Shock compression and isentropic release of granite
Toshimori Sekine,* Thomas S. Duffy,† Allan M. Rubin,§ William W. Anderson and Thomas J. Ahrens
Lindhurst Laboratory of Experimental Geophysics, Seismological Laboratory 252–21, California Institute of Technology, Pasadena, CA 91125, USA

Accepted 1994 June 7. Received 1993 March 15

SUMMARY
New equation of state data for a weathered granite shocked to about 125 GPa are reported and combined with the Westerly granite data of McQueen, Marsh & Fritz (1967). The shock velocity (U_s)–particle velocity (U_p) relations can be fitted with two linear regressions: $U_s = 4.40 + 0.60U_p$ for a range of U_p up to about 2 km s$^{-1}$ and $U_s = 2.66 + 1.49U_p$ for a range of about 2 to 5 km s$^{-1}$. The third-order Birch–Murnaghan equation of state parameters are $K_0 = 51–57$ GPa and $K_0' = 1.4–1.8$ for the low-pressure regime and $K_0 = 251 ± 30$ GPa and an assumed $K_0' = 4$ for the high-pressure regime. Compressive waveforms in dry and water-saturated granite were measured at 10–15 GPa using the VISAR technique. The measured wave profiles were successfully modelled using a Maxwellian stress–relaxation material model. Water-saturated granite is characterized by a ~25 per cent lower yield strength and a ~75 per cent longer material relaxation time than dry granite.

From measurements of partially released states in granite, it is proposed that the high-pressure forms of tectosilicates, including granite, relax isentropically to a metastable, intermediate phase characterized by a dense (about 3.7 g cm$^{-3}$), highly disordered, six-fold coordinated phase which is subsequently quenched to diaplectic glasses of density ~2.3 g cm$^{-3}$, starting at pressure of ~10 GPa. We develop an analytical model to describe the release isentropes in the mixed-phase regime which prescribe release to a glass phase with increasing transformation to the high-pressure phase. Hugoniot and post-shock energies and temperatures derived from the release isentropes are consistent with available data and theoretical expectations for quartz and granite.

Key words: equation of state, granite, phase transitions.

INTRODUCTION
Shock Hugoniot data on silicate rocks and minerals all demonstrate major shock-induced phase transformations (e.g. see van Thiel 1977; Marsh 1980; Trunin 1986). The shock response of this class of materials is of importance in describing shock propagation from impact and explosive sources on the Earth and other planetary surfaces, as well as having applications in the study of the Earth's interior.

Granitic rocks are the most common component of the upper continental crust, and consist mainly of quartz and feldspars. The Hugoniots of tectosilicates and rocks composed chiefly of tectosilicates are all quite similar. A number of studies have been performed to measure the high-pressure properties of these minerals and their mixtures (e.g. Wackerle 1962; Ahrens, Peterson & Rosenberg 1969b; Grady, Murri & DeCarli 1975; Lyzenga, Ahrens & Mitchell 1983). The derived equation of state parameters have been compared with theoretical considerations (e.g. McQueen, Fritz & Marsh 1963; Ahrens, Anderson & Ringwood 1969a). The onset of shock-induced phase transformations usually does not occur at the thermodynamic equilibrium pressure or temperature. For example, in the case of quartz, the shock-induced high-pressure phase is inferred to be stishovite (McQueen et al. 1963), and this identification is consistent with shock-wave recovery experiments (e.g. Milton & DeCarli 1963). For feldspars, the measured Hugoniots above 30 GPa
can be interpreted in terms of a high-pressure polymorph with the hollandite structure (Ahrens et al. 1969a; Sekine & Ahrens 1991).

Shock-recovered samples of quartz and feldspars from above 25–30 GPa indicate transformation to diaplectic glasses, which are characterized by higher refractive indices and densities than normal fused glasses of the same composition (DeCarli & Jamieson 1959; Wackerle 1962; Kleeman 1971; Velde et al. 1989; Heyman & Hörz 1990). These diaplectic glasses have been intensively studied (e.g. Stöffler & Hornemann 1972). Are these diaplectic glasses characteristic of tectosilicates? Are they produced during shock compression or during isentropic release? If formation of glass occurs upon isentropic release, what is the phase present in the compressed state and at what pressure does the shocked tectosilicate transform to diaplectic glass?

Recently, isothermal compression of tectosilicates, as well as fayalite in the diamond anvil cell at room temperature, has indicated that transformation to a dense, amorphous phase occurs with an increase in the coordination of silicon or aluminium by oxygen (Hemley et al. 1988; Williams & Jeanloz 1989; Williams et al. 1990).

Table 1. Chemical and modal compositions of several granites used for equation of state experiments.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Mineral Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Study (1)</td>
<td>Grey Granite (2)</td>
</tr>
<tr>
<td>SiO₂</td>
<td>73.1</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.15</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.9</td>
</tr>
<tr>
<td>FeO</td>
<td>1.09</td>
</tr>
<tr>
<td>MgO</td>
<td>0.37</td>
</tr>
<tr>
<td>CaO</td>
<td>0.80</td>
</tr>
<tr>
<td>MnO</td>
<td>0.02</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.93</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.68</td>
</tr>
<tr>
<td>H₂O</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td>98.1</td>
</tr>
</tbody>
</table>

Table 1 lists the chemical composition and the mode, together with its major constituents, quartz and feldspar. The release adiabat states are described in terms of the third-order Birch–Murnaghan equation of state and compared with those for quartz and feldspars. We then construct analytic expressions for the release isentropes in the low-pressure, mixed-phase, and high-pressure regimes. The mixed-phase and high-pressure release isentropes are described in terms of the Hugoniot isentropes (Grady, Muir & Fowles 1974; Swegle 1990), and, upon release to pressures in the 2 to 10 GPa range, the high-pressure phase is assumed to transform to glass, as indicated by a number of release data (Ahrens & Rosenberg 1968; Podurets, Simakov & Trunin 1976; Chhabildas & Grady 1984; Chhabildas & Miller 1985).
free-surface or buffer impedance mismatch observation, reduced by way of the Riemann-integral formalism (Rice, McQueen & Walsh 1958; Lyzenga et al. 1983). Lexan and polyethylene were used as buffer materials, mounted at the rear of the sample. Streak camera cut-offs could not always be observed for the buffer.

A velocity-sensitive interferometer (VISAR—Velocity Interferometer System for Any Reflector) (Barker & Hollenbach 1972) was employed to investigate compressive wave profiles in dry and water-saturated granite at low stresses (~10 GPa). This technique makes use of the Doppler shift of reflected laser light produced by the motion of a diffuse surface. Interference fringes proportional to the velocity of the reflector are developed in a modified Michelson interferometer and recorded using photomultiplier tubes (Burle 7764) and digitizing oscilloscopes (HP 54111D). The VISAR used in the present experiments incorporates the push–pull modification (Hemsing 1979) for improved signal quality. The time resolution of our VISAR is estimated to be 3 ns and the velocity precision is 1 per cent. The target assembly for these experiments consisted of an aluminum driver plate (1.5 mm thick), a granite target (6.25 mm thick), a diffuse reflecting aluminum buffer (0.75 mm thick), and a LiF window (4–8 mm thick) (Fig. 1). For one shot (no. 806), the target was held in an aluminum cup and was water-saturated in vacuum. The shock velocity of the reflector are developed in a modified Riemann integral formalism (Rice, 1964). The VISAR monitors the velocity at the interface between the diffuse aluminum reflector and the LiF window.

