A search for $WW\gamma$ and $WZ\gamma$ production and constraints on anomalous quartic gauge couplings in pp collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration

Abstract

A search for $WV\gamma$ triple vector boson production is presented based on events containing a W boson decaying to a muon or an electron and a neutrino, a second V (W or Z) boson, and a photon. The data correspond to an integrated luminosity of 19.3 fb$^{-1}$ collected in 2012 with the CMS detector at the LHC in pp collisions at $\sqrt{s} = 8$ TeV. An upper limit of 311 fb on the cross section for the $WV\gamma$ production process is obtained at 95% confidence level for photons with a transverse energy above 30 GeV and with an absolute value of pseudorapidity of less than 1.44. This limit is approximately a factor of 3.4 larger than the standard model predictions that are based on next-to-leading order QCD calculations. Since no evidence of anomalous $WW\gamma\gamma$ or $WWZ\gamma$ quartic gauge boson couplings is found, this paper presents the first experimental limits on the dimension-8 parameter $f_{T,0}$ and the CP-conserving $WWZ\gamma$ parameters κ_W^W and κ_C^W. Limits are also obtained for the $WW\gamma\gamma$ parameters a_W^W and a_C^W.

1 Introduction

The standard model (SM) of particle physics provides a good description of the existing high-energy data [1]. The diboson WW and WZ production cross sections have been precisely measured at the Large Hadron Collider (LHC) and are in agreement with SM expectations [2–6]. This paper presents a search for the production of three gauge bosons WWγ and WZγ, together denoted as WVγ. It represents an extension of the measurement of diboson production presented in Ref. [3], with the additional requirement of an energetic photon in the final state. Previous searches for triple vector boson production, when at least two bosons are massive, were performed at LEP [7–11].

The structure of gauge boson self-interactions emerges naturally in the SM from the non-Abelian SU(2)L ⊗ U(1)Y gauge symmetry. Together with the triple WVγ gauge boson vertices, the SM also predicts the existence of the quartic WWW, WWZZ, WWZγ, and WWγγ vertices. The direct investigation of gauge boson self-interactions provides a crucial test of the gauge structure of the SM, and one that is all the more significant at LHC energies [12]. The study of gauge boson self-interactions may also provide evidence for the existence of new phenomena at a higher energy scale [13–16]. Possible new physics beyond the SM, expressed in a model independent way by higher-dimensional effective operators [17–22], can be implemented with anomalous triple gauge and quartic gauge couplings (AQGC), both of which contribute in triple gauge boson production. A deviation of one of the couplings from the SM prediction could manifest itself in an enhanced production cross section, as well as a change in the shape of the kinematic distributions of the WVγ system. CMS recently obtained a stringent limit on the anomalous WWγγ quartic coupling via the exclusive two-photon production of W+W− [23].

This paper presents a search for WVγ production in the single lepton final state, which includes W(→ ℓν)W(→ jj)γ and W(→ ℓν)Z(→ jj)γ processes, with ℓ = e, μ. The data used in this analysis correspond to a total integrated luminosity of 19.3 ± 0.5 (19.2 ± 0.5) fb−1 [24] collected with the CMS detector in the muon (electron) channel in pp collisions at √s = 8 TeV in 2012. The hadronic decay mode is chosen because the branching fraction is substantially higher than that of the leptonic mode. However, the two production processes WWγ and WZγ cannot be clearly differentiated since the detector dijet mass resolution (σ ∼ 10%) [25] is comparable to the mass difference between the W and Z bosons. Therefore, WWγ and WZγ processes are treated as a single combined signal.

2 Theoretical framework

An effective field theory approach is adopted in which higher-dimensional operators supplement the SM Lagrangian to include anomalous gauge couplings. Within this framework, anomalous boson interactions can be parametrized using two possible representations. The first is a nonlinear realization of the SU(2) ⊗ U(1) gauge symmetry that is broken by means other than the conventional Higgs scalar doublet [18, 19]. The quartic boson interactions involving photons appear as dimension-6 operators. The second is a linear realization of the symmetry that is broken by the conventional Higgs scalar doublet [18, 20]. The quartic interactions involving photons appear as dimension-8 operators.

Some of the operators within one realization share similar Lorentz structures with operators from the other, so that their parameters can be expressed simply in terms of each other, whereas others cannot. While the discovery of the SM Higgs boson makes the linear realization more
appropriate for AQGC searches [13, 20], it contains 14 such operators that can contribute to the anomalous coupling signal. In addition, all published AQGC limits to date are expressed in terms of dimension-6 parameters. To bridge this divide, we select four dimension-6 parameters, two of which have not been previously measured, and the other two are used to compare with previous results [8, 18]. These parameters also have dimension-8 analogues. Finally, we include a representative parameter from the linear realization, $f_{T,0}$, which has no dimension-6 analogue.

