spectrum predicted at NNLO for the Higgs boson production [34]. Generated events are then processed with the detailed CMS detector simulation based on GEANT4 [35,36], and reconstructed using the same algorithms as used for the observed events.

The final state in the 4\ell channel is characterized by four well-identified and isolated leptons forming two pairs of opposite-sign and same-flavor leptons consistent with two Z bosons. This channel benefits from a precise reconstruction of all final state leptons and from a very low instrumental background. The event selection and the reducible background evaluation are performed following the methods described in Ref. [7]. After the selection, the 4\ell data sample is dominated by the quark-initiated q\bar{q} \rightarrow ZZ \rightarrow 4\ell (q\bar{q} \rightarrow 4\ell) and gg \rightarrow 4\ell productions.

Fig. 2 presents the measured $m_{4\ell}$ distribution over the full mass range, $m_{4\ell} > 100$ GeV, together with the expected SM contributions. The gg \rightarrow 4\ell contribution is clearly visible in the on-shell signal region and at the Z-boson pair production threshold, above the q\bar{q} \rightarrow 4\ell background. The observed distribution is consistent with the expectation from SM processes. We observe 223 events in the off-shell signal region, while we expect 217.6 ± 9.5 from SM processes, including the SM Higgs boson signal.

In order to enhance the sensitivity to the gg production in the off-shell region, a likelihood discriminant D_{gg} is used, which characterizes the event topology in the 4\ell center-of-mass frame using the observables ($m_{4\ell}, m_{D_2}, \vec{E}$) for a given value of $m_{4\ell}$, where \vec{E} denotes the five angles defined in Ref. [28]. The discriminant is built from the probabilities $P_{\text{tot}}^{\text{sig}}$ and $P_{\text{bkg}}^{\text{q\bar{q}}}$ for an event to originate from either the gg \rightarrow 4\ell or the q\bar{q} \rightarrow 4\ell process. We use the matrix element likelihood approach (MELA) [29] for the probability computation using the MCFM matrix elements for both gg \rightarrow 4\ell and q\bar{q} \rightarrow 4\ell processes. The probability $P_{\text{sig}}^{\text{gg}}$ for the gg \rightarrow 4\ell process includes the signal ($P_{\text{sig}}^{\text{gg}}$), the background ($P_{\text{bkg}}^{\text{gg}}$), and their interference ($P_{\text{int}}^{\text{gg}}$), as introduced for the discriminant computation in Ref. [37]. The discriminant is defined as

$$D_{gg} = \frac{P_{\text{tot}}^{\text{gg}}}{P_{\text{tot}}^{\text{gg}} + P_{\text{bkg}}^{\text{qq}}} = \left[1 + \frac{\sqrt{a} \times P_{\text{tot}}^{\text{gg}} + \sqrt{a} \times P_{\text{bkg}}^{\text{gg}}}{\alpha \times P_{\text{sig}}^{\text{gg}} + \sqrt{\alpha} \times P_{\text{int}}^{\text{gg}} + \sqrt{\alpha} \times P_{\text{bkg}}^{\text{gg}}} \right]^{-1} \quad (4)$$

where the parameter a is the strength of the unknown anomalous gg contribution with respect to the expected SM contribution ($a = 1$). We set $a = 10$ in the definition of D_{gg} according to the expected sensitivity. Studies show that the expected sensitivity does not change substantially when a is varied up or down by a factor of 2. It should be stressed that fixing the parameter a to a given value only affects the sensitivity of the analysis. To suppress the dominant q\bar{q} \rightarrow 4\ell background in the on-shell region, the analysis also employs a MELA likelihood discriminant D_{gg}^{tot}, based on the JHUGEN and MCFM matrix element calculations for the signal and
the background, as illustrated by the inset in Fig. 2 and used in Ref. [7].

