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ion, and deformation of active
matter: effect of an external field

Sho C. Takatori* and John F. Brady

We analyze the stress, dispersion, and average swimming speed of self-propelled particles subjected to an

external field that affects their orientation and speed. The swimming trajectory is governed by a competition

between the orienting influence (i.e., taxis) associated with the external (e.g., magnetic, gravitational,

thermal, nutrient concentration) field versus the effects that randomize the particle orientations (e.g.,

rotary Brownian motion and/or an intrinsic tumbling mechanism like the flagella of bacteria). The

swimmers' motion is characterized by a mean drift velocity and an effective translational diffusivity that

becomes anisotropic in the presence of the orienting field. Since the diffusivity yields information about

the micromechanical stress, the anisotropy generated by the external field creates a normal stress

difference in the recently developed “swim stress” tensor [Takatori, Yan, and Brady, Phys. Rev. Lett.,

2014]. This property can be exploited in the design of soft, compressible materials in which their size,

shape, and motion can be manipulated and tuned by loading the material with active swimmers. Since

the swimmers exert different normal stresses in different directions, the material can compress/expand,

elongate, and translate depending on the external field strength. Such an active system can be used as

nano/micromechanical devices and motors. Analytical solutions are corroborated by Brownian dynamics

simulations.
1 Introduction

Understanding the complex dynamic behaviors of a suspension
of self-propelled colloidal particles, or “active matter,” has been
an important but challenging problem owing to its constitu-
ents' ability to generate their own internal stress and drive the
system far from equilibrium. This allows intriguing phenomena
to arise that otherwise may not take place in a classical equi-
librium system, like athermal self-assembly and pattern
formation.1 Recently a new principle was introduced to study
such fascinating phenomena—that is, through their self-
motion all active matter systems generate an intrinsic “swim
stress” that impacts their large-scale collective behavior.2 The
origin of the swim stress (or pressure) is based upon the notion
that all self-propelled bodies must be conned by boundaries to
prevent them from swimming away in space. The “swim pres-
sure” is the unique pressure exerted by the swimmers as they
bump into the surrounding walls that conne them. The same
principle applies to molecular gases that collide into the
container walls to exert a pressure or to the osmotic pressure
exerted by solute molecules.

In this work we build upon this new perspective to analyze an
active matter system subjected to an external eld that affects
its constituents' swimming orientation and speed. External
ering, California Institute of Technology,
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elds like chemical and thermal gradients and/or the Earth's
magnetic and gravitational elds can cause microorganisms to
modify their swimming behavior to facilitate movement to a
favorable region. For example, E. coli have been known to
undergo chemotaxis by preferentially swimming towards (or
away from) chemical gradients of nutrients (or toxins).3 Other
examples of taxis swimmers include phototactic,4 magneto-
tactic,5 and gravitactic6 bacteria.

External orienting elds cause the effective translational
diffusivity to become anisotropic, which directly implies the
existence of normal stress differences. The micromechanical
stress in a dilute suspension is given by the rst moment of the
force, s¼�nhxFi, where n is the number density of particles and
the angle brackets denote an ensemble average over all particles
and time. The particle position at time t is x(t) ¼ ÐU(t0)dt0, and
from the overdamped equation of motion, 0 ¼ �zU(t) + F(t), we
obtain s¼ �nhxFi ¼ �nz

Ð hU(t0)U(t)idt0 ¼ �nzhDi, where z is the
hydrodynamic drag factor and the time integral of the velocity
autocorrelation is the diffusivity of the particle, D. A particle
undergoing any type of random motion therefore exerts a
stress and a pressure, P ¼ �trs/3 ¼ nzD. This general result
applies for Brownian particles where D0 ¼ kBT/z, leading to
the familiar ideal-gas Brownian osmotic pressure PB ¼ nkBT.
Using the swim diffusivity of active particles in the absence of an
external eld, hDswimi ¼ U0

2sRI/6 where U0 is the swim speed
of the active particle and sR is the reorientation time due to
rotary Brownian motion and/or an intrinsic reorientation
Soft Matter, 2014, 10, 9433–9445 | 9433
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Fig. 1 Schematic of the shape, size, and motion of a soft,
compressible gel loaded with light-activated synthetic colloidal
particles. When both the light and external field (H) are turned on, the
gel translates in the direction of the field (shown by arrows on the gel).
The external field strength can be tuned to change the shape, size, and
velocity of the gel.
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mechanism, we obtain the “ideal-gas” swim stress:
sswim ¼ �nhxFswimi ¼ �nzhDswimi ¼ �nzU0

2sRI/6, where
Fswim h zU0 is the self-propulsive force of the swimmer.2

Although it is clear that an external eld may cause the effective
diffusivity and hence the swim stress to become anisotropic, how
is this normal swim-stress difference generated and what are its
implications on the design of novel active so-matter materials?

To appreciate the importance of normal swim stresses, we
discuss an important application of this work in the design of
nano/micromechanical devices and motors. Suppose we load a
so, compressible material (e.g., gel polymer network) with
light-activated synthetic colloidal particles. In the absence of
light, the colloidal particles simply uctuate due to Brownian
motion, and the gel assumes some equilibrium shape as shown
on the top of Fig. 1. The equilibrium volume of the gel is
determined by the balance of the force that drives the polymer
to expand and mix with the solvent versus the elastic force that
resists the expansion.7 When the light is turned on, the colloidal
particles become active and exert an “ideal-gas” swim pressure,
Pswim ¼ �trsswim/3 ¼ nzU0

2sR/6, causing the gel to expand
isotropically as shown in the sketch on the right. The relative
magnitudes of the swim pressure versus the shear modulus of
the gel, G, determine whether the gel expands appreciably in the
presence of the swimmers. In principle the shear modulus of
polymer networks can be adjusted to nearly zero. A dilute
network of hydrated mucus, which behaves as a non-Newtonian
gel, has shear moduli of order �O (0.1–10) Pa,8,9 but here we
estimate G z nckBT where nc is the number density of sub-
chains in the network (related to the cross-link density).7 The
energy scale associated with 1 mm swimmers traveling in water
9434 | Soft Matter, 2014, 10, 9433–9445
with speed U0 � 10 mm s�1 and reorienting in time sR � 10 s is
zU0

2sR/6 z 4 pN mm. The thermal energy at room temperature
is kBTz 4� 10�3 pN mm, meaning that the swimmers' intrinsic
self-propulsion is equivalent to approximately 1000kBT. In
practice the intrinsic activity of active synthetic colloidal
particles can be even larger. The swim pressure makes an
appreciable contribution to the overall size of the gel if
G/Pswim ¼ nckBT/(n1000kBT) ( O (1), or when the ratio of the
polymer sub-chain density to the active-swimmer density is
nc/n( 1000. The swim pressure exerted at 10% volume fraction
of active particles is Pswim ¼ nzU0

2sR/6 z O (1) Pa. For gels with
a very small shear modulus, the swim pressure can cause the gel
to deform its shape. As the gel expands due to the swim pres-
sure, the concentration of swimmers decreases. The new
volume of the gel is determined by the balance of the gel's
expansion forces, the osmotic pressure of the polymer chains,
and the swim pressure exerted by the swimmers. Even if the gel
does not deform, it can still be translated and be steered using
the active swimmers.