The Feynman diagrams for the quartic vertices are shown in Figure 1, and the CP-conserving, anomalous interaction Lagrangian terms chosen for this analysis are written in Eq. (1).

$$L_{AQGC} = -\frac{e^2}{8} \frac{a_W^0}{\Lambda^2} F_{\mu\nu} F^{\mu\nu} W^+ W^- W^+ \gamma - \frac{e^2}{16} \frac{a_C^W}{\Lambda^2} F_{\mu\nu} F^{\mu\nu} (W^+ W^- + W^- W^+)$$

$$- \frac{e^2}{2} \frac{g}{\Lambda^2} F_{\mu\nu} Z^{\mu\nu} W^+ W^- - \frac{e^2}{2} \frac{g'}{\Lambda^2} F_{\mu\nu} Z^{\mu\nu} (W^+ W^- + W^- W^+)$$

$$+ \frac{f_{T,0}}{\Lambda^4} \text{Tr} [\hat{W}_{\mu\nu} \hat{W}^{\mu\nu}] \times \text{Tr} [\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta}].$$

The energy scale of possible new physics is represented by Λ, $g = e/\sin(\theta_W)$, θ_W is the Weinberg angle, e is the unit of electric charge, and the usual field tensors are defined in Ref. [18–20]. The dimension-6 parameters a_W^0 / Λ^2 and a_C^W / Λ^2 are associated with the WW$\gamma\gamma$ vertex and the k_0^W / Λ^2 and k_C^W / Λ^2 parameters are associated with the WW$Z\gamma$ vertex. The dimension-8 parameter $f_{T,0}/\Lambda^4$ contributes to both vertices. The $a_{0,C}^W / \Lambda^2$ coupling parameters have dimension-8 analogues, the $f_{M,i} / \Lambda^4$ coupling parameters. The relationship between the two is as follows [18](Eq. 3.35):

$$a_W^0 = -\frac{4M_W^2 f_{M,0}}{s^2} \frac{8M_W^2 f_{M,2}}{s'} \frac{8M_W^2 f_{M,3}}{s''} \Lambda^4$$

$$a_C^W = \frac{4M_W^2 f_{M,1}}{s^2} \frac{8M_W^2 f_{M,3}}{s''} \Lambda^4$$

where $g' = e/\cos(\theta_W)$ and M_W is the invariant mass of the W boson. The expressions listed in Eq. (2) are used to translate the AQGC limits obtained for $a_{0,C}^W / \Lambda^2$, into limits on $f_{M,i} / \Lambda^4$. It is also required that $f_{M,0} = 2 \times f_{M,2}$ and $f_{M,1} = 2 \times f_{M,3}$, which results in the suppression of the contributions to the WWZγ vertex in Eq. (2), as can be seen from [19] Eq. 22 and Eq. 23.

Any nonzero value of the AQGCs will lead to tree-level unitarity violation at sufficiently high energy. We find that the unitarity condition [26] cannot be generally satisfied by the addition of
a dipole form factor; however, unitarity conserving new physics with a structure more complex than that represented by a dipole form factor is possible. Since the structure of new physics is not known \textit{a priori}, the choice is made to set limits without using a form factor.

3 \hspace{1em} \textbf{The CMS detector}

The central feature of the Compact Muon Solenoid (CMS) apparatus is a superconducting solenoid of 6 m internal diameter and 13 m length, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass/scintillator hadron calorimeter (HCAL). Muons are reconstructed in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the brass/scintillator section of the hadronic calorimeter.

The CMS experiment uses a right-handed coordinate system, with the origin at the nominal interaction point, the x axis pointing to the center of the LHC ring, the y axis pointing up (perpendicular to the LHC plane), and the z axis along the counterclockwise beam direction. The polar angle θ is measured from the positive z axis and the azimuthal angle ϕ is measured in radians in the x-y plane. The pseudorapidity η is defined as $\eta = -\ln|\tan(\theta/2)|$.

The energy resolution for photons with transverse energy (E_T) of 60 GeV varies between 1.1% and 2.6% in the ECAL barrel, and from 2.2% to 5% in the endcaps [27]. The HCAL, when combined with the ECAL, measures jets with a resolution $\Delta E/E \approx 100\% / \sqrt{E \text{[GeV]}} \oplus 5\%$ [28]. To improve the reconstruction of jets, the tracking and calorimeter information is combined using a particle flow (PF) reconstruction technique [29]. The jet energy resolution typically amounts to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV.

A more detailed description of the CMS detector can be found in Ref. [30].

4 \hspace{1em} \textbf{Event simulation}

All Monte Carlo (MC) simulation samples, except for the single-top-quark samples, are generated with the \textsc{MadGraph} 5.1.3.22 [31] event generator using the CTEQ6L1 parton distribution functions (PDF). Single-top-quark samples are generated with \textsc{Powheg} (v1.0, r1380) [32–36] with the CTEQ6M PDF set [37, 38]. The matrix element calculation is used, and outgoing partons are matched to parton showers from \textsc{Pythia} 6.426 [39] tune Z2* [40] with a matching threshold of 20 GeV and a dynamic factorization (μ_F) and renormalization (μ_R) scale given by $\sqrt{m^2_{W/Z} + p^2_{T,W/Z}}$. The next-to-leading-order/leading-order (NLO/LO) QCD cross section correction factors (K-factors) for $W\gamma$ and AQGC diagrams are derived using the NLO cross sections calculated with \textsc{amc@nlo} [41]. The MSTW2008nlo68cl [42] PDF set is used to calculate the PDF uncertainty following the prescription of Ref. [43]. The K-factor obtained for $W\gamma$ is consistent with a constant value of 2.1 for photons with $E_T > 30$ GeV and $|\eta| < 2.5$. The K-factor for AQGC diagrams is found to be close to 1.2. A summary of the contributing processes and their cross section is given in Table 1.

To simulate the signal events for a given AQGC parameter set, several samples are generated with a range of parameter values and the other AQGC parameters are set to zero.