As an illustration, Fig. 3(top) presents the 4ℓ invariant mass distribution for the off-shell signal region ($m_{4ℓ} > 220$ GeV) and for $D_\text{gg} > 0.65$. The expected contributions from the qq → 4ℓ and reducible backgrounds, as well as for the total gluon fusion (gg) and vector boson fusion (VV) contributions, including the Higgs boson signal, are shown. The distribution of the likelihood discriminant D_gg for $m_{4ℓ} > 330$ GeV is shown in Fig. 3(bottom), together with the expected contributions from the SM. The expected $m_{4ℓ}$ and D_gg distributions for the sum of all the processes, with a Higgs boson width $Γ_{H} = 10 \times Γ_{H}^{\text{SM}}$ and a relative cross section with respect to the SM cross section equal to unity in both gluon fusion and VBF production modes ($μ = μ_{\text{SM}}$), are also presented, showing the enhancement arising from the scaling of the squared product of the couplings. The expected and observed event yields in the off-shell gg-enriched region defined by $m_{4ℓ} ≥ 330$ GeV and $D_\text{gg} > 0.65$ are reported in Table 1.

The 2ℓ2ν analysis is performed on the 8 TeV data set only. The final state in the 2ℓ2ν channel is characterized by two oppositely-charged leptons of the same flavor compatible with a Z boson, together with a large E_T^miss from the undetectable neutrinos. The event selection and background estimation is performed as described in Ref. [16], with the exception that the jet categories defined in Ref. [16] are here grouped into a single category, i.e. the analysis is performed in an inclusive way. The m_{T} distribution in the off-shell signal region ($m_{T} > 180$ GeV) is shown in Fig. 4. The expected and observed event yields in a gg-enriched region defined by $m_{T} > 350$ GeV and $E_T^\text{miss} > 100$ GeV are reported in Table 1.

Systematic uncertainties comprise experimental uncertainties on the signal efficiency and background yield evaluation, as well as uncertainties on the signal and background from theoretical predictions. Since the measurement is performed in wide m_{ZZ} regions, there are sources of systematic uncertainties that only affect the total normalization and others that affect both the normalization and the shape of the observables used in this analysis. In the 4ℓ final state, only the latter type of systematic uncertainty affects the measurement of $Γ_{H}$, since normalization uncertainties change the on-shell and off-shell yields by the same amount.

Table 1. Expected and observed numbers of events in the 4ℓ and 2ℓ2ν channels in gg-enriched regions, defined by $m_{4ℓ} ≥ 330$ GeV and $D_\text{gg} > 0.65$ (4ℓ), and by $m_{T} > 350$ GeV and $E_T^\text{miss} > 100$ GeV (2ℓ2ν). The numbers of expected events are given separately for the gg and VBF processes, and for a SM Higgs boson ($Γ_{H} = 10 \times Γ_{H}^{\text{SM}}$) and a Higgs boson width and squared product of the couplings scaled by a factor 10 with respect to their SM values. The unphysical expected contributions for the signal and background components are also reported separately, for the gg and VBF processes. For both processes, the sum of the signal and background components differs from the total due to the negative interferences. The quoted uncertainties include only the systematic sources.

<table>
<thead>
<tr>
<th></th>
<th>4ℓ</th>
<th>2ℓ2ν</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$Γ_{H} = Γ_{H}^{\text{SM}}$</td>
<td>$Γ_{H} = 10 \times Γ_{H}^{\text{SM}}$</td>
</tr>
<tr>
<td>(a)</td>
<td>Total gg ($Γ_{H} = Γ_{H}^{\text{SM}}$)</td>
<td>1.8 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>gg Signal component ($Γ_{H} = Γ_{H}^{\text{SM}}$)</td>
<td>1.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>gg Background component ($Γ_{H} = 10 \times Γ_{H}^{\text{SM}}$)</td>
<td>2.3 ± 0.4</td>
</tr>
<tr>
<td>(b)</td>
<td>Total gg ($Γ_{H} = 10 \times Γ_{H}^{\text{SM}}$)</td>
<td>9.9 ± 1.2</td>
</tr>
<tr>
<td>(c)</td>
<td>Total VBF ($Γ_{H} = Γ_{H}^{\text{SM}}$)</td>
<td>0.23 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>VBF signal component ($Γ_{H} = Γ_{H}^{\text{SM}}$)</td>
<td>0.11 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>VBF background component ($Γ_{H} = 10 \times Γ_{H}^{\text{SM}}$)</td>
<td>0.35 ± 0.02</td>
</tr>
<tr>
<td>(d)</td>
<td>Total VBF ($Γ_{H} = 10 \times Γ_{H}^{\text{SM}}$)</td>
<td>0.77 ± 0.04</td>
</tr>
<tr>
<td>(e)</td>
<td>qq̅ background</td>
<td>9.3 ± 0.7</td>
</tr>
<tr>
<td>(f)</td>
<td>Other backgrounds</td>
<td>0.05 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>Total expected ($Γ_{H} = Γ_{H}^{\text{SM}}$)</td>
<td>11.4 ± 0.8</td>
</tr>
<tr>
<td></td>
<td>Total expected ($Γ_{H} = 10 \times Γ_{H}^{\text{SM}}$)</td>
<td>20.1 ± 1.4</td>
</tr>
</tbody>
</table>