As we shall see in Section 6, when we apply a weak external
eld to the system (gel plus swimmers), the gel reacts in three
ways as shown on the bottom of Fig. 1: it expands evenmore due
to an increase in the swim pressure; it elongates in the eld
direction due to a positive normal stress difference (i.e., the
swimmers exert different magnitudes of normal stresses in
different directions of the bounding gel network); the entire gel
translates in the eld direction due to the net motion of the
active swimmers colliding into the gel network. Upon further
increase in the external eld strength, the swim pressure
decreases and the normal stress difference becomes negative,
which causes the gel to shrink in size, translate faster towards
the eld direction, and assume the shape of a thin disk as
shown on the le of Fig. 1. When the external eld strength is
made very high, the normal swim-stress difference and swim
pressure vanish, causing the gel to return to its equilibrium
shape and size but translate in the eld direction.

We can make a simple estimate of the gel speed. If an active
particle is tethered to a passive particle then it must drag along
the passive particle as it swims. The propulsive force available to
the swimmer, Fswimh zU0, must now balance the combined drag
of the swimmer (�zU) and its “cargo,”which is characterized by a
Stokes drag coefficient zC. Thus, the velocity of the combined
object is U¼ zU0/(zC + z). If N swimmers are attached the velocity
would now go as U ¼ NzU0/(zC + Nz). The same principle and
estimate apply to swimmers conned to a gel. The total propul-
sive force available is F � nVgelzhui, where Vgel is the volume of
the gel and hui is the mean swimmer velocity in the presence of
the external eld (calculated in Sections 4 and 6). This force must
balance the gel and swimmers' drag Fdrag¼ �(zgel + nVgelz)Ugel to
give Ugel � nVgelhuiz/zgel(1/(1 + nVgelz/zgel)). The porosity and
geometry of the gel would inuence zgel, but the drag is
proportional to Ugel as in any Stokes-ow problem.

When the external eld is turned off, the gel stops trans-
lating and an entire cycle is completed as depicted in Fig. 1.
Here we have assumed that the active particles are conned to
the gel and that the uid (solvent) is able to ow through the gel
as needed. Instead of a gel we can also have a membrane,
This journal is © The Royal Society of Chemistry 2014
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Fig. 2 Schematic of themotion of a soft, compressible gel loadedwith
active particles when the external field is rotated by 90 degrees. The
shape and trajectory of the gel depends on the relative rate of rotation
of the field and the strength of the field.
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vesicle, uid sack, or droplet. To ensure that the system is in
osmotic balance with the solvent inside the vesicle, the
surrounding membrane must be permeable to the solvent. The
resistance to motion of the vesicle would now be set by the
permeability of the membrane and the propulsive force deter-
mined by the number of swimmers contacting the (interior)
upstream surface of the vesicle. If we had a vesicle or uid
droplet that is impermeable to the solvent, then the droplet may
still deform and may also translate depending on its shape and
mechanical properties of its surface or bounding membrane. A
rigid object lled with uid and swimmers would not deform
nor translate; the active motion of the swimmers would set up a
recirculating ow within the rigid object.

To continue in the design of nano/micromechanical devices
and motors, suppose we rotate the external eld by 90 degrees.
For a moderate external eld strength (sketched on the le of
Fig. 1), the gel reacts differently depending on the relative
magnitude of the characteristic angular velocity induced by the
external eld, Uc, and the rate at which we rotate the eld, Uext.
When we rotate the eld slowly, Uext/Uc � 1, the gel maintains
its current shape and slowly changes its orientation with the
swimmers, tracing an arc and continuing a path along the new
eld direction, as shown on the top of Fig. 2. When we rotate the
eld quickly, Uext/Uc [ 1, the swimmers respond quickly and
begin to swim in the new eld direction. In this limit the gel
temporarily stops translating because the swimmers do not take
any swim steps between their reorientations. Aer the swim-
mers change their orientations toward the new eld direction,
the gel again assumes a disk shape and translates with the
swimmers. As illustrated in Fig. 1 and 2, by tuning the proper-
ties of the gel (or vesicle or drop), the activity of the swimmers,
and the strength of the external orienting eld, a wide range of
This journal is © The Royal Society of Chemistry 2014
controllable motion is possible. It is important to note that if
one can measure the effective translational diffusivity of active
particles in an orienting eld, then the stress is known from the
relationship s ¼ �nzhDi. We can thus make predictions of the
shape and size of the gel based upon a simple diffusivity
measurement of the swimmers.

The motion of a single particle due to an intrinsic swim force
and an external force are the same. At higher concentrations or
when considering the swimmer's interactions with other bodies
or boundaries a distinction must be made—the intrinsic swim
mechanism does not generate a long-range 1/r Stokes velocity
eld as does an external force. In our analysis we neglect
hydrodynamic interactions among the particles, which would
contribute additional terms to the active-particle stress and affect
the reorientation time of the particles. It is important to note that
the swim stress presented here is distinct and different from the
“hydrodynamic stresslet,” which is also a single-particle property
but scales as �nzU0a where a is the particle size.10,11 No study to
date has studied the effect of an external eld on the swim stress
of active matter. The ratio of the magnitude of the hydrodynamic
stresslet over the swim pressure is the reorientational Péclet
number, PeR ¼ U0a/hDswimi � a/(U0sR), which compares the
swimmer size a to its run length U0sR.2 The hydrodynamic
contribution to the deformation of so materials becomes
negligible at low PeR, the regime in which many synthetic active
particles operate.12,13

In this paper we present a micromechanical model that
determines the average translational velocity, diffusivity, and
swim stress of a suspension of active particles in any external
eld. Previous studies of the translational diffusivity of Brow-
nian particles have used a generalized Taylor dispersion
method to analyze the behavior when subjected to an external
orienting eld and/or a homogeneous shear ow.14–18 Manela
and Frankel17 analyzed the effective translational diffusivity of
dipolar swimmers subjected to a simple shear ow and an
external eld, and Bearon and coworkers19,20 extended the
analysis to different ow conditions. Owing to slow numerical
convergence, most studies have focused on weak external elds;
in practice, however, active particles may be exposed to strong
external elds, be it a chemical or thermal gradient eld. As
shown in this work, strong external elds are interesting
because the convective enhancement to the effective trans-
lational diffusivity (hDswimi ¼ U0

2sR/6) vanishes entirely.
Furthermore, most studies assume a constant swimming speed
of the particles, irrespective of the external eld strength. In
nature or in the laboratory, the local chemical and thermal
environments can affect the swimming speeds of active parti-
cles. Indeed, bacteria modulate their swimming speeds when
exposed to a thermal21 or chemoattractant concentration eld.22

We address this problem by allowing the swimmers to modify
their speeds based on their instantaneous orientation. Our
analytical model is corroborated by Brownian dynamics (BD)
simulations.