A \textsc{Geant4}-based simulation [44] of the CMS detector is used in the production of all MC samples. All simulated events are reconstructed and analyzed with the same algorithms that are used for the LHC collision events. Additional corrections (scale factors) are applied to take into
Table 1: Cross sections used to normalize the simulated samples. All cross sections are given for a photon $E_T > 10$ GeV, $|\eta| < 2.5$. The order of the cross section calculation is also indicated. The normalization for the $W\gamma$-jets sample is derived from data.

<table>
<thead>
<tr>
<th>Process</th>
<th>Cross section [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM $WW\gamma$ (NLO)</td>
<td>0.090 ± 0.021</td>
</tr>
<tr>
<td>SM $WZ\gamma$ (NLO)</td>
<td>0.012 ± 0.003</td>
</tr>
<tr>
<td>$W\gamma$ + jets (Data)</td>
<td>10.9 ± 0.8</td>
</tr>
<tr>
<td>$Z\gamma$ + jets (LO)</td>
<td>0.63 ± 0.13</td>
</tr>
<tr>
<td>$t\bar{t}\gamma$ (LO)</td>
<td>0.62 ± 0.12</td>
</tr>
<tr>
<td>Single $t + \gamma$ (inclusive) (NLO)</td>
<td>0.31 ± 0.01</td>
</tr>
</tbody>
</table>

account the difference in lepton reconstruction and identification efficiencies observed between data and simulated events. For all simulated samples, the hard-interaction collision is overlaid with the appropriate number of simulated minimum bias collisions. The resulting events are weighted to reproduce the distribution of the number of inelastic collisions per bunch crossing (pileup) inferred from data.

5 Event reconstruction and selection

The data used in this analysis corresponds to a total integrated luminosity of 19.3 ± 0.5 (19.2 ± 0.5) fb$^{-1}$ [24] collected with the CMS detector in the muon (electron) channel in pp collisions at $\sqrt{s} = 8$ TeV in 2012. The data were recorded with single-lepton triggers using p_T thresholds of 24 GeV for muons and 27 GeV for electrons. The overall trigger efficiency is about 94% (90%) for muon (electron) data, with a small dependence (a few percent) on p_T and η. Simulated events are corrected for the trigger efficiency as a function of lepton p_T and η.

The events used in this analysis are characterized by the production of a photon plus a pair of massive gauge bosons (WW or WZ), where one W boson decays to leptons and the other boson (W or Z) decays to quarks. To select leptonic W boson decays, we require either one muon ($p_T > 25$ GeV, $|\eta| < 2.1$) or one electron ($p_T > 30$ GeV, $|\eta| < 2.5$, excluding the transition region between the ECAL barrel and endcaps $1.44 < |\eta| < 1.57$ because the reconstruction of an electron in this region is not optimal). The offline lepton p_T thresholds is set in the stable, high-efficiency region above the corresponding trigger thresholds. Events with additional leptons with $p_T > 10$ (20) GeV for muons (electrons) are vetoed in order to reduce backgrounds. The escaping neutrino results in missing transverse energy (E_T^{miss}) in the reconstructed event. Therefore a selection requirement of $E_T^{miss} > 35$ GeV is applied to reject the multijet backgrounds. The reconstructed transverse mass of the leptonically decaying W, defined as $\sqrt{p_T^2 E_T^{miss} (1 - \cos(\Delta\phi_{l,E_T}))}$, where $\Delta\phi_{l,E_T}$ is the azimuthal angle between the lepton and the E_T^{miss} directions, is then required to exceed 30 GeV [45]. At least two jet candidates are required to satisfy $p_T > 30$ GeV and $|\eta| < 2.4$. The highest p_T jet candidates are chosen to form the hadronically decaying boson with mass m_{jj}. The photon candidate must satisfy $E_T > 30$ GeV and $|\eta| < 1.44$. Events with the photon candidate in one of the endcaps ($|\eta| > 1.57$) are excluded from the selection because their signal purity is lower and systematic uncertainties are larger.

Jets and E_T^{miss} [45, 46] are formed from particles reconstructed using the PF algorithm. Jets are formed with the anti-k_T clustering algorithm [47] with a distance parameter of 0.5. Charged particles with tracks not originating from the primary vertex are not considered for jet clustering [48, 49]. The primary vertex of the event is chosen to be the vertex with the highest $\sum p_T^2$ of its associated tracks. Jets are required to satisfy identification criteria that eliminate candidates
originating from noisy channels in the hadron calorimeter [50]. Jet energy corrections [25] are applied to account for the jet energy response as a function of η and p_T, and to correct for contributions from event pileup. Jets from pileup are identified and removed using the trajectories of tracks associated with the jets, the topology of the jet shape and the constituent multiplicities [48, 49].

The azimuthal separation between the highest p_T jet and the E_T direction is required to be larger than 0.4 radians. This criterion reduces the QCD multijet background where the E_T can arise from a mismeasurement of the leading jet energy. To reduce the background from $W\gamma$+jets events, requirements on the dijet invariant mass $70 < m_{jj} < 100$ GeV, and on the separation between the jets of $|\Delta\eta_{jj}| < 1.4$, are imposed. In order to reject top-quark backgrounds, the two jets are also required to fail a b quark jet tagging requirement. The combined secondary vertex algorithm [51] is used, with a discriminator based on the displaced vertex expected from b hadron decays. This algorithm selects b hadrons with about 70% efficiency, and has a 1% misidentification probability. The anti-b tag requirement suppresses approximately 7% of the WWγ and 10% of the WZγ signal via the $W \to c\bar{s}$, $Z \to b\bar{b}$ and $Z \to c\bar{c}$ decays. These effects are taken into account in the analysis.