Note: Observed number of events in the 4ℓ channel is 11, and in the 2ℓ2ν channel is 91.

Fig. 4. Distribution of the transverse mass in the 2ℓ2ν channel. Points represent the data, filled histograms the expected contributions from the backgrounds, and from the gluon fusion (gg) and vector boson fusion (VV) SM processes (including the Higgs-mediated contributions). The dashed line corresponds to the total expected yield for a Higgs boson width and a squared product of the couplings scaled by a factor 10 with respect to their SM values. The bin size varies from 80 to 210 GeV and the last bin includes all entries with transverse masses above 1 TeV.

Among the signal uncertainties, experimental systematic uncertainties are evaluated from observed events for the trigger efficiency (1.5%), and combined object reconstruction, identification and isolation efficiencies (3–4% for muons, 5–11% for electrons) [7]. In the 2ℓ2ν final state, the effects of the lepton momentum scale (1–2%) and jet energy scale (1%) are taken into account and propagated to the evaluation of E_T^miss. The uncertainty in the b-jet veto (1–3%) is estimated from simulation using correction factors for the b-tagging and b-misidentification efficiencies as measured from the dijet and t̅b decay control samples [38].

Theoretical uncertainties from QCD scales in the qq̅ background contribution are within 4–10% depending on m_{ZZ} [7]. An additional uncertainty of 2–6% is included to account for missing higher order contributions with respect to a full NLO QCD and NLO EW evaluation. The systematic uncertainty in the normal-
ization of the reducible backgrounds is evaluated following the methods described in Refs. [7,16]. In the 2ℓ2ν channel, for which these contributions are negligible at high mass, the estimation from control samples for the Z + jets and for the sum of the t̅t, tW and tWV contributions leads to uncertainties of 25% and 15% in the respective background yields. Theoretical uncertainties in the high mass contribution from the gluon-induced processes, which affect both the normalization and the shape, are especially important in this analysis (in particular for the signal and interference contributions that are scaled by large factors). However, these uncertainties partially cancel when measuring simultaneously the yield from the same process in the on-shell signal region. The remaining mZ2-dependent uncertainties in the QCD renormalization and factorization scales are derived using the K factor variations from Ref. [14], corresponding to a factor of two up or down from the nominal mZ2/2 values, and amount to 2–4%. For the gg → ZZ continuum background production, we assign a 10% additional uncertainty on the K factor, following Ref. [22] and taking into account the different mass ranges and selections on the specific final state. This uncertainty also affects the interference with the signal. The PDF uncertainties are estimated following Refs. [39,40] by changing the NLO PDF set from MSTW2008 to CT10 [41] and NNPDF2.1 [42], and the residual contribution is about 1%. For the VBF processes, no significant mZ2-dependence is found regarding the QCD scales and PDF uncertainties, which are in general much smaller than for the gluon fusion processes [8,9]. In the 2ℓ2ν final state, additional uncertainties on the yield arising from the theoretical description of the parton shower and underlying event are taken into account (6%).

We perform a simultaneous unbinned maximum likelihood fit of a signal-plus-background model to the measured distributions in the 4ℓ and 2ℓ2ν channels. In the 4ℓ channel the analysis is performed in the on-shell and off-shell signal regions defined above. In the on-shell region, a three-dimensional distribution \(\hat{x} = (m_{4\ell}, \Delta m_{\text{bgg}}, p_T^{4\ell})\) is analyzed, following the methodology described in Ref. [7], where the quantity \(\Delta m_{\text{bgg}}\) is a discriminant used to separate VBF from gluon fusion production. In the off-shell region, a two-dimensional distribution \(\hat{x} = (m_{4\ell}, \Delta m_{\text{fgg}})\) is analyzed. In the 2ℓ2ν channel, only the off-shell Higgs boson production is analyzed, using the \(\hat{x} = m_T^3\) distribution.