The balance between the strength of the orienting eld and
the effects that randomize the particle orientation is character-
ized by the Langevin parameter, cR ¼ UcsR, where Uc is the
characteristic angular velocity induced by the external eld and
Soft Matter, 2014, 10, 9433–9445 | 9435
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Fig. 3 Definition sketch of an active particle at position z with orien-
tation q in an external field, H.
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sR is the reorientation time from rotary Brownian motion and/or
an intrinsic reorientation mechanism. Simple dimensional
reasoning provides predictions of the effect of the external eld on
the average swimming speed, effective translational diffusivity,
and swim stress. The self-propulsive enhancement to a swimmer's
effective translational diffusivity scales as hDswimi � Leff

2/sR,
where Leff is the effective step size. In the absence of an external
eld Leff � U0sR, giving hDswimi � U0

2sR. With the external eld
in the linear response regime, the change in the effective step
size, DLeff � cRU0sR, so the change in swim stress scales as
Dsswim ¼ �nzhDDswimi � �nz(U0

2sR)cR
2. The average velocity

along the external eld scales as huki � Leff/sR� U0cR, linear in the
forcing. The average velocity transverse to the external eld is zero
for all values of cR: huti ¼ 0. Thus, hDi � D0 + U0

2sR/6(1 + O (cR
2))

and sswim � �nzU0
2sR/6(1 + O (cR

2)) and is anisotropic.
For cR[ 1, the external eld is so strong that the swimmers

spend most of their time oriented along the eld. This suggests
that the average swimmer velocity is huki � U0(1 � cR

�1); the
instantaneous swimmer velocity is the same as the average
velocity, minus a small O (cR

�1) correction. The effective trans-
lational diffusivity depends on the uctuation of the swimmers'
instantaneous speed from the average speed. This gives the
effective step size, Leff � (hui � U0)sR. Parallel to the external
eld we thus have sswimk ¼ �nzhDswim

k i � �nzU0
2sRcR

�3. In the
transverse direction, the average velocity is zero so a small
uctuation in an individual swimmer's perpendicular motion
affects the dispersion more strongly than small uctuations
along the external eld. This suggests that the swimmer’s
perpendicular velocity decays more slowly, as ut � O (cR

�1/2),
giving sswimt ¼ �nzhDswim

t i � �nzU0
2sRcR

�2. Interestingly,
under strong external elds the swim stress and diffusivity
tend to zero.

In the next section, we formulate an expression for the
average translational ux, from which we deduce the swim
stress and the average translational velocity and diffusivity. In
Section 3, we derive the evolution equations governing the
orientation distribution and uctuation elds. A similar
approach has been used to study two-body collisions in
nonlinear microrheology,23 which we extend here into orien-
tation space. In part 4, we consider our rst example of
swimmers with uniform speeds. We build up our BD simulation
framework in Section 5 to verify the analytical theory. To
obtain a more complete description, in Section 6 we allow
the swimming speeds to vary with orientation and eld
strength.

2 Average swimmer motion

We focus on the motion of a single active Brownian particle that
swims in a quiescent uid with an orientation-dependent
velocity u(q), where the unit vector q species its orientation.
The swimming velocity can be a result of intrinsic self-
propulsion from a living microorganism or an activated
synthetic catalytic particle.1,24 The particle also undergoes
random thermal motion with a translational diffusivity D0, and
reorients due to rotary Brownian motion and/or an intrinsic
mechanism (e.g., agella), characterized by a reorientation time
9436 | Soft Matter, 2014, 10, 9433–9445
sR. For torqued swimmers like gravitactic or magnetotactic
bacteria, the external eld induces an orientation-dependent
torque on the particle, Lext(q). In contrast, force and torque-
free swimmers like phototactic bacteria or other microorgan-
isms undergoing chemotaxis or thermotaxis may possess an
internal mechanism (e.g., biological sensor) to reorient them-
selves along the eld. Our general analysis remains valid
whether the reorientation is induced by an external torque or
as a result of an intrinsic particle property. The dynamics of
an active particle is contained in P(z, q, t|z0, q0, t0), the
conditional probability of nding the particle at position z
and orientation q at time t, given that it was at z0 and q0 at
time t0. This probability density obeys the Smoluchowski
equation

vP

vt
þ V$jT þ Vq$jR ¼ 0; (1)

where the translational and rotary uxes are given by,
respectively,

jT ¼ u(q)P � D0$VP, (2)

jR ¼ uðqÞP� 1

sR
VqP; (3)

where u(q) is the orientation-dependent angular velocity of the
swimmer, D0 is its Brownian translational diffusivity, and V and
Vq are the physical-space and orientation-space gradient oper-
ators, respectively.

We are interested in times t > sR in which all orientations
have been sampled. To this end, we follow Zia and Brady23 and
introduce the Fourier transform with respect to position,
denoted by ^. Averaging eqn (1) and (2) over orientation space,
we obtain

vn̂ðk; tÞ
vt

þ ik$
D
ĵT

E
¼ 0; (4)

D
ĵT

E
¼
þ
uP̂dq�D0$ikn̂

​ ; (5)

where n̂(k, t)h
Þ
P̂(k, q, t)dq is the local number density of active

particles. We introduce P̂(k, q, t) ¼ g(k, q, t)n̂(k, t), and focus on
the orientation distribution through the structure function
This journal is © The Royal Society of Chemistry 2014
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g(k, q, t). For the long-time self-diffusion we consider the short
wave vector (long length scale) limit23 and thus expand for small
k: g(k, q, t) ¼ g0(q, t) + ik$d(q, t) + O (kk). The eld g0 is the
orientation distribution function, and d is the probability-
weighted displacement or uctuation of a particle about its
mean velocity (i.e., the strength and direction of the swimmer's
displacement due to the external eld). Readers familiar with
Brenner's25 generalized Taylor dispersion theory will notice that
g0 and d are similar to his PN0 and B elds, respectively. Intro-
ducing this expansion into eqn (5), we obtain the mean particle
translational ux: D bjTE ¼ n̂½hui � ik$hDi�; (6)

where the average translational velocity and diffusivity are,
respectively,

hui ¼
þ
uðqÞg0 dq; (7)

hDi �D0 ¼
�
Dswim

� ¼ þ ðhui � uðqÞÞd dq: (8)

In eqn (8) the term hui was inserted to emphasize that it is
the velocity uctuation that generates dispersion.

In the Introduction we derived a direct relationship between
the translational diffusivity and the micromechanical stress:
s ¼ �nzhDi. Substituting eqn (8) into this expression gives the
stress generated by the active particle, s ¼ sB + sswim, where we
identify the Brownian osmotic stress as sB ¼ �nzD0 ¼ �nkBTI,
and the swim stress as the convective enhancement to the
diffusivity (right-hand side of eqn (8)):

sswim ¼ �nz

þ
ðhui � uðqÞÞd dq: (9)

Eqn (7) to (9) are the main results we wish to determine. The
swim pressure is given byPswim ¼�trsswim/3 and is interpreted
as the average normal swim stress (i.e., the connement forces)
necessary to prevent an active body from swimming away in
space.2
3 Non-equilibrium orientation and
fluctuation fields

We now develop the evolution equations governing the
orientation-distribution function g0 and the uctuation
eld d for use in eqn (7) to (9). From the Smoluchowski eqn (1),
g(k, q, t) satises

vg

vt
þ Vq$ðuðqÞgÞ � 1

sR
Vq

2g ¼ gik$½hui � uðqÞ � ik$ðhDi �D0Þ�;
(10)

where g is nite on the unit sphere and is normalized:Þ
g(k, q, t)dq ¼ 1.
To proceed we need a form of u(q), the rotary velocity that

reorients the biased swimmer along the external eld or
This journal is © The Royal Society of Chemistry 2014
gradient, H. For force and torque-free swimmers, like micro-
organisms undergoing phototaxis, chemotaxis, and/or thermo-
taxis, we assume that they possess an intrinsic mechanism (e.g.,
biological sensor) to reorient themselves along H. A simple
expression for the rotary velocity that models this behavior is
u(q) ¼ Ucq � Ĥ, where Uc is the magnitude of the angular
velocity and Ĥ is the unit vector along the eld. This expression
implies that the swimmer attains the maximum rotary velocity
when q t Ĥ and zero rotary velocity when q k Ĥ. Another
common class of swimmers, like magnetotactic or gravitactic
bacteria, reorient themselves owing to a torque induced by the
external eld, u(q) ¼ MR$L

ext, where MR is the rotary mobility
tensor. Following Brenner and Condiff,26 one can show that this
leads to the same expression as that of the torque-free swim-
mers. This implies that the detailed reorientationmechanism is
unimportant, and both types of swimmers can be modeled with
the same expression for the rotary velocity. When analyzing the
motion of a single particle, there is no distinction between
rotation caused by an external torque and motion arising
inherently from the swimmer.