Figure 1. Experimental geometry for VISAR experiments. The impactor assembly consisted of a lexan-backed aluminum flyer plate fired at speeds of between 1.21 and 1.78 km s⁻¹. The target assembly consisted of a granite sample sandwiched between an aluminum driver and buffer. The VISAR monitors the velocity at the interface between the diffuse aluminum reflector and the LiF window.

RESULTS

The results of the present experiments are given in Table 3, and are shown in Figs 2 and 3. For comparison, the Westerly granite data (McQueen et al. 1967) are also plotted in the figures and included in the analysis.

The shock velocity (U_p) versus particle velocity (U_s) relations shown in Fig. 2 can be characterized by two fits ($U_p = C_0 + SU_s$), with $C_0 = 4.40$ km s⁻¹ and $S = 0.60$ for particle velocities up to 2.1 km s⁻¹, and $C_0 = 2.66$ km s⁻¹ and $S = 1.49$ for a range of U_p from 1.8 to 4.8 km s⁻¹. The bulk sound velocity resulting from the measurements of V_p and V_s for dry granite at 1 atm is 3.77 ± 0.05 km s⁻¹, which is close to Westerly granite data (Marsh 1980).

However, the P- and S-wave velocities increase rapidly under confining pressure due to the closure of cracks and pores (Birch 1961). As discussed by McQueen et al. (1967), the extrapolation of longitudinal and shear velocities measured by Birch between 0.4 and 1.0 GPa to ambient pressure yields a longitudinal velocity of 6.04 km s⁻¹ and a shear velocity of 3.47 km s⁻¹. It is expected that these values will more closely reflect the intrinsic elastic properties of granite, whereas ultrasonic velocities measured at ambient pressure will be very sensitive to the porosity of the specimen (cf. Table 4). The bulk sound velocity, V_b, from the extrapolated Westerly data is 4.5 km s⁻¹.

Table 4 summarizes the U_p–U_s relations for various granites. Their compositions are given in Table 1. Despite their chemical variations, the U_p–U_s relations for granites are all similar. C_0 ranges between 2.10 and 2.66 km s⁻¹ and S is between 1.49 and 1.63, when U_p ranges from 1.8 to 6 km s⁻¹. Above $U_p = 5$ km s⁻¹, only a few data are available (biotite-chlorite granite and Soviet granite), and Trunin et al. (1988) obtained a linear relation for the Soviet granite (Table 4).

Telegin et al. (1980) have demonstrated good agreement between the observed Hugoniot and the calculated Hugoniot based upon the oxide-mixture model. According to

Table 2. Equation of state and constitutive parameters used in the present study.

<table>
<thead>
<tr>
<th>Material</th>
<th>Initial Density (g/cm<sup>3</sup>)</th>
<th>C_0 (km/sec)</th>
<th>S</th>
<th>v</th>
<th>Y_b (GPa)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granite (dry)</td>
<td>2.62</td>
<td>4.40</td>
<td>0.60</td>
<td>0.24</td>
<td>3.6</td>
<td>3</td>
</tr>
<tr>
<td>Granite (wet)</td>
<td>2.62</td>
<td>4.40</td>
<td>0.60</td>
<td>0.24</td>
<td>2.7</td>
<td>3</td>
</tr>
<tr>
<td>Al 2024</td>
<td>2.785</td>
<td>5.328</td>
<td>1.333</td>
<td>0.34</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>Ta</td>
<td>16.656</td>
<td>3.43</td>
<td>1.19</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>LiF</td>
<td>2.638</td>
<td>5.15</td>
<td>1.35</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Lexan</td>
<td>1.193</td>
<td>2.449</td>
<td>1.498</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Polystyrene foam</td>
<td>0.055</td>
<td>0.243</td>
<td>1.118</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

References.
2. McQueen et al. (1970).
3. This study.
demonstrate a good approximation to the Hugoniot data in the high-pressure regime. The constants reported by Telegin et al. (1971) to obtain a theoretical Hugoniot for granite are computed from the Rankine–Hugoniot equations, U_i and U_j are computed from the resulting P–V relation. The granite is taken to be a mineral mixture consisting of the modal composition (Table 1). The Hugoniots for plagioclase and K-feldspar have been recognized to be insensitive to composition, and the quartz microcline Hugoniot (Ahrens et al. 1969b; Simakov et al. 1974) was used in the present calculation. The quartz Hugoniot was taken from the data of Wackerle (1962) and translated by Trunin et al. (1974) to obtain a theoretical Hugoniot for granite. In this model, the granite is taken to be a mineral mixture consisting of the modal composition (Table 1). The Hugoniots for plagioclase and K-feldspar have been recognized to be insensitive to composition, and the quartz microcline Hugoniot (Ahrens et al. 1969b; Simakov et al. 1974) was used in the present calculation. The quartz Hugoniot was taken from the data of Wackerle (1962) and translated by Trunin et al. (1974). The muscovite Hugoniot, which has recently been determined (Sekine, Rubin & Ahrens 1991),

Table 3. Experimental results for granite.

