CoP As An Acid-Stable Active Electrocatalyst For The Hydrogen-Evolution Reaction:
Electrochemical Synthesis, Interfacial Characterization And Performance Evaluation

FADL H. SAADI1,2, AZHAR I. CARIM3, ERIK VERLAGE1,2,

JOHN C. HEMMINGER2,6, NATHAN S. LEWIS2-5* AND MANUEL P. SORIAGA2,7*

1Division of Engineering and Applied Sciences
2Joint Center for Artificial Photosynthesis
3Division of Chemistry and Chemical Engineering
4Beckman Institute
5Kavli Nanoscience Institute
California Institute of Technology
Pasadena, CA 91125

6Department of Chemistry
University of California
Irvine, CA 92697

7Department of Chemistry
Texas A&M University
College Station, TX 77843

*Corresponding authors. E-mail addresses: m-soriaga@tamu.edu, nslewis@caltech.edu
Physical Characterization

Grazing Incidence X-Ray Diffraction
Grazing incidence X-ray diffraction data was acquired with a Bruker D8 Discover diffractometer equipped with a Cu Kα source and a VÅNTEC-500 2-dimensional detector. The X-rays were collimated through a 0.1 mm diameter capillary and incident at fixed grazing angle of 0.3° above the plane of the sample while the detector was swept to encompass the full 2θ range.

Faradaic Efficiency Calculation
Gas collection: CoP (electrodeposited on Cu) and an iridium film were epoxied into two chambers of an airtight plastic chassis and separated by a Nafion membrane. Electrodes were operated in 0.50 M sulfuric acid electrolyte with a constant current of 10 mA. Hydrogen and oxygen were collected in two eudiometers and gas volume was measured at regular intervals, as shown in Figure S2. For more than 5 hours of operation, during which 162 Coulombs of charge passed between the electrodes, a faradaic efficiency of 100% was observed for both cathodic and anodic reactions with a 2:1 ratio of hydrogen to oxygen produced.

Atomic Force Microscopy
Atomic force micrographs were collected with a Bruker Dimension Icon microscope with a Nanoscope V controller in tapping operation.
Figure S1. Grazing incidence X-ray diffraction pattern of cobalt phosphide thin film. The absence of distinct reflections suggests a lack of crystallinity.
Figure S2. Faradaic efficiency of CoP cathode and Ir anode in a two-electrode configuration. Current density was held at 10 mA and gas products were collected in two eudiometers. Volume of H₂ (red) and O₂ (blue) was recorded over regular intervals, and overlaid with expected gas production over time.
Figure S3. High-resolution X-ray photoelectron spectra of (A) Co 2p region of the as-deposited thin film; (B) P 2p region of the as-deposited thin film; (C) Co 2p region after voltammetry; (D) P 2p region after voltammetry.
Figure S4. Scanning-electron micrographs of the films before (A) and after (B) voltammetry; Atomic force micrographs of the films before (C) and after (D) voltammetry.
<table>
<thead>
<tr>
<th></th>
<th>Co</th>
<th>C</th>
<th>O</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-Deposited</td>
<td>15%</td>
<td>34%</td>
<td>49%</td>
<td>2%</td>
</tr>
<tr>
<td>After Voltammetry</td>
<td>12%</td>
<td>33%</td>
<td>43%</td>
<td>12%</td>
</tr>
</tbody>
</table>

Table S1. Table of atomic abundances derived from the quantitative analysis of XPS peaks for the as-deposited film and resultant material after voltammetry.
<table>
<thead>
<tr>
<th></th>
<th>Orthophosphate</th>
<th>Phosphide</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-Deposited</td>
<td>75%</td>
<td>25%</td>
</tr>
<tr>
<td>After Voltammetry</td>
<td>62%</td>
<td>38%</td>
</tr>
</tbody>
</table>

Table S2. Ratio of phosphorous oxidation states derived from the quantitative analysis of XPS peaks for the as-deposited film and resultant material after voltammetry.