Muon candidates are reconstructed by combining information from the silicon tracker and from the muon detector by means of a global track fit. The muon candidates are required to pass the standard CMS muon identification and the track quality criteria [52]. The isolation variables used in the muon selection are based on the PF algorithm and are corrected for the contribution from pileup. The muon candidates have a selection efficiency of approximately 96%.

Electrons are reconstructed from clusters [27, 53–55] of ECAL energy deposits matched to tracks in the silicon tracker within the ECAL fiducial volume, with the exclusion of the transition region between the barrel and the endcaps previously defined. The electron candidates are required to be consistent with a particle originating from the primary vertex in the event. The isolation variables used in the electron selection are based on the PF algorithm and are corrected for the contribution from pileup. The electron selection efficiency is approximately 80%. To suppress the $Z \to e^+e^-$ background in the electron channel, where one electron is misidentified as a photon, a Z boson mass veto of $|M_Z - m_{e\gamma}| > 10$ GeV is applied. The impact on the signal efficiency from applying such a suppression is negligible.

Photon candidates are reconstructed from clusters of cells with significant energy deposition in the ECAL. The candidates are required to be within the ECAL barrel fiducial region ($|\eta| < 1.44$). The observables used in the photon selection are isolation variables based on the PF algorithm and they are corrected for the contribution due to pileup, the ratio of hadronic energy in the HCAL that is matched in (η, ϕ) to the electromagnetic energy in the ECAL, the transverse width of the electromagnetic shower, and an electron track veto.

6 Background modeling

The main background contribution arises from $W\gamma$+jets production. After imposing the requirements described above, a binned maximum likelihood fit to the dijet invariant mass distribution m_{jj} of the two leading jets is performed. The signal region corresponding to the W and Z mass windows, $70 < m_{jj} < 100$ GeV, is excluded from the fit. The contamination from $WV\gamma$ processes outside of the signal region is less than 1%. The shape of the $W\gamma$+jets m_{jj} distribution is obtained from simulation, and the normalization of this background component is unconstrained in the fit. The normalization of the contribution from misidentified photons is allowed to float within a Gaussian constraint of 14% (Section 7). The post-fit ratio $K = \sigma_{\text{fit}}/\sigma_{\text{LO}}$
for the $W\gamma+$jets background is 1.10 ± 0.07 (1.07 ± 0.09) in the muon (electron) channel.

The background from misidentified photons arises mainly from the $W+3$ jets process, where one jet passes the photon identification criteria. The total contribution from misidentified photons is estimated using a data control sample, where all selection criteria except for the isolation requirement are applied. The shower shape distribution is then used to estimate the total rate of misidentified photons. Details on the method can be found in Ref. [56]. The fraction of the total background from misidentified photons decreases with photon E_T from a maximum of 23% ($p_T = 30$ GeV) to 8% ($p_T > 135$ GeV).

The multijet background is due to misidentified leptons from jets that satisfy the muon or electron selection requirements. It is estimated by using a two component fit to the E_T distribution in data. The procedure is described in [3], and was repeated for the 8 TeV data. The multijet contribution is estimated to be 6.2% for the electron channel, with a 50% uncertainty, and is negligible for the muon channel.

Other background contributions arise from top-quark pair production, single-top-quark production, and $Z\gamma+$jets. These are taken from simulation and are fixed to their SM expectations, with the central values and uncertainties listed in Table 1. The top-quark pair process contribution comes from the presence of two W bosons in the decays. The $Z\gamma+$jets background can mimic the signal when the Z decays leptonically and one of the leptons is lost, resulting in E_T. The sum of the top-quark pair, single-top-quark, and $Z\gamma+$jets backgrounds represent about 8% of the expected SM background rate.

7 Systematic uncertainties

The uncertainties contributing to the measured rate of misidentified photons arise from two sources. First, the statistical uncertainty is taken from pseudo experiments drawn from the data control sample described in Section 6, and is estimated to be 5.6% rising to 37% with increasing photon E_T. The second arises from a bias in the shower shape of $W+3$ jets simulation due to the inverted isolation requirements. This uncertainty is estimated to be less than 11%. The combined uncertainty on the photon misidentification rate, integrated over the E_T spectrum, is 14%.

The uncertainty in the measured value of the luminosity [24] is 2.6% and it contributes to the signal and those backgrounds that are taken from the MC prediction. Jet energy scale uncertainties contribute via selection thresholds on the jet p_T and dijet invariant mass by 4.3%. The small difference in E_T resolution [46] between data and simulation affects the signal selection efficiency by less than 1%. Systematic uncertainties due to the trigger efficiency in the data (1%) and lepton reconstruction and selection efficiencies (2%) are also accounted for. Photon reconstruction efficiency and energy scale uncertainties contribute to the signal selection efficiency at the 1% level. The uncertainty from the b jet tagging procedure is 2% on the data/simulation efficiency correction factor [51]. This has an effect of 11% on the $t\bar{t}\gamma$ background, 5% on the single-top-quark background, and a negligible effect on the signal. The theoretical uncertainty in the $t\bar{t}\gamma$ and $Z\gamma+$jets production is 20%.