<table>
<thead>
<tr>
<th>Shot #</th>
<th>Flyer/Driver</th>
<th>Impact Velocity (km/sec)</th>
<th>Initial Density (g/cm3)</th>
<th>Shock Velocity (km/sec)</th>
<th>Particle Velocity (km/sec)</th>
<th>Pressure (GPa)</th>
<th>Density (g/cm3)</th>
<th>Shock Velocity (km/sec)</th>
<th>Particle Velocity (km/sec)</th>
<th>Pressure (GPa)</th>
<th>Density (g/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VISAR Experiments</td>
<td>plastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>803</td>
<td>Al</td>
<td>1.21</td>
<td>±0.01</td>
<td>2.630</td>
<td>4.6</td>
<td>0.69</td>
<td>8.5</td>
<td>3.09</td>
<td>0.002</td>
<td>±0.02</td>
<td>±0.04</td>
</tr>
<tr>
<td>806</td>
<td>(3)</td>
<td>1.43</td>
<td>±0.01</td>
<td>2.619</td>
<td>4.88</td>
<td>0.78</td>
<td>9.9</td>
<td>3.11</td>
<td>0.002</td>
<td>±0.02</td>
<td>±0.04</td>
</tr>
<tr>
<td>803</td>
<td>Al</td>
<td>1.78</td>
<td>±0.01</td>
<td>2.628</td>
<td>4.88</td>
<td>1.03</td>
<td>13.2</td>
<td>3.333</td>
<td>0.002</td>
<td>±0.01</td>
<td>±0.03</td>
</tr>
<tr>
<td>832</td>
<td>Al</td>
<td>2.21</td>
<td>±0.01</td>
<td>2.633</td>
<td>5.87</td>
<td>0.575</td>
<td>8.9</td>
<td>2.919</td>
<td>0.01</td>
<td>±0.04</td>
<td>±0.102</td>
</tr>
<tr>
<td>827</td>
<td>Ta</td>
<td>2.465</td>
<td>±0.010</td>
<td>2.642</td>
<td>5.73</td>
<td>2.01</td>
<td>30.4</td>
<td>4.066</td>
<td>0.05</td>
<td>±0.01</td>
<td>±0.023</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240*</td>
<td>Al</td>
<td>4.54</td>
<td>±0.005</td>
<td>2.624</td>
<td>6.64</td>
<td>2.53</td>
<td>44.1</td>
<td>4.238</td>
<td>0.01</td>
<td>±0.03</td>
<td>±0.78</td>
</tr>
<tr>
<td>237*</td>
<td>Al</td>
<td>5.225</td>
<td>±0.003</td>
<td>2.619</td>
<td>6.78</td>
<td>2.96</td>
<td>52.6</td>
<td>4.652</td>
<td>0.01</td>
<td>±0.02</td>
<td>±0.14</td>
</tr>
<tr>
<td>229</td>
<td>Al</td>
<td>5.31</td>
<td>±0.05</td>
<td>2.638</td>
<td>6.92</td>
<td>2.97</td>
<td>54.1</td>
<td>4.608</td>
<td>0.01</td>
<td>±0.04</td>
<td>±0.91</td>
</tr>
<tr>
<td>236</td>
<td>Al</td>
<td>5.379</td>
<td>±0.003</td>
<td>2.620</td>
<td>7.21</td>
<td>2.99</td>
<td>56.6</td>
<td>4.479</td>
<td>0.01</td>
<td>±0.08</td>
<td>±1.11</td>
</tr>
<tr>
<td>230</td>
<td>Ta</td>
<td>4.09</td>
<td>±0.04</td>
<td>2.638</td>
<td>7.52</td>
<td>3.23</td>
<td>64.0</td>
<td>4.621</td>
<td>0.01</td>
<td>±0.05</td>
<td>±0.045</td>
</tr>
<tr>
<td>220</td>
<td>Ta</td>
<td>6.22</td>
<td>±0.06</td>
<td>2.625</td>
<td>9.89</td>
<td>4.77</td>
<td>124.0</td>
<td>5.075</td>
<td>0.005</td>
<td>±0.05</td>
<td>±0.10</td>
</tr>
</tbody>
</table>

* Release points not plotted in Fig. 8 for clarity.

to this model,

\[
C_i = a_0 + a_i \rho_0 + \sum_j a_j Z_j, \tag{1a}
\]

\[
S = b_0 + b_i \rho_0 + \sum_j b_j Z_j, \tag{1b}
\]

where ρ_0 is the initial density, Z_i is the weight percentage of component oxide i, and a_0, a_1, a_i, b_0, b_i, and b_j are constants. The constants reported by Telegin et al. (1980) are used in the present calculations. The calculations are restricted to the high-pressure phase region. The results shown in Fig. 2 (dotted curve) ($U_2 = 2.369 + 1.59U_1$, km s$^{-1}$) demonstrate a good approximation to the Hugoniot data in the high-pressure regime.

We also apply a mineral-mixture model (Al'tshuler & Sharipdzhanov 1971) to obtain a theoretical Hugoniot for the present weathered granite. In this model, the volume of constituent mineral i at pressure P and M_i is the mass fraction of mineral i. Using the Rankine–Hugoniot equations, U_i and U_j are computed from the resulting P–V relation. The granite is taken to be a mineral mixture consisting of the modal composition (Table 1). The Hugoniots for plagioclase and K-feldspar have been recognized to be insensitive to composition, and the quartz microcline Hugoniot (Ahrens et al. 1969b; Simakov et al. 1974) was used in the present calculation. The quartz Hugoniot was taken from the data of Wackerle (1962) and translated by Trunin et al. (1974). The muscovite Hugoniot, which has recently been determined (Sekine, Rubin & Ahrens 1991),
stress of 3.1 GPa from wave profile measurements on dry granite.

The same precursor velocity was used in the models for both dry and wet granite, indicating that elastic velocity is not significantly affected by water saturation at these pressures. The value of V_p of granite increases under H$_2$O-saturated conditions (Nur & Simmons 1989). It would seem that the presence of water in granite has a critical influence only in the relatively low-pressure regime ($P \leq 0.1$ GPa). It appears that the small amount of water that can be injected in the granite's pores has little effect on wave velocity in the range of the present experiments. This is consistent with other studies on wet, low-porosity rocks.

The precursor velocity used to fit the VISAR experiments is consistent with ultrasonic data and the inclined-mirror experiment. The equation of state used to fit the wave profiles is shown as the solid line in Fig. 2, and it agrees with the determinations from the elastic–plastic wave separations. The low-pressure-phase data lie slightly below the Westerly granite data of McQueen et al. (1967) and this may reflect compositional differences. For all experiments, unloading begins well before the time predicted by the wavecode models. This is due to the arrival of edge effects prior to unloading from the rear of the flyer.

The measured release states of the present granite are shown in Fig. 3, together with the data of Swegle (1990). The release of shocked granite from about 26–30 GPa Hugoniot pressures was found to occur along pressure-density paths characteristic of the high-pressure phase(s). At lower pressures, the final unloading states were generally close to the low-pressure-phase initial density. Swegle (1989) also observed that the unloading data of granite from 27 GPa demonstrated initial unloading characteristic of the high-pressure phase. Swegle’s (1990) data indicate that the reverse transition is not initiated immediately upon unloading. This behaviour can be seen at least up to the Hugoniot pressure of 54 GPa for granite (Swegle 1990). However, the release path observed from one datum at the Hugoniot pressure of 124 GPa indicates a shallower slope than the Hugoniot. Swegle (1989) provides a similar unloading profile for granite at 92 GPa.

DISCUSSION

The shock-wave data are used to obtain equation of state parameters K_{0m} (the zero-pressure adiabatic bulk modulus) and K'_{0m} (its first pressure derivative) from the third-order Eulerian finite-strain (Birch–Murnaghan) equation of state for granite. We use the approach of Ahrens & Jeanloz (1987) and Heinz & Jeanloz (1984) to analyse the Hugoniot data.