The equations are made dimensionless by scaling u � U0,
u(q) � Uc, and d � U0sR. Using the small-k expansion and
considering a spherical particle with a constant, isotropic
Brownian diffusivity, the steady-state orientation distribution
function satises a convection–diffusion equation:

Vq
2g0 � cRVq$[(q � Ĥ)g0] ¼ 0, (11)

with
Þ
g0dq ¼ 1, and cR h UcsR is the Langevin parameter. The

d-eld satises a similar equation, but is forced by deviations
from the mean velocity:

Vq
2d � cRVq$[(q � Ĥ)d] ¼ �g0(hui � u(q)). (12)

4 Uniform swimming velocity

In this section, we assume all particles have the nondimen-
sional swim velocity u(q) ¼ q. We shall see in Section 6 that
allowing the speed to change with orientation leads to addi-
tional interesting dispersive effects. Eqn (11) and (12) have exact
analytical solutions, but we rst consider the limiting behaviors
at low and high cR.

4.1 cR � 1 limit

As shown in Appendix A, we apply a regular perturbation to obtain
g0(q) ¼ 1/(4p) + Ĥ$P1(q)cR/(4p) + ĤĤ:P2(q)cR

2/(12p) + O (cR
3),

where Pn(q) are the nth-order tensor surface spherical
harmonics.27 This is identical to Almog and Frankel's15 result
who considered the sedimentation of axisymmetric non-
centrosymmetric particles by gravity. Whether the orienting
torque is caused by shape-dependent gravitational settling or
from dipole-induced alignment, the orientation distribution is
the same.

Substituting this solution into eqn (7), the average trans-
lational velocity of the swimmers at low cR is
Soft Matter, 2014, 10, 9433–9445 | 9437
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hui ¼ 1

3
cRĤ þ O

�
cR

3
�
: (13)

The average velocity increases linearly with cR, as predicted
from simple scaling arguments. As cR / 0 the orientation
distribution becomes uniform, resulting in no net swimming
speed.

To obtain a leading-order correction in the swim stress and
translational diffusivity, we must proceed to the O (cR

2) d-eld
problem. Substituting the d-eld solution (see Appendix A)
into eqn (8) and (9), we obtain the swim diffusivity and stress for
cR � 1:

sswim ¼ � nz
�
Dswim

�
¼ � nzU0

2sR
6

�
I � 6

5
cR

2

�
7

27
ĤĤ þ 1

8

�
I � ĤĤ

��	
þ O

�
cR

4
�
: (14)

We have adopted the transversely isotropic form, where ĤĤ
and I � ĤĤ correspond to the parallel and perpendicular
components relative to the eld direction, respectively. As
cR / 0 we recover the “ideal-gas” swim pressure,
Pswim ¼ nzU0

2sR/6.2 The rst effect of the external eld appears
at O (cR

2), in agreement with our scaling arguments in the
Introduction. Notice that the external eld causes a decrease in
the translational diffusivity, in contrast to the increase seen in
the sedimentation problem.15 The dispersion decreases here
because the particles now swim collectively toward Ĥ, reducing
their tendency to take random swim steps.
4.2 cR [ 1 limit

A singular perturbation scheme is required for cR [ 1
because the problem separates into an outer and inner region.
Near mh Ĥ$q z 1 there is an orientation-space boundary layer
and the angular coordinate is rescaled as m̂ ¼ (1 � m)cR � O (1).
To leading order, g0 and d are zero in the outer region
because the orientation of the swimmer is conned to a
1/cR-thick “cone” around m z 1. As shown in Appendix B,
the leading-order boundary-layer solution to eqn (11) is
g0(m̂; cR) ¼ cRe

�m̂/(2p) + O (1). As cR / N, the orientation
distribution approaches a delta-function peaked at m̂ ¼ 0,
conning the swimming trajectory to a narrow “cone” about
the eld direction. From eqn (7), the average translational
velocity is hui ¼ (1 � cR

�1)Ĥ. To leading order, all swimmers
move along the eld direction, Ĥ, at the same speed, U0.

The d-eld problem is resolved into a direction parallel (dk)
and perpendicular (dt) to the external eld. The swim diffu-
sivity and stress for cR [ 1 are

sswim ¼ �nz
�
Dswim

� ¼ �nzU0
2sR

�
1

2
cR

�3ĤĤ þ cR
�2
�
I � ĤĤ

�	
:

(15)

As cR / N, the swim stress vanishes entirely, including the
“ideal-gas” pressure Pswim ¼ nzU0

2sR/6 that was present at
9438 | Soft Matter, 2014, 10, 9433–9445
low cR (see eqn (14)). Since all particles are oriented along a
1/cR-thick “cone” about the eld, each particle swims at the
same velocity U0 towards the same direction, resulting in
a vanishingly small dispersion. Since it is the random
diffusion of a particle that gives rise to a swim pressure,
Pswim¼ nztrhDswimi/3, a small diffusivity results in a small swim
pressure. Another way to understand this is to suppose that the
bounding walls in a simulation cell were translating with the
average particle velocity, hui. As cR / N, all particles are
swimming with the same speed in the same direction so no
connement pressure is required to contain the particles inside
the simulation cell.2

4.3 Exact solution for arbitrary cR

As given in Appendix C, the solution to eqn (11) for arbitrary
cR is

g0ðm;cRÞ ¼
cR

4p sinhcR

emcR ; (16)

where m h Ĥ$q as before in the domain �1 # m # 1. From
eqn (7), the average translational velocity for arbitrary cR is

hui ¼ (coth cR � cR
�1)Ĥ h L (cR)Ĥ , (17)

where L (cR) is the Langevin function. As expected, the average
perpendicular velocity is zero for all cR. We resolve the corre-
sponding displacement eld in eqn (12) into the parallel and
perpendicular directions. As shown in Appendix C, the parallel
direction has an exact solution. In the perpendicular direction,
we expand our solution as a series of associated Legendre
polynomials. Finally, the effective translational diffusivity and
swim stress are obtained from eqn (8) and (9).

5 Brownian dynamics (BD)
simulations

The motion of active particles in an external eld can also be
analyzed via BD simulations. The system follows the N-particle
Langevin equations: 0¼�z(U� U0) + F

B and 0¼�zRU + Lext + LR,
where U and U are the translational and angular velocities,
Fswim h zU0 is the self-propulsive force, FB is the Brownian
force, zR is the hydrodynamic resistance coupling angular
velocity to torque, and Lext and LR are the torques induced by the
external eld and rotary Brownian motion and/or an intrinsic
reorientation mechanism, respectively. The le-hand sides are
zero because inertia is negligible for colloidal dispersions.