The probability distribution functions are built using the full detector simulation or data control regions, and are defined for the signal, the background, or the interference between the two contributions, \(P_{\text{sig}}, P_{\text{bkg}}, P_{\text{int}}\), respectively, as a function of the observables \(\hat{x}\) discussed above. Several production mechanisms are considered for the signal and the background, such as gluon fusion (gg), VBF, and quark-antiquark annihilation (qQ). The total probability distribution function for the off-shell region includes the interference of two contributions in each production process:

\[
P_{\text{tot}}^{\text{off-shell}}(\hat{x}) = \left[\mu_{\text{ggf}} \times (\Gamma_H/\Gamma_{gg}) \times P_{\text{sig}}^{\text{gg}}(\hat{x})\right]
+ \sqrt{\mu_{\text{ggf}} \times (\Gamma_H/\Gamma_{gg}) \times P_{\text{int}}^{\text{gg}}(\hat{x}) + P_{\text{bkg}}^{\text{gg}}(\hat{x})}
+ \left[\mu_{\text{VBF}} \times (\Gamma_H/\Gamma_0) \times P_{\text{sig}}^{\text{VBF}}(\hat{x})\right]
+ \sqrt{\mu_{\text{VBF}} \times (\Gamma_H/\Gamma_0) \times P_{\text{int}}^{\text{VBF}}(\hat{x}) + P_{\text{bkg}}^{\text{VBF}}(\hat{x})}
+ \sqrt{\mu_{\text{qQ}} \times \Gamma(H) \times P_{\text{int}}^{\text{qQ}}(\hat{x}) + P_{\text{bkg}}^{\text{qQ}}(\hat{x}) + \ldots}
\]

The list of background processes is extended beyond those quoted depending on the final state (Z + X, top, W + jets, WW, WZ). The parameters \(\mu_{\text{ggf}}\) and \(\mu_{\text{VBF}}\) are left unconstrained in the fit. The \(\mu_{\text{ggf}}\) and \(\mu_{\text{VBF}}\) fitted values are found to be almost identical to those obtained in Ref. [7]. Systematic uncertainties are included as nuisance parameters and are treated according to the frequentist paradigm [46]. The shapes and normalizations of the signal and of each background component are allowed to vary within their uncertainties, and the correlations in the sources of systematic uncertainty are taken into account.

The fit results are shown in Fig. 5 as scans of the negative log-likelihood, \(-2\Delta \ln L\), as a function of \(\Gamma_H\). Combining the two channels a limit is observed (expected) on the total width of \(\Gamma_H < 22 \text{ MeV} (33 \text{ MeV})\) at a 95% CL, which is 5.4 (8.0) times the expected value in the SM. The best fit value and 68% CL interval correspond to \(\Gamma_H = 1.8^{+7.7}_{-1.8} \text{ MeV}\). The result of the 4ℓ analysis with respect to the \(\Gamma_0\) value used in the reference parameterization.

In the on-shell region, the parameterization includes the small contribution of the tTH and VH Higgs boson production mechanisms, which are related to the gluon fusion and VBF processes, respectively, because either the quark or the vector boson coupling to the Higgs boson is in common among those processes. Interference effects are negligible in the on-shell region. The total probability distribution function for the on-shell region is written as