The Eulerian strain f is expressed as

$$f = \frac{1}{2} \left[\left(\frac{V_0}{V} \right)^{2/3} - 1 \right],$$

where V and V_0 are the Hugoniot and ambient volumes of the sample, respectively. The normalized pressure F_{1HS} is given by

$$F_{1HS} = F_{1HS} + \Delta F_u = K_{0m}(1 - 2\xi f_{1HS} + \cdots),$$

where

$$F_{1HS} = \frac{1}{2} \left[1 + \left(\frac{V_0}{V} \right)^{2/3} - 1 \right]/P_{1HS},$$

$$\Delta F_u = \frac{\rho_0 \gamma E_{0m}}{3(1 + 2\gamma \beta_{0m}/\gamma - 1)},$$

$$f_{1HS} = \frac{[1 + (2 - \gamma \beta_{0m}/\gamma)]}{1 + (2 - \gamma \beta_{0m}/\gamma)}$$

and

$$\xi = 3(4 - K'_{0m})/4,$$

where P_{1HS} is the Hugoniot pressure.

The parameters K_{0m}, f_{1HS}, and ΔF_u are obtained from the experimental data, and the parameters K_{0m} and K'_{0m} are obtained from a linear fit to eq. (4). γ is calculated according to the following equations:

$$\gamma = \gamma_0 \left(\frac{V}{V_0} \right)^{\nu_0},$$

and

$$\gamma_0 = \frac{a K_{0m}}{\rho_0 C_p}$$

where a is the volume coefficient of thermal expansion, C_p is the specific heat at constant pressure, and q is a free parameter. Errors in F_{1HS} and f_{1HS} are estimated by standard error propagation techniques using the expressions in Ahrens & Jeanloz (1987).

Low-pressure regime

For granite in the low-pressure regime ($P < 20$ GPa), $E_{1m} = 0$, $\rho_0 = 2.63$ g cm$^{-3}$, $\gamma_0 = 1.0 \pm 0.5$, and $q = 1.0 \pm 1.0$ were used in the present computation. These values cover reasonable ranges for γ_0 and q, and the resulting K_{0m} and K'_{0m} are not strongly sensitive to the values of γ_0 and q used. An unweighted linear least-squares fit to the experimental data of McQueen et al. (1967) below a shock pressure of 20 GPa yields $K_{0m} = 57$ GPa and $K'_{0m} = 1.8$. A zero-order fit ($K'_{0m} = 4$) of the experimental data yields $K_{0m} = 40$ GPa. Ultrasonic determinations of K_{0m} give 37 GPa, which is close to the value of K_{0m} of quartz, while the extrapolated value from the data of Birch (1961) is 53 GPa. The Hugoniot fit to the VISAR data yields $K_{0m} = 51$ GPa and $K'_{0m} = 1.4$.

The bulk moduli for end-member feldspars range between 67 and 106 GPa (Angel et al. 1988). The value of K_{0m} is 51–57 GPa for granite is consistent with a mixture of quartz and feldspars. However, some of the deformed Hugoniot points below 20 GPa may be mixed-phase states. The equations of state are summarized in Table 5.

High-pressure regime

Equation of state parameters are calculated for granite in the high-pressure regime ($P > 39$ GPa) in the same manner as for the low-pressure regime. The values of γ_0 and q are not well constrained, however. E_{1m} is estimated to be
Table 4. A comparison of equations of state for granites.

<table>
<thead>
<tr>
<th>No.</th>
<th>Co (km/s)</th>
<th>S</th>
<th>Initial Density (g/cm³)</th>
<th>Uₚ Range (km/s)</th>
<th>Vₛ (km/s)</th>
<th>Vₛ (km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.40</td>
<td>0.60</td>
<td>2.630</td>
<td>0-2.1</td>
<td>5.362-10</td>
<td>3.320-2</td>
</tr>
<tr>
<td>2</td>
<td>2.66</td>
<td>1.49</td>
<td></td>
<td>1.8-4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.52</td>
<td>1.50</td>
<td>2.67</td>
<td>2-4</td>
<td>5.64</td>
<td>3.53</td>
</tr>
<tr>
<td>3</td>
<td>2.10</td>
<td>1.63</td>
<td>2.62</td>
<td>2.1-4</td>
<td>5.33</td>
<td>3.28</td>
</tr>
<tr>
<td>4</td>
<td>2.59</td>
<td>1.51</td>
<td>2.62</td>
<td>1.8-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.22</td>
<td>1.63</td>
<td>2.68</td>
<td>3-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.435</td>
<td>1.525</td>
<td>2.60</td>
<td>2.16-5.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.75</td>
<td>1.28</td>
<td></td>
<td>2.60</td>
<td>5.10-8.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes. Granites nos. 1 to 4 correspond to the number in Table 1. Granite No. 5 is from Trunin et al. (1988).

The main differences between the model and data are in the elastic portion, where the data is significantly more dispersive than the model prediction.

There are significant differences in the compressive behaviour of dry and water-saturated granite. The dry experiments were fitted using a yield stress of 3.6 GPa and a relaxation time of 20 ns. The wet experiment, however, required a lower yield stress (2.7 GPa) and a longer relaxation time (35 ns). The lower compressive strength of the wet sample could be due to the presence of water along cracks, reducing the effective normal stress and therefore the frictional strength of the flaws, thus promoting brittle failure. Furthermore, the longer relaxation time of the water-saturated sample may reflect an increase in viscosity due to the presence of fluid. Swegle (1989) reported a yield

![Figure 4](image)
Then the final image matrix $D(f, t)$ of detectable signal energy is composed by

$$D(f, t) = \begin{cases} \log_2(2^M(f) + S(f) - 2^M(f)) & \text{if eq. (4) holds} \\ \log_2(2^M(f) - 2^M(f)) & \text{otherwise} \end{cases}$$

where everything below the threshold is blanked as 'non-significant' and will be marked by a symbolic minus sign "-". Taking signal and noise as uncorrelated, we could correct for the noise offset by subtracting the median of its energy. The whole calculation preserves the relative energy ratios within the seismogram as we demanded for the subsequent pattern adaptation. Related to $D(f, t)$, we also need the vector $N_p(f)$ which describes the log-noise variance in the actual data. It is defined by

$$N_p(f) = \log_2(2^M(f) + S(f) - 2^M(f)).$$

Finally $D(f, t)$ and $N_p(f)$ can be rounded to nearest integers. This will suppress any fine-grain amplitude differences $< \pm \sqrt{2}$ as we chose the log base of 2 for the energy in eq. (2). Only for the steps of correlation and display, the sonogram is equalized to an all-positive matrix by

$$D^*(f, t) = D(f, t) - [N_p(f) - 1] \quad \text{for} \quad D(f, t) \neq "-" $$

which performs similar to a pre-whitening filter in traditional detector theory.

Pattern definition

In PR, we require the explicit definition of desired signal patterns. Fortunately matrix $D(f, t)$ of any single seismic event can already be taken as pattern $P(f, t)$ because of the chosen technique of pattern adaptation. The only constraints are: (1) the selection of a sufficiently large event for a good S/N ratio and (2) the definition of an 'inverse area' of symbolic minus signs before the P onset. (Additionally, areas of weak signal energy can be excluded from the calculation by zeroing.) In the final calculation of pattern fit, the inverse area will result in a horizontal edge sharpening to significantly enhance the onset timing. However, even the most exact onset times of seismograph detection obviously carry the principal uncertainty of half a FFT window length [i.e. one sample of image matrix $D(f, t)$].