The Brownian force and reorientation torque have the white
noise statistics FB ¼ 0, FBð0ÞFBðtÞ ¼ 2kBTzdðtÞI, LR ¼ 0, and
LRð0ÞLRðtÞ ¼ 2zR

2dðtÞI=sR. Particle orientations were updated by
relating U to the instantaneous orientation q.28 We varied the
Langevin parameter cR and analyzed the motion of a single
active particle for over 4000 realizations and for at least 100sR.

The average translational velocity and diffusivity are given by
hui ¼ dhxi/dt and hDi ¼ lim

t/N
dhx0x0i=ð2dtÞ, where x0 ¼ x � huiDt

is the displacement of the swimmer from the meanmotion. The
swim stress was computed from sswim ¼ �nzhx0Fswim0i, where
Fswim

0 ¼ Fswim � hFswimi. The average swim force over all
This journal is © The Royal Society of Chemistry 2014
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Fig. 4 Average translational velocity along the external field as a
function of cR. The solid curve is the exact analytical solution, and the
circles are data from Brownian dynamics (BD) simulations.

Fig. 5 The swim stress in the parallel (in black) and perpendicular
(in red) directions as a function of cR, computed in the simulations
from sswim ¼ �nhx0Fswim0i (in circles) and also from first obtaining
the effective translational diffusivity and then using sswim¼�nzhDswimi
(in squares). The solid and dashed curves are the exact and asymptotic
analytical solutions, respectively.

Fig. 6 The first normal swim-stress difference,N1¼ sswim
k � sswim

t , as a
function of cR. The circles are results from BD simulations, and the
solid and dashed curves are the exact and asymptotic analytical
solutions, respectively. The illustration shows an instantaneous
configuration of the swimmers under a weak (sketch on left) and
moderate (on right) external field.
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realizations, hFswimi, must be subtracted to account for the dri
velocity of the particles caused by the external eld.
5.1 Results

Both the asymptotic and exact solutions of the Smoluchowski
equation and BD simulation results are presented here
together. Fig. 4 shows the nondimensional average swimmer
velocity along the external eld as a function of cR. The average
velocity increases linearly following eqn (13) for low cR, and
This journal is © The Royal Society of Chemistry 2014
approaches 1 as cR / N. There is no average speed transverse
to the external eld.

In the BD simulations, the swim stress was computed using
two methods. One approach is to use the denition of the swim
stress, sswim ¼ �nhx0Fswim0i (shown in circles in Fig. 5). The
alternative method is to rst calculate the long-time self diffu-
sivity of an active particle and then obtain the swim stress using
the relationship sswim ¼ �nzhDswimi (shown in squares). The
two methods give identical results, verifying that for a single
particle the stress is indeed directly related to the diffusivity,
s ¼ �nzhDi. Here we present results for the stress, but the
effective translational diffusivity can be obtained by simply
dividing the stress by �nz.

For cR � 1, the swim stress reduces to the ideal-gas swim
pressure.2 The swim stress then decreases as �O (cR

2) following
eqn (14). At intermediate values of cR (z2), the curves decline
as �O (cR

�1), which means that the dispersion is controlled by
convective rotation, i.e., sswim � �nzU0

2sRcR
�1 � �nzU0

2/Uc.
The diffusivity continues to decay at high cR following
eqn (15). An interesting feature at high cR is the faster decay of
sswimk � O (cR

�3) than sswimt � O (cR
�2). This can be explained by

considering the driving force for dispersion, Du ¼ hui � u(q).
Gradients in Du determine the driving force for dispersion:
dDuk/dm̂ � cR

�1 and dDut/dm̂ � cR
�1/2m̂�1/2. The parallel

direction has a small driving force for all m̂ because an indi-
vidual particle's instantaneous velocity is the same as the mean,
huki. A very large uctuation is required to generate an appre-
ciable contribution to the parallel diffusivity. In contrast, the
gradient is maximized at m̂ ¼ 0 in the perpendicular direction
because the mean transverse velocity is zero. A small uctuation
Soft Matter, 2014, 10, 9433–9445 | 9439
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Fig. 7 The swim pressure,Pswim ¼�trsswim/3, as a function of cR. The
circles are results from BD simulations, and the solid and dashed
curves are the exact and asymptotic analytical solutions, respectively.
The illustration shows an instantaneous configuration of the swimmers
under a weak (sketch on left) and moderate (on right) external field.
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in the perpendicular direction contributes more to the disper-
sion than in the parallel direction, so sswimk decays faster than
does sswimt .

Fig. 5 shows that the swim stress tensor is anisotropic, which
allows us to identify the rst normal swim-stress difference:
N1 ¼ sswimk � sswimt . Remarkably, this normal swim-stress
difference is a single-particle property that arises uniquely
from the biased motion of an active particle. As shown in Fig. 6,
N1 goes to zero for cR/ 0 since the swim stress tensor becomes
isotropic. It also goes to zero for cR / N because the swim
stress decays to zero in both the parallel and perpendicular
directions (see eqn (15)). It reaches a maximum at intermediate
values of cR owing to the rapid decay of the swim stress in the
parallel direction (sswimk � O (cR

�3)). Due to axisymmetry the
second normal swim-stress difference is zero for all cR.

An anisotropic sswim means that the conning force required
to contain the swimmers by the bounding walls would be
different in the parallel and perpendicular directions. The swim
pressure represents the average of the normal swim stresses
(i.e., connement pressure) exerted on the bounding walls:
Pswim ¼ �trsswim/3.2 As shown in Fig. 7, the swim pressure
approaches the “ideal-gas” value as cR / 0: Pswim ¼ nzU0

2sR/6.
At higher cR, the swim pressure decreases since the external
eld connes the swimming trajectories along the eld direc-
tion, reducing the connement pressure on the surrounding
walls.

Since normal stress differences indicate how a so material
might elongate or shrink, results from Fig. 6 and 7 can be
exploited in the design of various novel active so materials.
Using the results of this section we can now describe how a
polymer network (e.g., a gel) loaded with active particles with
uniform swim speeds behaves in the presence of an external
9440 | Soft Matter, 2014, 10, 9433–9445
eld. In the absence of the external eld, the active particles
exert an equal magnitude of normal stress in all directions of
the gel, namely sswim ¼ �nzU0

2sRI/6. Upon turning on the
external eld, the gel shrinks due to the decrease in swim
pressure (see Fig. 7), assumes the shape of a thin 3D disk due to
the negative normal stress difference (see Fig. 6), and the gel
translates due to the average velocity of the swimmers (see
Fig. 4). Such a device can be used as a mechanical device/motor
where its shape, size, and motion can be carefully tuned by an
external eld. The gel behavior discussed in the Introduction
(Fig. 1) is for non-uniform swim speeds of the particles, which
we discuss in Section 6. It is important to note that if one can
measure the effective translational diffusivity of active particles
in an orienting eld, then the stress is known from the rela-
tionship s ¼ �nzhDi. We can thus make predictions of the
shape and size of the gel based upon a simple diffusivity
measurement of the swimmers.
6 Nonuniform swimming velocity

The swimming speeds of bacteria have been shown to change
when exposed to chemical22 and thermal21 gradients. To this
end, we now consider the effects of nonuniform swimming
speeds on the swim stress and the average translational velocity
and diffusivity. Specically, we allow the swimmers' speed to
vary with their orientation relative to the external eld, q$H.
Consider the swimming velocity

u(q) ¼ q(1 + u0(aH0Ĥ$q)), (18)

where u0(aH0Ĥ$q) is a dimensionless perturbed velocity relative
to the uniform speed, U0. We introduce a as an intrinsic particle
property relating the external eld strength, H0, to the trans-
lational velocity.