The theoretical uncertainties in the $WW\gamma$, $WZ\gamma$, and AQGC signal cross sections are evaluated using aMC@NLO samples. We vary the renormalization and factorization scales each by factors of 1/2 and 2, and require $\mu_R = \mu_F$, as described in Ref. [43]. We find that the scale-related uncertainties are 23%, and that the uncertainty due to the choice of PDF is 3.6%.
8 Upper limit on the standard model $WV\gamma$ cross section

The SM $WV\gamma$ search is formulated as a simple counting experiment. The selected numbers of candidate events in the data are 183 (139) in the muon (electron) channel. The predicted number of background plus signal events is 194.2 ± 11.5 (147.9 ± 10.7) in the muon (electron) channel, where the uncertainty includes statistical, systematic and luminosity related uncertainties. The event yield per process is summarized in Table 2.

Table 2: Expected number of events for each process. The predicted number of events for the $W\gamma$+jets and WV+jet processes, where the jet is reconstructed as a photon, are derived from data. The “Total prediction” item represents the sum of all the individual contributions.

<table>
<thead>
<tr>
<th>Process</th>
<th>Muon channel number of events</th>
<th>Electron channel number of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM $WW\gamma$</td>
<td>6.6 ± 1.5</td>
<td>5.0 ± 1.1</td>
</tr>
<tr>
<td>SM $WZ\gamma$</td>
<td>0.6 ± 0.1</td>
<td>0.5 ± 0.1</td>
</tr>
<tr>
<td>$W\gamma$+jets</td>
<td>136.9 ± 10.5</td>
<td>101.6 ± 8.5</td>
</tr>
<tr>
<td>WV+jet, jet $\rightarrow \gamma$</td>
<td>33.1 ± 4.8</td>
<td>21.3 ± 3.3</td>
</tr>
<tr>
<td>MC $t\bar{t}\gamma$</td>
<td>12.5 ± 3.0</td>
<td>9.1 ± 2.2</td>
</tr>
<tr>
<td>MC single top quark</td>
<td>2.8 ± 0.8</td>
<td>1.7 ± 0.6</td>
</tr>
<tr>
<td>MC $Z\gamma$+jets</td>
<td>1.7 ± 0.1</td>
<td>1.5 ± 0.1</td>
</tr>
<tr>
<td>Multijets</td>
<td>—</td>
<td>7.2 ± 5.1</td>
</tr>
<tr>
<td>Total prediction</td>
<td>194.2 ± 11.5</td>
<td>147.9 ± 10.7</td>
</tr>
<tr>
<td>Data</td>
<td>183</td>
<td>139</td>
</tr>
</tbody>
</table>

Since there is no sign of an excess above the total background predictions, it is possible to set only an upper limit on $WW\gamma$ and $WZ\gamma$ cross sections, given the size of the current event sample. The limit is calculated from the event yields in Table 2 using a profile likelihood asymptotic approximation method (Appendix A.1.3 in Ref. [57], [58]). An observed upper limit of 311 fb is calculated for the inclusive cross section at 95% confidence level (CL), which is about 3.4 times larger than the standard model prediction of $91.6 \pm 21.7 \text{ fb}$ (with photon $E_T > 30 \text{ GeV}$ and $|\eta| < 1.44$), calculated with AMC@NLO. The expected limit is 403 fb (4.4 times the SM).

9 Limits on anomalous quartic couplings

The photon E_T distribution is sensitive to AQGCs and is therefore used to set limits on the anomalous coupling parameters. Following the application of all selection criteria, the photon E_T distributions for data, the total background, and the individual signal models for the muon and electron channels are binned over the range 30–450 GeV. The photon E_T distributions for muon and electron channels are shown in Fig. 2 along with the predicted signal from $WW\gamma\gamma$ AQGC for $a_0^W/\Lambda^2 = 50 \text{ TeV}^{-2}$. The last bin includes the overflow.

The upper limits are set utilizing a profile likelihood asymptotic approximation method (Appendix A.1.3 in Ref. [57], [58]), which takes the distributions from the two channels as independent inputs to be combined statistically into a single result. Each coupling parameter is varied over a set of discrete values, keeping the other parameters fixed to zero; this causes the signal distribution to be altered accordingly. The expected and observed signal strengths $\sigma_{\text{excluded}}/\sigma_{\text{AQGC}}$ are then calculated and plotted against the corresponding coupling parameter values.

Figure 3 shows the observed and expected exclusion limits for the combination of muon and electron channels. Some positive/negative asymmetry is noticeable in the plots because of
Figure 2: Comparison of predicted and observed photon E_T distributions in the (left) muon and (right) electron channels. The rightmost bin includes the integral of events above 450 GeV for each process. The solid black line depicts a representative signal distribution with anomalous coupling parameter $\alpha_0^W/\Lambda^2 = 50 \text{TeV}^{-2}$.

SM/AQGC interference terms in the Lagrangian. Exclusion limits for α_0^W/Λ^2, α_C^W/Λ^2, $f_{T,0}/\Lambda^4$, κ_0^W/Λ^2, and κ_C^W/Λ^2 are computed at 95% CL, and are listed in Table 3. Table 4 reports the transformed dimension-8 limits from the limits on the α_0^W and α_C^W parameters.

Table 3: The 95% CL exclusion limits for each AQGC parameter from the combination of the muon and electron channels.