Pattern adaptation

As described by Fig. 3, adapting a given pattern to the actual S/N ratio is a two-step approach. The first step performs amplitude adjustment based on the median of some reference samples that should mark an area of stable energy. The adjustment is defined by

$$P^*(f, t) = P(f, t) - \frac{P_{ref} - D_{ref}}{\text{median}} \quad \text{for} \quad P(f, t) \neq "-"$$

$$N'_p(f) = N_p(f) - (P_{ref} - D_{ref})$$

for the pattern and its associated noise vector.

Once both matrices are in the same range of amplitudes, the second prerequisite for a comparison is to harmonize their noise levels. This is achieved by transposing the noise variance $N_p(f)$ of the data onto the pattern by

$$N'_p(f) = N_p(f).$$

Obviously, this will also affect the detectability of pattern energy. While the dominant features stay above the new noise threshold to remain valid, some weaker details of the PSD image get modified by the two masking criteria (note: eq. 10 is not applied to the inverse area before the P onset)

(1) if \[P(f, t) \neq 0 \quad \text{and} \quad P(f, t) < N_p(f) \] \quad $P^*(f, t) = "-"

(2) else if $P(f, t) = "-"$ and $D(f, t) < N'_p(f)$ \quad $P^*(f, t) = 0$

$$P^*(f, t) = P(f, t).$$

The first criterion tests if the down-scaled pattern energy can still be detected in the actual noise. If this condition fails, we demand the prediction of no energy for $P^*(f, t)$. The second condition looks for those (few) samples of actual energy in $D(f, t)$ that could fall below the inherent noise of $P(f, t)$ after being shifted in eq. (8). The significance of these samples is unknown in the subsequent recognition process. To ignore these we mark them in $P^*(f, t)$ by zero. Altogether, $P^*(f, t)$ represents that fraction of $P(f, t)$ that remains detectable in the actual ratio of signal amplitudes and noise conditions.

Pattern recognition

The calculation of the pattern fit 'fit(t)' is based on the pre-whitened matrices $D^*(f, t)$ of eq. (7) and $P^*(f, t)$ defined by

$$P^*(f, t) = P(f, t) - [N'_p(f) - 1].$$

Consequently, this is an evaluation of the whole image and not only of maximum amplitudes. Prior to this final matrix comparison, the areas of $D^*(f, t)$ and $P^*(f, t)$ that display no energy by our formal "-" must be set to actual values. In principle we are free to choose any value, but it's a good idea to demand $\text{fit}(t) = 0$ per frequency band if either $D^*(f, t)$ or $P^*(f, t)$ consists of random noise. According to this effect, we call these restrictions 'balance conditions'. So the symbolic minus signs in $D^*(f, t)$ are modified to

$$ms_{D}(f) = \frac{25\%}{100\% - 25\%} = \frac{1}{3}$$

where the percentage values represent the chosen fractiles in the detection threshold of eq. (4). The result gets independent of frequency because of our prior pre-whitening. Likewise the symbolic minus signs in $P^*(f, t)$ are transformed to

$$ms_{P}(f) = -\frac{\sum P^*(f, \tau)}{n_-(f)}$$

where $n_-(f)$ is the number of minus signs per frequency band; the sum over $P^*(f, t)$ must only be performed on positive values.

The comparison between pattern and data resembles a cross-correlation, i.e.

$$\text{fit}(t + t_0) = \frac{\sum_{\tau} D^*(f, t + \tau) P^*(f, \tau)}{0.5[\sum_{\tau} D^*(f, t + \tau)^2 + \sum_{\tau} P^*(f, \tau)^2]}.$$

The correlation starts at offset time t, but to achieve the true
Table 5. Summary of equation of state parameters of granite (Gra), quartz (Qz), and Feldspar (Fld) for the low-pressure regime (LP) and high-pressure regime (HP).

<table>
<thead>
<tr>
<th></th>
<th>Gra</th>
<th>Qz 2)</th>
<th>Fld 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LP</td>
<td>HP</td>
<td>LP</td>
</tr>
<tr>
<td>(\rho_0 (g/cm^3))</td>
<td>2.63</td>
<td>4.02</td>
<td>2.65</td>
</tr>
<tr>
<td>(K_{\text{os}} (GPa))</td>
<td>51-57</td>
<td>251</td>
<td>37.7</td>
</tr>
<tr>
<td>(K'_{\text{os}})</td>
<td>1.4-1.8</td>
<td>4.0</td>
<td>6.4</td>
</tr>
<tr>
<td>(E_G (kJ/g))</td>
<td>---</td>
<td>0.8</td>
<td>---</td>
</tr>
</tbody>
</table>

Ref. 1 2 3 2 4 5

Notes. 1 Obtained as a mixture of 50 per cent stishovite and 50 per cent high-pressure feldspar with the hollandite structure.
2 Quartz transforms to stishovite.
3 Feldspar transforms to the hollandite form.

References 1—present study, 2—Swegle (1990), 3—Lyzena et al. (1983) and Tan & Ahrens (1990), 4—Angel et al. (1988), and 5—Sekine & Ahrens (1992).

0.8 ± 0.5 kJ g⁻¹ based on the transition energies of quartz to stishovite, and of feldspars to the hollandite structures. Although the transition energy varies with feldspar composition, the stated error range for \(E_G\) covers the whole range of variation of feldspar composition. The zero-pressure density of the granite in the high-pressure regime is calculated to be 4.02 g cm⁻³ from stishovite and hollandite densities. The hollandite density varies also with the initial feldspar composition, and was approximated by the modal composition. We assumed that \(\gamma_0 = 1.0 \pm 0.5\) and \(q = 1.0 \pm 1.0\). A weighted least-squares fit to the data yields \(K_{\text{os}} = 325 \pm 50\) GPa and \(K'_{\text{os}} = 1.3 \pm 0.9\). If the pressure derivative of the bulk modulus is assumed to be 4, a bulk modulus of 251 ± 30 GPa is obtained. Fits to the data in the \(F_{\text{HS}}-f_{\text{SH}}\) plane are shown in Fig. 5. The data of shot numbers 222 and 240 were excluded from the analysis because of errors in \(F_{\text{HS}}\) that were 2 times greater than the remaining data. The high-pressure-phase parameters for granite are comparable to those obtained for quartz (Table 5), although there are differences in the assumed Grüneisen parameter and its volume dependence for the two materials. Swegle (1990) gave the same bulk modulus and pressure derivative for quartz and granite in both the low-pressure and high-pressure regimes. They are compared in Table 5. Recent analyses of Hugoniot data for various feldspars provide ranges of \(K_{\text{os}}\) and \(K'_{\text{os}}\) as well as the zero-pressure densities, based on shocked feldspars possessing the hollandite structure (Sekine & Ahrens 1992). The equation of state parameters for granite are between those of quartz and feldspars for both the low- and high-pressure regimes.