The g0 solution is identical to eqn (16) since the orientation
distribution is independent of u(q). However, the d-eld differs
because the driving force Du ¼ hui � u(q) is different. Eqn (12)
now becomes

V2
qd � cRVq$


�
q� Ĥ

�
d
� ¼ �g0


hui � q
�
1þ u0

�
aH0Ĥ$q

���
;

(19)

where �
u
� ¼ þ g0hq�1þ u0

�
aH0Ĥ$q

��i
dq: (20)

The swim diffusivity and stress become

sswim ¼ �nz
�
Dswim

�
¼ �nzU2

0 sR

þh�
u
�� q

�
1þ u0

�
aH0Ĥ$q

��i
d dq: (21)

Eqn (19) and (21) are the only changes required to
account for nonuniform swimming speeds. With a choice of
u0(aH0Ĥ$q), the problem statement is complete. Here we
This journal is © The Royal Society of Chemistry 2014
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Fig. 8 (A) Swim stress in the parallel (in black) and perpendicular (in
red) directions as a function of cR for aH0 ¼ 1. The aH0 parameter
allows the swimming speed to vary with particle orientation. (B) First
normal swim-stress difference. The illustration shows an instanta-
neous configuration of the swimmers under a weak (sketch on left)
and moderate (on right) external field. In both (A) and (B), the solid
curves are the exact solutions, and the dashed curves are the
asymptotic solutions. In (A) BD simulation results are shown in circles
and squares for the parallel and perpendicular directions, respectively.
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consider a linear relationship for the velocity perturbation:
u0(aH0Ĥ$q) ¼ aH0Ĥ$q. A swimmer's velocity is now

u(q) ¼ q[1 + aH0(q$Ĥ)], (22)

which may be a more complete description than the uniform-
speed case considered earlier. When oriented along Ĥ, the
swimmer increases its speed, and when oriented antiparallel to
Ĥ, it decreases its speed.

Substituting eqn (22) and (16) into eqn (20), the average
velocity is�
u
� ¼ Ĥ

h
coth cR � cR

�1 þ aH0

�
1� 2cR

�1 coth cR þ 2cR
�2
�i
:

(23)

Comparing with eqn (17), we see that the average velocity
increases by the last term in parentheses on the right-hand side.
At low cR, the mean velocity of the swimmers is

hui ¼ Ĥ

�
1

3
aH0 þ 1

3
cR þ 2

45
aH0cR

2 þ O
�
cR

3
��

: (24)

The rst term on the right-hand side represents a mean
dri velocity arising from the perturbed velocity. At high
cR, the swimmers are strongly oriented along the eld
direction, so the average velocity approaches U0(1 + aH0)
following eqn (22).

An analytic solution of eqn (19) for arbitrary cR and aH0 is
available in Appendix D, but here we analyze the behavior at low
and high cR. At low cR, a regular perturbation scheme gives the
swim stress sswim ¼ �nz[hDswim

k iĤĤ + hDswim
t i(I � ĤĤ)], whereD

Dswim
k
E
¼U0

2sR

"�
1

6
þ 2

135
ðaH0Þ2

�
þ 2cR

27
aH0

� cR
2

 
7

135
� ðaH0Þ2

189

!#
þ O

�
cR

3
�
;

(25)

�
Dswim

t

� ¼U0
2sR

"�
1

6
þ 1

90
ðaH0Þ2

�
þ cR

18
aH0

� cR
2

 
1

40
� 59ðaH0Þ2

22680

!#
þ O

�
cR

3
�
:

(26)

As aH0/ 0, the results reduce to the uniform-speed solution
considered earlier. The striking feature is that the dispersion
increases at small cR, unlike the uniform-velocity case (compare
with eqn (14)). Since the swimmers oriented towards the eld
move faster than those oriented away from the eld, we see an
enhanced dispersion (and swim stress) at low to intermediate
cR. As we shall see from the exact solution, the swim stresses in
both parallel and perpendicular directions continue to increase
and reach a maximum at intermediate cR.

Another key difference is the anisotropic swim stress at
cR ¼ 0; the parallel diffusion is larger (2/135 versus 1/90 for
aH0 ¼ 1). The average dri velocity from eqn (24) increases the
effective translational diffusivity above U0

2sR/6 even at cR ¼ 0.
This journal is © The Royal Society of Chemistry 2014
This dri velocity may help explain the observed migration of
bacteria along a temperature gradient.21

At high cR, the behavior is similar to the uniform-velocity
case. Since all particles are oriented along the external eld, the
effect of swimming-speed nonuniformity becomes negligible
and the particles swim in the same direction with the same
speed. The swim stress at high cR is

sswim ¼ �nzU0
2sR

�
1

2
ð1þ 2aH0Þ2cR

�3ĤĤ

þ ð1þ aH0Þ2cR
�2
�
I � ĤĤ

�	
: (27)
Soft Matter, 2014, 10, 9433–9445 | 9441
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Fig. 9 The swim pressure, Pswim ¼ �trsswim/3, as a function of cR for
aH0 ¼ 1. The circles are results from BD simulations, and the solid and
dashed curves are the exact and asymptotic analytical solutions,
respectively. The illustration shows an instantaneous configuration of
the swimmers under a weak (sketch on left) and moderate (on right)
external field.
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The swim stress as a function of cR for aH0 ¼ 1 is shown in
Fig. 8A. The instantaneous swimming speed is twice the
uniform speed when the swimmer is oriented along the eld
(2U0) and zero when oriented in the opposite direction. The
swim stress increases at low to moderate cR and reaches a
maximum at cmax

R ¼ 0.60 and cmax
R ¼ 0.95 in the parallel and

perpendicular directions, respectively. We see maxima because
the eld redistributes the orientations and modies the swim-
ming speeds. This is different from the uniform-speed case
where the eld affected only the swimming orientations. As
shown in Fig. 8B, the normal swim-stress difference is non-
monotonic and also changes in sign from negative to positive
at cR z 0.8.

We saw in Fig. 7 that an external eld that affects the parti-
cles' swimming orientation (but not their speed) resulted in a
monotonically decreasing swim pressure with cR. As shown in
Fig. 9, the swim pressure becomes non-monotonic when both
the particles' swimming orientation and speed are affected by
the external eld. This is interesting because an external eld
can give a non-monotonic pressure prole at the single-particle
level (i.e., an innitely dilute system).

In the Introduction we discussed an important applica-
tion of loading a so, compressible gel with active particles.
Here we support the description of Fig. 1 with our results.
When the colloidal particles are inactive, the gel assumes
some equilibrium shape as shown on the top of Fig. 1.
Activating the colloidal particles causes the gel to swell due
to the “ideal-gas” swim pressure of the active particles,
Pswim ¼ nzU0

2sR/6. Since the shear modulus of polymer
networks can be adjusted over a wide range (in principle to
nearly zero) and the intrinsic activity of the swimmers can be
9442 | Soft Matter, 2014, 10, 9433–9445
made much larger than the thermal energy, zU0
2sR [ kBT,

the swim pressure can make an appreciable contribution to
the overall size of the gel.