<table>
<thead>
<tr>
<th>AQGC parameter</th>
<th>Observed limits</th>
<th>Expected limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-21 < \alpha_W^0/\Lambda^2 < 20 \text{TeV}^{-2}$</td>
<td>$-24 < \alpha_W^0/\Lambda^2 < 23 \text{TeV}^{-2}$</td>
<td></td>
</tr>
<tr>
<td>$-34 < \alpha_C^W/\Lambda^2 < 32 \text{TeV}^{-2}$</td>
<td>$-37 < \alpha_C^W/\Lambda^2 < 34 \text{TeV}^{-2}$</td>
<td></td>
</tr>
<tr>
<td>$-25 < f_{T,0}/\Lambda^4 < 24 \text{TeV}^{-4}$</td>
<td>$-27 < f_{T,0}/\Lambda^4 < 27 \text{TeV}^{-4}$</td>
<td></td>
</tr>
<tr>
<td>$-12 < \kappa_0^W/\Lambda^2 < 10 \text{TeV}^{-2}$</td>
<td>$-12 < \kappa_0^W/\Lambda^2 < 12 \text{TeV}^{-2}$</td>
<td></td>
</tr>
<tr>
<td>$-18 < \kappa_C^W/\Lambda^2 < 17 \text{TeV}^{-2}$</td>
<td>$-19 < \kappa_C^W/\Lambda^2 < 18 \text{TeV}^{-2}$</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: The 95% CL exclusion limits for each dimension-8 AQGC parameter from the combination of the muon and electron channels.

<table>
<thead>
<tr>
<th>AQGC parameter (TeV$^{-4}$)</th>
<th>Observed limits</th>
<th>Expected limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-77 < f_{M,0}/\Lambda^4 < 81$</td>
<td>$-89 < f_{M,0}/\Lambda^4 < 93$</td>
<td></td>
</tr>
<tr>
<td>$-131 < f_{M,1}/\Lambda^4 < 123$</td>
<td>$-143 < f_{M,1}/\Lambda^4 < 131$</td>
<td></td>
</tr>
<tr>
<td>$-39 < f_{M,2}/\Lambda^4 < 40$</td>
<td>$-44 < f_{M,2}/\Lambda^4 < 46$</td>
<td></td>
</tr>
<tr>
<td>$-66 < f_{M,3}/\Lambda^4 < 62$</td>
<td>$-71 < f_{M,3}/\Lambda^4 < 66$</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3 shows the photon E_T distributions for a signal in the muon channel corresponding to AQGC parameters that are set to the limits we have obtained. The distributions for the various AQGC values are similar. The contribution from AQGC is prominent in the region $E_T > 240 \text{GeV}$, where the expected number of signal events is approximately 1.4. The corresponding distributions for the electron channel are similar.

A comparison of several existing limits on the $WW\gamma\gamma$ AQGC parameter is shown in Fig. 5. Existing limits include the result from exclusive $\gamma\gamma \rightarrow WW$ production at CMS [23], in addition
Figure 3: 95% CL exclusion limits for (upper left) a_0^W/Λ^2, (upper right) a_C^W/Λ^2, (middle left) $f_{T,0}/\Lambda^4$, (middle right) κ_0^W/Λ^2, and (bottom) κ_0^W/Λ^2.

to results from the L3 [8] and the D0 [59] collaborations. All of the limits shown on AQGC are calculated without a form factor.

10 Summary

A search for $WV\gamma$ triple vector boson production that results in constraints on anomalous quartic gauge boson couplings has been presented using events containing a W boson decaying to leptons, a second boson V ($V=W$ or Z) boson, and a photon. The data analyzed correspond to an integrated luminosity of 19.3 fb$^{-1}$ collected in pp collisions at $\sqrt{s} = 8$ TeV in 2012 with the CMS detector at the LHC. An upper limit of 311 fb at 95% CL is obtained for the produc-
Figure 4: Expected photon E_T distributions after the selection for the muon channel is applied: SM prediction, SM plus AQGC prediction for a_0^W / Λ^2, a_0^W / Λ^2, $f_{\gamma,0} / \Lambda^4$, κ_0^W / Λ^2, and κ_C^W / Λ^2. Systematic and statistic uncertainties are shown. The last bin includes the overflow.

The production of W^+W^- with photon $E_T > 30\,\text{GeV}$ and $|\eta| < 1.44$. No evidence for anomalous $WW\gamma\gamma$ and $WZW\gamma$ quartic gauge couplings is found. The following constraints are obtained for these couplings at 95\% CL:

\begin{align*}
-21 < a_0^W / \Lambda^2 < 20\,\text{TeV}^{-2}, \\
-34 < a_0^W / \Lambda^2 < 32\,\text{TeV}^{-2}, \\
-25 < f_{T,0} / \Lambda^4 < 24\,\text{TeV}^{-4}, \\
-12 < \kappa_0^W / \Lambda^2 < 10\,\text{TeV}^{-2}, \quad \text{and} \\
-18 < \kappa_C^W / \Lambda^2 < 17\,\text{TeV}^{-2}.
\end{align*}