![Figure 5](http://gji.oxfordjournals.org/)

Figure 5. Shock-wave data for the high-pressure phases of granite displayed in terms of normalized pressure versus normalized strain. The symbols represent the data of this study and Marsh (1980) for \(P > 39\) GPa, with the exception of shot no. 222. The error bars reflect uncertainties in the density of the high-pressure phase, the Grüneisen parameter and its volume dependence, and the transition energy, but not the uncertainty of the individual pressure–density points. The parameters of two possible fits to the data are indicated.
Shock compression of granite

Release states

The Hugoniot and equation of state parameters for quartz, feldspars and granite are quite similar, as summarized in Table 5. The release adiabat states measured for shocked quartz (Podurets et al. 1976; Chhabildas & Miller 1985), feldspars (Ahrens et al. 1969b; Grady & Murri 1976) and granite (Swegle 1989, 1990) also show similar release paths, depending mainly upon the initial shock state. These release adiabats have been measured by independent methods: the impedance mismatch buffer method (Ahrens et al. 1969; Podurets et al. 1976), the manganin transducer record (Grady & Murri 1976) and the velocity interferometer VISAR method (Chhabildas & Miller 1985; Swegle 1989).

Because quartz has been studied widely under dynamic conditions and shows similar behaviour to granite, we begin our analysis with a detailed examination of the release behaviour of quartz. Fig. 6 shows the release adiabats measured for quartz. The release adiabats from shocked quartz in the mixed-phase regime are approximated by unloading paths in which the quantity of low- and high-pressure phases in the mixture is frozen at pressures down to about 8 GPa (Grady et al. 1974; Swegle 1989). At this point, the volumes expand to the initial volume with further decreasing pressure.

The release adiabats from the stishovite regime, however, seem to occur along paths leading to less dense zero-pressure material than the zero-pressure density of the high-pressure form (stishovite), especially when the release pressure reaches within the mixed-phase regime. It appears that a material with a specific volume of about 0.270 cm3 g$^{-1}$ is produced during the unloading process, and may then revert to a diaplectic glass on further pressure release to ambient pressure and temperature, as observed in the shock-recovery experiments on quartz. This apparent density, in fact, may be due to the formation of a diaplectic glass with six-fold coordinated silicon with oxygen. We set the post-shock quartz specific volume to be 0.44 cm3 g$^{-1}$, a density proposed by Stöffler & Hornemann (1972). Chhabildas & Miller (1985) suggest that material of this density might represent a high-density quartz liquid produced above the melting point during unloading.

Figure 7 displays calculations of release adiabats in the mixed-phase regime, based on the mixing of Hugoniot curves for the quartz regime and the stishovite regime, for a range of pressures. In this model, the mass fraction of stishovite is frozen in the mixed phase during the release state until the pressure drops down to a critical value represented by the relation P (GPa) = 32.2 - 85.5 V (cm3 g$^{-1}$) shown in Fig. 7.

The reverse transformation is likely to be thermally controlled. Huffman et al. (1993) have recently discussed kinetic effects in the shock response of quartz. The above equation is chosen to match both the release isentrope data and the post-shock densities measured by Stöffler & Hornemann (1972). Further release causes the formation of
diaplectic glass and the final volume of post-shock quartz is given by the relation \(V (\text{cm}^3 \text{g}^{-1}) = 0.063M + 0.377 \) at ambient conditions, where \(M \) is the mass fraction of stishovite at the Hugoniot state, as listed in Table 6. This model calculation is compared with the experimental data (Podurets et al. 1976; Chhabildas & Miller 1985; Swegle 1990). The calculated unloading curves in the mixed-phase region were used to obtain Birch–Murnaghan parameters for the release curves (Table 6). The zero-pressure densities were taken from the relative mass fraction of quartz \((\rho_0 = 2.65 \text{ g cm}^{-3}) \) and stishovite \((\rho_0 = 4.29 \text{ g cm}^{-3}) \). The bulk modulus increases with increasing stishovite fraction, whereas the pressure derivative of the bulk modulus ranges from 8 to 10. Ultrasonic values for quartz and stishovite are also listed in Table 6. Unloading from higher pressures in the stishovite regime leads to a lower apparent density of the high-pressure phase, as discussed above. This is consistent with initial transformation to stishovite followed by formation of glass at higher stresses (Kleeman & Ahrens 1973). For release paths from the stishovite Hugoniot regime at 71 and 108 GPa, the zero-pressure density of 3.7 g cm\(^{-3}\), \(\gamma_0 = 1.0 \) and \(q = 1.0 \) were taken to obtain the equation of state parameters. The fit yields \(K_{0s} = 65–69 \text{ GPa and } K_{0s} = 6–9 \).

As seen in Fig. 3, the release path of granite from 30 GPa also appears to behave in a similar manner to that proposed for quartz. Fig. 8 compares the calculated release paths of granite in the mixed-phase regime with the experimental data. The calculations are based on the mixing of the two Hugoniots for the low-pressure \((\rho_0 = 2.63 \text{ g cm}^{-3}) \) and high-pressure \((\rho_0 = 4.03 \text{ g cm}^{-3}) \) regimes and the frozen mass fraction of the Hugoniot state, down to a critical pressure. Below the critical pressure, given by \(P(\text{GPa}) = 29.1–77.2 \text{ V (cm}^3 \text{g}^{-1}) \), the release paths are represented by straight lines on which the formation of diaplectic glasses proceeds.

By applying the finite-strain formalism to parts of the release adiabats as above, we obtain \(K_{0s} \) and \(K_{0s} \) for granite. The results are listed in Table 7, together with the zero-pressure density of granite, the critical pressure and final density for the release paths, and the zero-pressure density of post-shock quartz. We assumed the same density