\[
P_{\text{tot}}^{\text{on-shell}}(\hat{x}) = \mu_{\text{ggf}} \times \left[\frac{P_{\text{sig}}^{\text{gg}}(\hat{x})}{\Gamma_H} + \frac{P_{\text{int}}^{\text{gg}}(\hat{x})}{\Gamma_{gg}} + \frac{P_{\text{bkg}}^{\text{gg}}(\hat{x})}{\Gamma_{gg}}\right]
+ \mu_{\text{VBF}} \times \left[\frac{P_{\text{sig}}^{\text{VBF}}(\hat{x})}{\Gamma_H} + \frac{P_{\text{int}}^{\text{VBF}}(\hat{x})}{\Gamma_0} + \frac{P_{\text{bkg}}^{\text{VBF}}(\hat{x})}{\Gamma_0}\right]
+ \mu_{\text{qQ}} \times \left[\frac{P_{\text{int}}^{\text{qQ}}(\hat{x})}{\Gamma(H)} + \frac{P_{\text{bkg}}^{\text{qQ}}(\hat{x})}{\Gamma(H)} + \ldots\right]
\]
alone is an observed (expected) limit of $\ell_\ell < 33$ MeV (42 MeV) at a 95% CL, which is 8.0 (10.1) times the SM value, and the result of the analysis combining the 4\ell on-shell and 2\ell 2\ell off-shell regions is $\ell_\ell < 33$ MeV (44 MeV) at a 95% CL, which is 8.1 (10.6) times the SM value. The best fit values and 68% CL intervals are $\ell_\ell = 1.9^{+1.9}_{-1.8}$ MeV and $\ell_\ell = 1.8^{+1.8}_{-1.6}$ MeV for the 4\ell analysis and for the analysis combining the 4\ell on-shell and 2\ell 2\ell off-shell regions, respectively.

The expected limit for the two channels combined without including the systematic uncertainties is $\ell_\ell < 28$ MeV at a 95% CL. The effect of systematic uncertainties is driven by the 2\ell 2\ell channel with larger experimental uncertainties in signal efficiencies and background estimation from control samples in data, while the result in the 4\ell channel is largely dominated by the statistical uncertainty.

The statistical compatibility of the observed results with the expectation under the SM hypothesis corresponds to a p-value of 0.24. The statistical coverage of the results obtained in the likelihood scan has also been tested with the Feldman–Cousins approach [47] for the combined analysis leading to consistent although slightly tighter constraints. The analysis in the 4\ell channel has also been performed in a one-dimensional fit using either $m_4\ell$ or $D_{4\ell}$ and consistent results are found. The expected limit without using the MELA likelihood discriminant $D_{4\ell}$ is 40% larger in the 4\ell channel.

In summary, we have presented constraints on the total Higgs boson width in its relative on-shell and off-shell production and decay rates to four leptons or two leptons and two neutrinos. The analysis is based on the 2011 and 2012 data sets corresponding to integrated luminosities of 5.1 fb$^{-1}$ at $\sqrt{s} = 7$ TeV and 19.7 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The four-lepton analysis uses the measured invariant mass distribution near the peak and above the Z-boson pair production threshold, as well as a likelihood discriminant to separate the gluon fusion ZZ production from the qq → ZZ background, while the two-lepton plus two-neutrino off-shell analysis relies on the transverse mass distribution. The presented analysis determines the independent contributions of the gluon fusion and VBF production mechanisms from the data in the on-shell region. It relies nevertheless on the knowledge of the coupling ratios between the off-shell and on-shell production, i.e. the dominance of the top quark loop in the gluon fusion production mechanism and the absence of new particle contribution in the loop. The presence of anomalous couplings in the HVV interaction would lead to enhanced off-shell production and would make our constraint tighter. The combined fit of the 4\ell and 2\ell 2\ell channels leads to an upper limit on the Higgs boson width of $\ell_\ell < 22$ MeV at a 95% confidence level, which is 5.4 times the expected width of the SM Higgs boson. This result improves by more than two orders of magnitude upon previous experimental constraints on the new boson decay width from the direct measurement at the resonance peak.

Acknowledgements

We wish to thank our theoretician colleagues and in particular Fabrizio Caola for providing the theoretical uncertainty in the gg → ZZ background K factor, Tobias Kasprzik for providing the numerical calculations on the EW corrections for the qq → ZZ background process, Giampiero Passarino for his calculations of the m_{ZZ}-dependent K factor and its variations with renormalization and factorization scales, and Marco Zaro for checking the independence on m_{ZZ} of higher-order corrections in VBF processes. We also gratefully acknowledge Alessandro Ballestrero, John Campbell, Keith Ellis, Stefano Forte, Nikolas Kauer, Kirill Melnikov, and Ciaran Williams for their help in optimizing the Monte Carlo generators for this analysis.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STARD and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

D. De Florian, G. Ferrera, M. Grazzini, D. Tommasini, Higgs boson production at the LHC: transverse momentum resummation effects in the $H \to \gamma \gamma$, $H \to W W \to 4l$ and $H \to ZZ \to 4l$ decay modes, JHEP 06 (2012) 132, http://dx.doi.org/10.1007/JHEP06(2012)132, arXiv:1203.6321v1.