These are the first experimental limits reported on $f_{T,0}$ and the CP-conserving couplings κ_0^W and κ_C^W. Figure 5 compares the constraints on the $WW\gamma\gamma$ AQGC parameter obtained from this study with those obtained in previous analyses.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA
Table 5: Comparison of the limits on the WWγγ AQGC parameter obtained from this study, together with results from exclusive γγ → WW production at CMS [23] and results from the L3 [8] and the D0 [59] collaborations. All limits on AQGC are calculated without a form factor.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Limits</th>
<th>∫L dt</th>
<th>√s</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWγγ</td>
<td>[-15000, 15000]</td>
<td>0.4fb-1</td>
<td>0.20 TeV</td>
</tr>
<tr>
<td>γγ → WW</td>
<td>[-430, 430]</td>
<td>9.7fb-1</td>
<td>1.96 TeV</td>
</tr>
<tr>
<td>a_WW^4/Λ^2 (TeV^2)</td>
<td>WWγγ</td>
<td>[-21, 20]</td>
<td>19.3fb-1</td>
</tr>
<tr>
<td>γγ → WW</td>
<td>[-4, 4]</td>
<td>5.1fb-1</td>
<td>7.0 TeV</td>
</tr>
<tr>
<td>f_{t,b} a_{WW}^4 (TeV^4)</td>
<td>WWγγ</td>
<td>[-25, 24]</td>
<td>19.3fb-1</td>
</tr>
</tbody>
</table>

Figure 5: Comparison of the limits on the WWγγ AQGC parameter obtained from this study, together with results from exclusive γγ → WW production at CMS [23] and results from the L3 [8] and the D0 [59] collaborations. All limits on AQGC are calculated without a form factor.

and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF.

References

References

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Belty, T. Caeborgs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, L. Brito, M. Correa Martins Junior, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, D. Yang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Tikvica

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgammal, A. Ellithi Kamel, M.A. Mahmoud, A. Mahrous, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Müntel, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, P. Busson, C. Charlot, N. Daci, T. Dahms, M. Dalchenko, L. Dobrzynski,
<table>
<thead>
<tr>
<th>Institution</th>
<th>Countries</th>
<th>Collaborators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute für Experimentelle Kernphysik, Karlsruhe, Germany</td>
<td>Germany</td>
<td>M. Görner, M. Gosselink, J. Haller, R.S. Höing, H. Kirschenmann, R. Klanner,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R. Kogler, J. Lange, T. Lapsien, T. Lenz, I. Marchesini, J. Ott, T. Peiffer,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Troendle, E. Usai, L. Vanelderen</td>
</tr>
<tr>
<td>Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos,</td>
<td>Greece</td>
<td>G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, S. Kesisoglou,</td>
</tr>
<tr>
<td>Aghia Paraskevi, Greece</td>
<td></td>
<td>A. Kyriakis, D. Loukas, A. Markou, C. Markou, A. Psallidas, I. Topsis-Giotis</td>
</tr>
<tr>
<td>University of Athens, Athens, Greece</td>
<td>Greece</td>
<td>L. Gouskos, A. Panagiotou, N. Saoulidou, E. Stiliaris</td>
</tr>
<tr>
<td>University of Ioánnina, Ioánnina, Greece</td>
<td>Greece</td>
<td>X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, J. Jones, P. Kokkas, N.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manthos, I. Papadopoulos, E. Paradas</td>
</tr>
<tr>
<td>Wigner Research Centre for Physics, Budapest, Hungary</td>
<td>Hungary</td>
<td>G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vesztergombi, A.J. Zsigmond</td>
</tr>
<tr>
<td>Institute of Nuclear Research ATOMKI, Debrecen, Hungary</td>
<td>Hungary</td>
<td>N. Beni, S. Czellar, J. Karancsi, J. Molnar, J. Palinkas, Z. Szillasi</td>
</tr>
<tr>
<td>University of Debrecen, Debrecen, Hungary</td>
<td>Hungary</td>
<td>P. Raics, Z.L. Trocsanyi, B. Ujvari</td>
</tr>
<tr>
<td>National Institute of Science Education and Research, Bhubaneswar, India</td>
<td>India</td>
<td>S.K. Swain</td>
</tr>
<tr>
<td>Panjab University, Chandigarh, India</td>
<td>India</td>
<td>S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, A.K. Kalsi, M. Kaur, M.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mittal, N. Nishu, A. Sharma, J.B. Singh</td>
</tr>
<tr>
<td>University of Delhi, Delhi, India</td>
<td>India</td>
<td>Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri</td>
</tr>
<tr>
<td>Saha Institute of Nuclear Physics, Kolkata, India</td>
<td>India</td>
<td>S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain,</td>
</tr>
<tr>
<td>Bhabha Atomic Research Centre, Mumbai, India</td>
<td>India</td>
<td>P. Shukla, A. Topkar</td>
</tr>
<tr>
<td>Tata Institute of Fundamental Research - EHEP, Mumbai, India</td>
<td>India</td>
<td>T. Aziz, R.M. Chatterjee, S. Ganguly, S. Ghosh, M. Guchait, A. Gurru, G. Kole,</td>
</tr>
</tbody>
</table>
I. Lazzizzeraa,c, M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzinia,b, N. Pozzobona,b, P. Ronchesea,b, M. Sgaravattoa, F. Simonettoa,b, E. Torassaa, M. Tosia,b, A. Triossia, S. Venturaa, P. Zottoa,b, A. Zucchettaa,b

INFN Sezione di Paviaa, **Università di Pavia**b, **Pavia, Italy**
M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Salvinia, P. Vituloa,b