<table>
<thead>
<tr>
<th>Mass Fraction</th>
<th>Hugoniot State</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Release State</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.0)</td>
<td>(0.0)</td>
<td>36</td>
<td>219</td>
<td>2328</td>
<td>2517</td>
<td>2605</td>
</tr>
<tr>
<td>(0.9)</td>
<td>(0.1)</td>
<td>35.5</td>
<td>228</td>
<td>2238</td>
<td>2228</td>
<td>2218</td>
</tr>
<tr>
<td>(0.8)</td>
<td>(0.2)</td>
<td>35</td>
<td>223</td>
<td>2228</td>
<td>2228</td>
<td>2228</td>
</tr>
<tr>
<td>(0.7)</td>
<td>(0.3)</td>
<td>34.5</td>
<td>223</td>
<td>2228</td>
<td>2228</td>
<td>2228</td>
</tr>
<tr>
<td>(0.6)</td>
<td>(0.4)</td>
<td>34</td>
<td>223</td>
<td>2228</td>
<td>2228</td>
<td>2228</td>
</tr>
<tr>
<td>(0.5)</td>
<td>(0.5)</td>
<td>33.5</td>
<td>223</td>
<td>2228</td>
<td>2228</td>
<td>2228</td>
</tr>
<tr>
<td>(0.4)</td>
<td>(0.6)</td>
<td>33</td>
<td>223</td>
<td>2228</td>
<td>2228</td>
<td>2228</td>
</tr>
<tr>
<td>(0.3)</td>
<td>(0.7)</td>
<td>32.5</td>
<td>223</td>
<td>2228</td>
<td>2228</td>
<td>2228</td>
</tr>
<tr>
<td>(0.2)</td>
<td>(0.8)</td>
<td>32</td>
<td>223</td>
<td>2228</td>
<td>2228</td>
<td>2228</td>
</tr>
<tr>
<td>(0.1)</td>
<td>(0.9)</td>
<td>31</td>
<td>223</td>
<td>2228</td>
<td>2228</td>
<td>2228</td>
</tr>
<tr>
<td>(0.0)</td>
<td>(1.0)</td>
<td>30</td>
<td>223</td>
<td>2228</td>
<td>2228</td>
<td>2228</td>
</tr>
</tbody>
</table>

* Assumed values.

\(^1\) Sumino & Anderson (1984).

Table 6. Summary of equation of state parameters of model release adiabats for quartz.

![Figure 8. Comparison of pressure–volume relations for measured granite release paths with the model calculations. HP: high pressure; LP: low pressure; MP: mixed phase; DG: diaplectic glass.](http://gji.oxfordjournals.org/ Downloaded from)

of 2.27 g cm\(^{-3}\) as in quartz for the proposed diaplectic glass of granite (Stöffler & Hornemann 1972). The unloading paths below the critical pressure are associated with relatively large volume changes (Fig. 8). The critical pressure (and density) may vary with the pressure of the Hugoniot state (Chhabildas & Miller 1985). \(K_{0s} \) and \(K_{0s} \) along the release paths for granite are similar to quartz values. At higher pressure, the unloading behaviour is distinctly different and proceeds to a final density of
There appears to be no significant change in the unloading shock pressures and consequently higher shock temperatures have also been recognized (e.g. Stoffler 1972). The formation of shock-melted glasses, quartz, showing a deviation from the frozen high- and low-pressure-phase mixtures towards low density, well above the expected equilibrium boundary for the high-pressure phase (hollandite).

The conditions for formation of diaplectic glasses appear to be restricted to only part of the high-pressure phase present in the Hugoniot state, which reverts to a disordered diaplectic glass via solid-solid transition. Shock-melted glasses have been also recognized (e.g. Stoffler & Hornemann 1972). The formation of shock-melted glasses, characterized by closer relation of the physical properties to normal glasses quenched from melt, requires much higher shock pressures and consequently higher shock temperatures. The release adiabat for the shock-melt state must be quite different from the release adiabats discussed here. There appears to be no significant change in the unloading behaviour for quartz release paths observed up to the Hugoniot pressure of 108 GPa (Chhabildas & Miller 1985). This is consistent with the shock-temperature measurements of quartz that are required to support the presence of crystalline stishovite without melting up to a pressure of about 110 GPa (Lyzenga et al. 1983), although the shock equation of state for quartz at much higher pressures reveals some phase transformation (Trunin et al. 1970).

For anorthite glass, the adiabatic releases from Hugoniot pressures of up to 40 GPa are consistent with the frozen high- and low-pressure-phase mixture (Boslough, Ahrens & Mitchell 1986). The releases from shock pressures much higher than 90 GPa, however, showed a significant change of the release adiabate slope. It seems to be due to melting according to a proposed phase diagram for anorthite (Schmitt & Ahrens 1983). For the other feldspars, no significant change of the adiabatic release behaviour was observed, at least up to the Hugoniot pressure of 46 GPa (Ahrens et al. 1969b; Grady & Murri 1976). The results of investigations of post-shock samples reveal slightly lower pressure values for formation of shock-fused glasses, i.e. about 43 GPa for feldspars and 50 or 40 GPa for quartz (Stöffler & Hornemann 1972; Tattevin et al. 1990).

The pressure–volume unloading paths depicted in Figs 6–8 provide additional information regarding energies, and hence temperatures, achieved during the shock and subsequent release process. This offers a means to test further the inferred release paths by comparing shock and post-shock temperatures with available data and theoretical expectations. The specific energy due to compression is obtained from conservation of energy across the shock front:

\[E_{sh} = P_{sh}(V_0 - V)/2. \]

The Hugoniot energies for quartz and granite are listed in Tables 6 and 7 for points in the mixed-phase region corresponding to increasing fractions of frozen high-pressure material. Integration of the \(P-V-E \) relations in Figs 7 and 8 yields the total energy under the release isentrope, \(E_r \). These are also listed in Tables 6 and 7 for quartz and granite, respectively. Residual (post-shock) temperatures were calculated from

\[T_r = T_0 + (E_{sh} - E_r)/\bar{C}_v, \]

where \(\bar{C}_v \) is the average specific heat at constant volume over the temperature interval \(T_r - T_0 \). The resulting post-shock temperatures for quartz and granite are contained in Tables 6 and 7 and Fig. 9. For quartz, the maximum temperature achieved is 1673 K, which is less than the 1 atm melting temperature of SiO₂ (1996 K). The maximum temperature achieved in granite is similar (1713 K at 40 GPa). We therefore infer that at pressures between 15 and 40 GPa both quartz and granite remain solid upon isentropic unloading. As discussed above, Chhabildas & Miller (1985) infer that release from pressures above 50 GPa results in a high-density quartz liquid. The transition

<table>
<thead>
<tr>
<th>Mass fraction</th>
<th>Hugoniot State</th>
<th>Birch-Murnaghan relations for frozen release isentrope</th>
<th>Critical pressure (P_c(GPa))</th>
<th>Final density (\rho_f(g/cm^3))</th>
<th>Release State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 0.0</td>
<td>(P_H) (GPa) (V_H(cm^3/g)) (E_H(J/gm)) (T_H(K))</td>
<td>(B_0(GPa)) (B_0') (V_0(cm^3/g)) (E_0(J/gm)) (T_0(K))</td>
<td>(\rho_f(g/cm^3)) (\rho_0(g/cm^3))</td>
<td>(E_{sh}(J/gm))</td>
<td>(E_{r}(J/gm))</td>
</tr>
<tr>
<td>0.9 0.1</td>
<td>14.5 (.302) 556 615 2.72</td>
<td>31 10.3 2.4</td>
<td>2.59 395 492</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8 0.2</td>
<td>17 (.302) 765 763 2.83</td>
<td>44 7.3 3.5</td>
<td>2.55 497 587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7 0.3</td>
<td>20 (.302) 1011 955 2.93</td>
<td>45 8.1 5.0</td>
<td>2.51 622 697</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6 0.4</td>
<td>23.5 (.269) 1249 1152 3.05</td>
<td>55 7.7 5.6</td>
<td>2.48 725 811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5 0.5</td>
<td>24.5 (.260) 1470 1326 3.18</td>
<td>58 9.5 6.6</td>
<td>2.44 845 999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4 0.6</td>
<td>26.5 (.253) 1683 1545 3.32</td>
<td>73 9.4 7.4</td>
<td>2.40 937 1003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3 0.7</td>
<td>30 (.245) 2022 1886 3.47</td>
<td>90 9.8 8.1</td>
<td>2.37 1093 1186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2 0.8</td>
<td>35 (.237) 2501 2417 3.64</td>
<td>135 8.1 8.8</td>
<td>2.34 1206 1465</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1 0.9</td>
<td>40 (.230) 3004 2943 3.82</td>
<td>189 8.0 10.0</td>
<td>2.30 1400 1713</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0 1.0</td>
<td>4.02*</td>
<td>10*</td>
<td>2.27*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Assumed values.
energy associated with the transformation of the high-pressure component to diaplectic glass can be estimated using the quartz-to-fused-quartz transition energy (123 J g$^{-1}$) for the transforming high-pressure-phase fraction. The effect of including this term is to produce a slight change in the calculated post-shock (and shock) temperature.