V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia

Institut für Hochenergiephysik der OeAW, Wien, Austria

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

National Centre for Particle and High Energy Physics, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussels, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Université de Mons, Mons, Belgium

W.L. Aldá Júnior, G.A. Alves, L. Brito, M. Correa Martins Junior, T. Dos Reis Martins, M.E. Pol

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

C.A. Bernardes, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

a Universidade Estadual Paulista, São Paulo, Brazil

b Universidade Federal do ABC, São Paulo, Brazil

A. Aleksandrov, V. Genchev, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

University of Sofia, Sofia, Bulgaria

Institute of High Energy Physics, Beijing, China

C. Asawatangkun, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

C. Avila, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Universidad de Los Andes, Bogota, Colombia

N. Godinovic, D. Lelas, D. Polic, I. Puljak

Technical University of Split, Split, Croatia
Z. Antunovic, M. Kovac
University of Split, Split, Croatia

V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic
Institute Rudjer Boskovic, Zagreb, Croatia

A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis
University of Cyprus, Nicosia, Cyprus

M. Bodlak, M. Finger, M. Finger Jr.
Charles University, Prague, Czech Republic

Y. Assran9, A. Ellithi Kamel10, M.A. Mahmoud11, A. Radi12,13
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

M. Kadastik, M. Murumaa, M. Raidal, A. Tiko
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

P. Eerola, G. Fedi, M. Voutilainen
Department of Physics, University of Helsinki, Helsinki, Finland

Helsinki Institute of Physics, Helsinki, Finland

T. Tuuva
Lappeenranta University of Technology, Lappeenranta, Finland

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

S. Gadrat
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

Université Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
Z. Tsamalaidze

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Athens, Athens, Greece

X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas

University of Ioannina, Ioannina, Greece

G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Wigner Research Centre for Physics, Budapest, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, J. Palinkas, Z. Szillasi
Institute of Nuclear Research ATOMKI, Debrecen, Hungary

P. Raics, Z.L. Trocsanyi, B. Ujvari
University of Debrecen, Debrecen, Hungary

S.K. Swain
National Institute of Science Education and Research, Bhubaneswar, India

Panjab University, Chandigarh, India

Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma
University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, Kolkata, India

A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar
Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research - EHEP, Mumbai, India

S. Banerjee, R.K. Dewanjee, S. Dugad
Tata Institute of Fundamental Research - HECR, Mumbai, India

H. Bakhshiansohi, H. Behnamian, S.M. Etesami, A. Fahim, R. Goldouzian, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiaabadi, B. Safarzadeh, M. Zeinali
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

M. Felcini, M. Grunewald
University College Dublin, Dublin, Ireland

M. Biasini, G.M. Bilei, D. Ciangottini, L. Fanò, P. Lariccia, G. Mantovani, M. Menichelli, F. Romeo, A. Saha, A. Santocchia, A. Spiezia.

H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia
Universidad Iberoamericana, Mexico City, Mexico

I. Pedraza, H.A. Salazar Ibarguen
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

E. Casimiro Linares, A. Morelos Pineda
Universidad Autónoma de San Luis Potosi, San Luis Potosi, Mexico

D. Krofcheck
University of Auckland, Auckland, New Zealand

P.H. Butler, S. Reucroft
University of Canterbury, Christchurch, New Zealand

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, M.A. Shah, M. Shoaib
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia
Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin
Institute for Theoretical and Experimental Physics, Moscow, Russia

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Chulalongkorn University, Bangkok, Thailand