INFN Sezione di Perugiaa, **Università di Perugia**b, **Perugia, Italy**
M. Biasinia,b, G.M. Bileia, L. Fanòa,b, P. Laricciaa,b, G. Mantovania,b, M. Menichellia, F. Romeoa,b, A. Sahaa, A. Santocchiaa,b, A. Spieziaa,b

INFN Sezione di Pisaa, **Università di Pisa**b, **Scuola Normale Superiore di Pisa**c, **Pisa, Italy**
K. Androsova,b,29, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia, M.A. Cioccia,b,29, R. Dell’Orsoa, S. Donatoa,c, F. Fioria,c, L. Foàa,c, A. Giassia, M.T. Grippoa,b,29, A. Kraana, F. Ligabuea,c, T. Lomtadzea, L. Martinia,b, A. Messineoa,b, C.S. Moona,30, F. Pallaa,b, A. Rizzioa,b, A. Savoy-Navarroa,31, A.T. Serbana, P. Spagnoloa, P. Squillaciotia,b,29, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia, C. Vernieria,b

INFN Sezione di Romaa, **Università di Roma**b, **Roma, Italy**
L. Baronea,b, F. Cavallaria, D. Del Rea,b, M. Diemoza, M. Grassia,b, C. Jordaa, E. Longoa,b, F. Margarolia,b, P. Meridiania, F. Michelia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, C. Rovellia, L. Soffia,b, P. Traczyka,b

INFN Sezione di Torinoa, **Università di Torino**b, **Università del Piemonte Orientale (Novara)**c, **Torino, Italy**
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, R. Bellana,b, C. Biinoa, N. Cartigliaa, S. Casassoa,b, M. Costaa,b, A. Deganoa,b, N. Demariaa, L. Fincoa,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha, M.M. Obertinoa,c, G. Ortonaa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia,2, G.L. Pinna Angionia,b, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, T. Umera,b, A. Zanettia

INFN Sezione di Triestea, **Università di Trieste**b, **Trieste, Italy**
S. Belfortea, V. Candelisea,b, M. Casarsia, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, C. La Licataa,b, M. Maronea,b, D. Montaninoa,b, A. Schizzia,b, T. Umera,b, A. Zanettia

Kangwon National University, Chunchon, Korea
S. Chang, T.Y. Kim, S.K. Nam

Kyuungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, J.E. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, E. Kwon, J. Lee, H. Seo, I. Yu
Vilnius University, Vilnius, Lithuania
A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
J.R. Komaragiri

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, R. Doesburg, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, M.I. Asghar, J. Butt, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz, E. Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin
P.N. Lebedev Physical Institute, Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, M. Ekmedzic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, E. Simili

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar, E. Barlas, K. Cankocak, Y.O. Günaydın, F.I. Vardarlı, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder,

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Karsi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, K. Flowers, M. Franco

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA
V. Gaultney, S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA
The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demaria, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, G. Petrillo, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA
University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane

University of Wisconsin, Madison, USA

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at California Institute of Technology, Pasadena, USA
8: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
9: Also at Suez University, Suez, Egypt
10: Also at Zewail City of Science and Technology, Zewail, Egypt
11: Also at Cairo University, Cairo, Egypt
12: Also at Fayoum University, El-Fayoum, Egypt
13: Also at Helwan University, Cairo, Egypt
14: Also at British University in Egypt, Cairo, Egypt
15: Now at Ain Shams University, Cairo, Egypt
16: Also at Université de Haute Alsace, Mulhouse, France
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at The University of Kansas, Lawrence, USA
19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
20: Also at Eötvös Loránd University, Budapest, Hungary
21: Also at University of Debrecen, Debrecen, Hungary
22: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
23: Now at King Abdulaziz University, Jeddah, Saudi Arabia
24: Also at University of Visva-Bharati, Santiniketan, India
25: Also at University of Ruhuna, Matara, Sri Lanka
26: Also at Isfahan University of Technology, Isfahan, Iran
27: Also at Sharif University of Technology, Tehran, Iran
28: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
29: Also at Università degli Studi di Siena, Siena, Italy
30: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
31: Also at Purdue University, West Lafayette, USA
32: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
33: Also at National Centre for Nuclear Research, Swierk, Poland
34: Also at Institute for Nuclear Research, Moscow, Russia
35: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
36: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
37: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
38: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
39: Also at University of Athens, Athens, Greece
40: Also at Paul Scherrer Institut, Villigen, Switzerland
41: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
42: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
43: Also at Gaziosmanpasa University, Tokat, Turkey
44: Also at Adiyaman University, Adiyaman, Turkey
45: Also at Cag University, Mersin, Turkey
46: Also at Mersin University, Mersin, Turkey
47: Also at Izmir Institute of Technology, Izmir, Turkey
48: Also at Ozyegin University, Istanbul, Turkey
49: Also at Kafkas University, Kars, Turkey
50: Also at Istanbul University, Faculty of Science, Istanbul, Turkey
51: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
52: Also at Kahramanmaras Sütçü İmam University, Kahramanmaras, Turkey
53: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
54: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
55: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
56: Also at Utah Valley University, Orem, USA
57: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
58: Also at Argonne National Laboratory, Argonne, USA
59: Also at Erzincan University, Erzincan, Turkey
60: Also at Yildiz Technical University, Istanbul, Turkey
61: Also at Texas A&M University at Qatar, Doha, Qatar
62: Also at Kyungpook National University, Daegu, Korea