When we then apply a weak external eld (i.e., cR < 1), the gel
expands even more due to increased swim pressures (see Fig. 9),
elongates due to positive normal stress differences (see Fig. 8B),
and translates due to the net motion of the active swimmers (see
eqn (24)) within the gel. When we increase the external eld
strength (1 < cR � N), the swim pressure decreases and the
normal stress difference becomes negative (Fig. 8B graphs�N1),
which causes the gel to shrink in size, translate faster towards
the eld direction, and assume the shape of a thin disk as
shown on the le of Fig. 1. When the external eld strength
becomes very high (cR/N), the normal swim-stress difference
and swim pressure vanish, causing the gel to return to its
equilibrium shape and size but translate in the eld direction.
When the external eld is turned off, the gel stops translating
and an entire cycle is completed as depicted in Fig. 1. Each
transformation of the gel is corroborated by our calculations
and BD simulations.

Allowing the swimming speeds to vary with orientation
introduces features similar to the sedimentation problem
considered by Brenner14 and Almog and Frankel.15 In the
effective translational diffusivity (eqn (25) and (26)), the
terms involving (aH0)

2 are identical to those by Almog and
Frankel.15 When analyzing the motion of a single particle,
there is no distinction between a motion caused by an
external force (i.e., gravity) and a motion arising from
intrinsic particle activity (i.e., swim force). Therefore, the
perturbation u0 ¼ aH0Ĥ$q in the modied velocity expression
is similar to adding a contribution from an external force,
M(q)$Fext, where M(q) is the orientation-dependent mobility
and Fext is the external force. Of course, one could assume an
expression of u0(aH0Ĥ$q) that is different from the linear
relationship (eqn (22)) considered here, and the results
would no longer be the same as the sedimentation problem.
Therefore, for a single particle the sedimentation problem is
a special case of our general formulation.

7 Conclusions

We have introduced a new approach to understand and
compute the active stress in a system of self-propelled bodies.
All active matter systems generate a unique swim pressure
through their intrinsic self-motion. Here we used this swim
stress perspective to analyze the effect of an external eld on the
motion and deformation of active matter. We saw that the
external eld engendered anisotropic stresses, meaning that
the swimmers experience a different conning force in the
parallel and perpendicular directions. This lead directly to the
shrinking/expanding, elongating, and translating of so,
compressible materials that are loaded with active particles.
The external eld can thus be used to manipulate the shape and
size of so materials such as a gel or perhaps a biological
membrane. Another important application may be the analysis
of various biophysical systems, such as the interior of a cell.
Molecular motors that activate the cytoskeleton must exert a
This journal is © The Royal Society of Chemistry 2014
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swim pressure on the cell owing to their self-motion along a
track.

Our analysis remains valid for non-spherical particles with a
varying swim velocity U0 and/or reorientation time sR. Here we
focused on a dilute system of swimmers, but inclusion of two-
body effects in the Smoluchowski eqn (1) is straightforward.
For non-spherical particles the hydrodynamic drag tensor, z,
varies with the director q, and the effective hydrodynamic drag
factor zeff ¼ (2zt + zk)/3 becomes the relevant quantity in the
stress-diffusivity relationship, where zt and zk are the trans-
verse and parallel components of the hydrodynamic drag
tensor, respectively. At nite volume fractions, the particle size,
a, would enter in the form of a nondimensional rotary Péclet
number, PeR ¼ U0a/hDswimi � a/(U0sR), which compares the
swimmer size a to its run length U0sR. With the inclusion of
translational Brownian motion, all three parameters must be
varied in the analysis: cR ¼ UcsR, PeR ¼ a/(U0sR), and the swim
Péclet number Pes ¼ U0a/D0.

In our analysis we neglected hydrodynamic interactions
among the particles, which would contribute additional
terms to the active-particle stress and affect the reorientation
time of the particles due to translation–rotation coupling.
It is important to note that the swim stress is distinct
and different from the “hydrodynamic stresslet”, which is
also a single-particle property but scales as �nzU0a.10,11 As
mentioned before, the motion of a single particle due to an
intrinsic swim force and an external force are the same. At
higher concentrations or when considering the swimmer's
interactions with other bodies or boundaries a distinction
must be made—the intrinsic swim mechanism does not
generate a long-range 1/r Stokes velocity eld as does an
external force.

Here we focused on a dilute system of active particles, but
at higher concentrations active systems have been known to
exhibit unique collective behavior.1,29 The swim pressure
presented here remains valid and appropriate for hydrody-
namically interacting active systems, but one needs to care-
fully examine the individual contributions to the active
stress. A single particle hydrodynamic contribution to the
stress is of the form �nzaU, which, while important, is much
smaller by a factor of U0sR/a than the swim pressure. A
complete study would need to consider the effects of both the
swim and hydrodynamic stresses. We believe that the
experimental, numerical, and theoretical analyses of active
systems may need to be revisited in light of the new swim
stress concept.

Experimentally, the precise manipulation of colloids using
external elds is critical in many applications, like the targeted
transport and delivery of specic chemicals.30 Active-matter
systems are ideal candidates for understanding dynamic self-
assembly and developing synthetic structures. For example,
dipolar particles subjected to a magnetic or electric eld have
been shown to form patterns.30–32 Self-assembly and clustering
behavior in active matter have been analyzed from the swim
stress perspective,2 and it would be straightforward to extend
these ideas to self-propelled particles that are biased by an
external orienting eld.
This journal is © The Royal Society of Chemistry 2014
Appendix
(A) Low-cR limit

A regular perturbation expansion of eqn (11) and (12) assumes
solutionsof the formg0(q;cR)¼ g(0)0 (q) +g(1)0 (q)cR+g

(2)
0 (q)cR

2+O (cR
3)

and d(q; cR) ¼ d(0)(q) + d(1)(q)cR + d(2)(q)cR
2 + O (cR

3).
Substituting these into eqn (11) of the text, the leading-order

orientation distribution function g(0)0 satises Vq
2g(0)0 ¼ 0 andÞ

g(0)0 dq¼ 1. The solution is the uniform distribution, g(0)0 ¼ 1/4p.
The O (cR) problem is �Ĥ$q/(2p) ¼ Vq

2g(1)0 with
Þ
g(1)0 dq ¼ 0.

From Brenner,27 vector spherical surface harmonics satisfy

Vq
2Pn(q) ¼ �n(n + 1)Pn(q). (A1)

We hence substitute the trial solution g(1)0 ¼ P1(q)$a1 into
eqn (A1), and obtain a1 ¼ Ĥ/4p. Thus, the solution is
g(1)0 ¼ Ĥ$P1(q)/(4p). The O (cR

2) problem is solved similarly:
Vq

2g(2)0 ¼ �ĤĤ:P2(q)/(2p) with
Þ
g(2)0 dq ¼ 0. The solution is

g(2)0 ¼ ĤĤ:P2(q)/(12p). Substitution of these three contributions
into the perturbation expansion, we arrive at the solution in
the text.