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

E. Gülmez, B. Isildak, M. Kaya, O. Kaya

Bogazici University, Istanbul, Turkey

H. Bahtiyar, E. Barlas, K. Cankocak, F.I. Vardarli, M. Yücel

Istanbul Technical University, Istanbul, Turkey

L. Levchuk, P. Sorokin

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, P. Dunne, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, G. Hall, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas, L. Lyons, A.-M. Magnan, S. Malik, B. Mathias,

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

Baylor University, Waco, USA

O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

The University of Alabama, Tuscaloosa, USA

A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, C. Richardson, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA
V. Azzolini, A. Calamba, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

Carnegie Mellon University, Pittsburgh, USA

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

University of Florida, Gainesville, USA

S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida International University, Miami, USA

Florida State University, Tallahassee, USA

M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

E. Brownson, H. Mendez, J.E. Ramirez Vargas

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

N. Parashar, J. Stupak

Purdue University Calumet, Hammond, USA

A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

Rice University, Houston, USA

B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, A. Khukhunaishvili, G. Petrillo, D. Vishnevskiy

University of Rochester, Rochester, USA

R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian

The Rockefeller University, New York, USA

Rutgers, The State University of New Jersey, Piscataway, USA

K. Rose, S. Spanier, A. York

University of Tennessee, Knoxville, USA

Texas A\&M University, College Station, USA

N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

Wayne State University, Detroit, USA

University of Wisconsin, Madison, USA

† Deceased.

1 Also at Vienna University of Technology, Vienna, Austria.
2 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
3 Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
4 Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
5 Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
6 Also at Universidade Estadual de Campinas, Campinas, Brazil.
7 Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
8 Also at Joint Institute for Nuclear Research, Dubna, Russia.
9 Also at Suez University, Suez, Egypt.
10 Also at Cairo University, Cairo, Egypt.
11 Also at Fayoum University, El-Fayoum, Egypt.
12 Also at British University in Egypt, Cairo, Egypt.
13 Also at Ain Shams University, Cairo, Egypt.
14 Also at Université de Haute Alsace, Mulhouse, France.
15 Also at Brandenburg University of Technology, Cottbus, Germany.
16 Also at The University of Kansas, Lawrence, USA.
17 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
18 Also at Eötvös Loránd University, Budapest, Hungary.
19 Also at University of Debrecen, Debrecen, Hungary.
20 Also at University of Visva-Bharati, Santiniketan, India.
21 Also at Tata Institute of Fundamental Research – HECR, Mumbai, India.
22 Also at King Abdulaziz University, Jeddah, Saudi Arabia.
23 Also at University of Ruhuna, Matara, Sri Lanka.
24 Also at Isfahan University of Technology, Isfahan, Iran.
25 Also at Sharif University of Technology, Tehran, Iran.
26 Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
27 Also at Università degli Studi di Siena, Siena, Italy.
28 Also at Centre National de la Recherche Scientifique (CNRS) – IN2P3, Paris, France.
29 Also at Purdue University, West Lafayette, USA.
30 Also at Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.
31 Also at National Centre for Nuclear Research, Swierk, Poland.
32 Also at Institute for Nuclear Research, Moscow, Russia.
33 Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
34 Also at California Institute of Technology, Pasadena, USA.
35 Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
36 Also at Facoltà di Ingegneria, Università di Roma, Roma, Italy.
37 Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
38 Also at University of Athens, Athens, Greece.
39 Also at Paul Scherrer Institut, Villigen, Switzerland.
40 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
41 Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
42 Also at Gazisdasapana University, Tokat, Turkey.
43 Also at Adiyaman University, Adiyaman, Turkey.
44 Also at Cag University, Mersin, Turkey.
45 Also at Mersin University, Mersin, Turkey.
46 Also at Izmir Institute of Technology, Izmir, Turkey.
47 Also at Ozyegin University, Istanbul, Turkey.
48 Also at Marmara University, Istanbul, Turkey.
49 Also at Kafkas University, Kars, Turkey.
50 Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
51 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
52 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
53 Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
54 Also at Argonne National Laboratory, Argonne, USA.
55 Also at Erzincan University, Erzincan, Turkey.
56 Also at Yıldız Technical University, Istanbul, Turkey.
57 Also at Texas A&M University at Qatar, Doha, Qatar.
58 Also at Kyungpook National University, Daegu, Korea.