A similar procedure for the d-eld gives

d ¼� 1

8p
P1ðqÞ � 5cR

72p
Ĥ$P2ðqÞ

þ cR
2

p

�
29

1440
ĤĤ$P1ðqÞ � 13

720
ĤĤ : P3ðqÞ � 3

160
P1ðqÞ

�
þ O

�
cR

3
�
:

(A2)

As in the force-induced microrheology problem considered
by Zia and Brady,23 the O (1) solution for d is the same as the
O (cR) problem for g0. In the linear-response regime, the prob-
lems are identical whether the swimmers are reoriented by the
external eld (g0) or by thermal energy kBT (d) and the same
holds true when the reorientation is athermal with sR.
(B) High-cR limit

The problem is singular in the cR [ 1 limit, so we expand the
solution in the inner regionasg0(m̂;cR)¼cRg

(0)
0 (m̂) +g(1)0 (m̂) +O (cR

�1).
Substituting into eqn (11) of the text, the leading-order solution
satises

d

dm̂

"
m̂

 
g
ð0Þ
0 þ dg

ð0Þ
0

dm̂

!#
¼ 0; (B1)

with
ð2p
0

ðN
0
gð0Þ0 ðm̂Þdm̂df ¼ 1. For the uctuation eld, we sepa-

rate the solution into scalar components parallel and perpendic-
ular to Ĥ as d(m, f; cR)¼ dk(m; cR)Ĥ + dt(m; cR)(ex cos f + ey sin f),
where ex and ey are unit vectors in the x and y directions,
respectively (see Fig. 3). We assume subject to posteriori veri-
cation that dk and dt are only a function of m. Substituting the
scaled m̂ variable into eqn (12), we obtain

d

dm̂

�
m̂

�
dk þ ddk

dm̂

�	
¼ � 1

4p
e�m̂cR

�1ðm̂� 1Þ; (B2)
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d

dm̂

�
m̂

�
dt þ ddt

dm̂

�	
� dt

4m̂
¼

ffiffiffi
2

p

4p
cR

�1=2e�m̂m̂1=2: (B3)

The leading nonzero solution is of order dk � O (cR
�1)

and dt � O (cR
�1/2). In the parallel direction, the solution

is dk(m̂; cR) ¼ cR
�1e�m̂(m̂ � 1)/(4p) + O (cR

�2), which
satises both the regularity and normalization
conditions. In the perpendicular direction, we
obtain dtðm̂;cRÞ ¼ �cR

�1=2m̂1=2e�m̂=ð ffiffiffi
2

p
pÞ þ O ðcR

�1Þ. Using
boundary-layer coordinates, the effective translational diffu-
sivity is computed from

hDi �D0 ¼
�
Dswim

� ¼ pU0
2sR

ðN
0

h
2cR

�2ð1� m̂ÞdkĤĤ

þ
ffiffiffi
2

p
cR

�3=2dtm̂
1=2
�
I � ĤĤ

�i
dm̂: (B4)

(C) Exact solution for arbitrary cR: uniform speeds

We rewrite eqn (11) as

d

dm

��
1� m2

� dg0
dm

	
� cR

d

dm


�
1� m2

�
g0
� ¼ 0; (C1)

where m h Ĥ$q. Twice integrating and invoking the normali-
zation and regularity conditions (nite dg0/dm and g0 at m¼�1),
we arrive at eqn (16) of the text. The corresponding displace-
ment eld is broken into the parallel and perpendicular
components. The solution in the parallel direction is

dkðm;cRÞ ¼
emcR

8pðsinh cRÞ2
�
coshðcRÞlog

�
1� m

1þ m

�
� sinhðcRÞlog

�
1� m2

�þ ecREið � cRðmþ 1ÞÞ

� e�cREiðcRð1� mÞÞ
	
þ Ake

mcR ; (C2)

where Ei(t) is the exponential integral EiðtÞh
ðt
�N

e�z=zdz, and
Ak is the normalization constant:

Ak ¼ � cR

16pðsinh cRÞ3
ð1
�1

emcR
�
coshðcRÞlog

�
1� m

1þ m

�
� sinhðcRÞlog

�
1� m2

�þ ecREið� cRðmþ 1ÞÞ

� e�cREiðcRð1� mÞÞ
	
dm: (C3)

In the perpendicular direction, the solution is expanded as

dt ¼
XN
n¼1

CnP1
nðmÞ. The coefficients Cn are found by solving a

tridiagonal matrix problem:

�cR

ðnþ 1Þðn� 1Þ
2n� 1

Cn�1 þ nðnþ 1ÞCn þ cR

nðnþ 2Þ
2nþ 3

Cnþ1 ¼ bn;

(C4)

with C0 ¼ 0, and the forcing coefficients bn are given by

bn ¼ � 2nþ 1

2nðnþ 1Þ
ð1
�1

g0ðm;cRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
P1

ndm: (C5)
9444 | Soft Matter, 2014, 10, 9433–9445
From eqn (9), the swim diffusivity and stress are

sswim ¼� nz
�
Dswim

� ¼ �nzU0
2sRp

ð1
�1



2dk
�
coth cR

� cR
�1 � m

�
ĤĤ þ dt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p �
I � ĤĤ

�i
dm;

(C6)

where only the diagonal terms contribute to the quadrature. In
the perpendicular direction, the convenience of using associ-
ated Legendre polynomials is evident in

sswim
t ¼ �nzU0

2sRp
ð1
�1

XN
n¼1

CnP
1
nðmÞP1

1ðmÞdm

¼ � 4p

3
nzU0

2sRC1:

(C7)

(D) Exact solution for arbitrary cR: nonuniform speeds

Resolving eqn (19) into the parallel and perpendicular
components, the exact d-eld solution in the parallel
direction is

dk ¼ emcR

8pðsinh cRÞ2

�

1� 2aH0

cR

��
coshðcRÞlog

�
1� m

1þ m

�
� sinhðcRÞlog

�
1� m2

�þ ecREið � cRðmþ 1ÞÞ

� e�cREiðcRð1� mÞÞ
	
� 2aH0m sinh cR

�
þ ~Ake

mcR ; (D1)

where Ãk is found from the normalization constraint to be

~Ak ¼ � cR

16pðsinh cRÞ3
ð1
�1

emcR

�

1� 2aH0

cR

�
�
�
coshðcRÞlog

�
1� m

1þ m

�
� sinhðcRÞlog

�
1� m2

�
þ ecREið � cRðmþ 1ÞÞ � e�cREiðcRð1� mÞÞ

	
� 2aH0m sinh cR

�
dm:

(D2)

Substitution of this equation into eqn (9) gives the swim
stress in the parallel direction.

In the perpendicular direction, the form of the solution is the
same as before (eqn (C4)) except the forcing coefficients bn are
given by

bn ¼ � 2nþ 1

2nðnþ 1Þ
ð1
�1

g0ðm;cRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
ð1þ aH0mÞP1

ndm: (D3)

The tridiagonal matrix problem is solved for the coefficients
Cn�1, Cn, and Cn+1. The effective translational diffusivity in the
perpendicular direction is given by

hDti ¼ 4pU0
2sR

�
1

3
C1 þ 1

5
aH0C2

�
; (D4)

where we have used the orthogonality of the associated Legen-
dre functions P1

1 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
and P1

2 ¼ �3m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
to evaluate

the integral.
This journal is © The Royal Society of Chemistry 2014
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