Also shown in Fig. 9 are experimentally determined post-shock temperatures for quartz (Raikes & Ahrens 1979) and stishovite (Chhabildas & Miller 1985; Boslough 1988). The present results are in good agreement with the highest pressure quartz data, but are ~500 K colder than the stishovite data extrapolated to the top of the mixed-phase region (~40 GPa). The results of Chhabildas & Miller (1985), and possibly also of Boslough (1988), do not represent complete unloading and may therefore overestimate the residual temperature. The calculation of Wackerle (1962) based on the Mie–Grüneisen Equation predicts lower temperatures in the mixed-phase region and a P–T slope in the stishovite field that is much steeper than that suggested by the experiments.

The temperature decrease along the isentropic path from the shock state to complete unloading can be used to infer the Hugoniot temperature. Using the definition of the Grüneisen parameter, together with the assumption that γ/V is constant, results in the following:

$$T_H = T_r \exp \left[\frac{V_0}{V_H} (V_t - V_H) \right],$$

where the subscript 'H' refers to Hugoniot conditions, 0 to the initial state, and 'r' to the post-shock state. Hugoniot temperatures calculated in this manner are displayed in Tables 6 and 7 and Figs 10 and 11. The incorporation of the quartz–fused-quartz phase transition energy has only a small effect (Fig. 10). Temperatures in the mixed-phase region are found to increase much more rapidly with pressure than those in either the low-pressure phase or high-pressure phase. This is due to large increases in energy caused by the large volume change associated with the transformation. It is interesting to note that the calculated temperature for SiO$_2$ at the top of the mixed-phase region is very similar to the extrapolated value for stishovite at that pressure based on the measurements of Lyzenga et al. (1983). This contrasts with the calculation of Wackerle (1962), who used a different approach for calculating the temperatures and predicted a very shallow P–T slope in the mixed-phase region, but a much steeper slope than is observed in the stishovite region. Fig. 11 demonstrates that shock temperatures for quartz and granite are very similar in the mixed-phase region. The calculated temperature for granite at the top of the mixed-phase region is ~700 K higher than that calculated for the high-pressure phase at nearly the same pressure. This difference may reflect uncertainties in the properties of the high-pressure phase. Temperatures for the high-pressure phase were obtained using the approach of McQueen et al. (1970) and the classical limit of 3R (R = gas constant) for the specific heat. These results demonstrate that the present models for both quartz and granite are generally consistent from an energetic viewpoint, and produce temperatures in reasonable accord with expected behaviour.
Figure 10. Shock temperatures in SiO$_2$ as a function of shock pressure. The heavy solid line represents preferred values of shock temperature in the low-pressure, mixed-phase, and high-pressure regimes of SiO$_2$. The steep P-T slope calculated for the mixed-phase region in this study contrasts with the shallow slope calculated by Wackerle (1962). The data of Lyzenga et al. (1983) were obtained from pyrometer measurements. The present results agree well with the extrapolated trends from this data set.

Figure 11. Shock temperatures in granite as a function of shock pressure. Preferred values of the shock temperature of granite in the low-pressure and mixed-phase regions are shown by the heavy solid line. In the mixed-phase region, granite temperatures are similar to those in SiO$_2$. The temperature at the top of the mixed-phase region is \sim700 K higher than calculated values for the high-pressure phase of granite, assuming $\gamma_0 = 1$ and $C_v = 1.19$ J g$^{-1}$ K$^{-1}$.

CONCLUSIONS

New equation of state data for granite have been obtained and combined with the Westerly granite data of McQueen et al. (1967). The shock equation of state can be described by two linear relations, \(U_1 = 4.40 + 0.6U_p \) (km s\(^{-1}\)) for a range of \(U_p \) up to 2 km s\(^{-1}\), and \(U_2 = 2.66 + 1.49U_p \) for a range of \(U_p \) from 2 to 5 km s\(^{-1}\). These shock equations of state are comparable with other data previously determined for various granites. The third-order Birch–Murnaghan equation of state parameters are \(K_0 = 51–57 \) GPa and \(K_0' = 1.4–1.8 \) for the low-pressure regime \((\rho_0 = 2.63 \text{ g cm}^{-3}) \), and \(K_0 = 251 \pm 30 \) GPa for an assumed \(K_0 = 4 \) for the high-pressure regime \((\rho_0 = 4.02 \text{ g cm}^{-3}) \). These parameters are comparable to those of quartz and feldspar in the low-pressure regime, and those of stishovite and the hollandite form in the high-pressure regime.

The compressive wave structure of dry and water-saturated granite at 10–15 GPa can be described by a rate-dependent stress relaxation material model. There are significant differences in the loading wave structures of dry and water-saturated granite. The effect of water saturation is to decrease the yield strength by ~25 per cent and to increase the material relaxation time by ~75 per cent.

For the release adiabats from the mixed-phase regime, the mixed Hugoniot model is applied and compared with experimental data. In this model, the release adiabats are calculated for the high-pressure-phase and low-pressure-phase mixture, with the same mass fraction as at the Hugoniot state, to critical pressures given by \(P(\text{GPa}) = 29.1–77.2 V \) (cm\(^3\) g\(^{-1}\)). Further releases below the critical pressures are associated with large volume changes related to the formation of diaplectic glasses as quenched modifications of the high-pressure fractions.

Based on the measurements of partially released states of granite, as well as quartz shocked in the high-pressure regime \((P > 50 \text{ GPa}) \), it is proposed that the high-pressure phase relaxes isentropically to a metastable, intermediate phase characterized by dense, highly disordered material. This material is subsequently quenched to diaplectic glass. The process of diaplectic glass formation differs from that of shock-fused glass, which can result only from a much higher Hugoniot pressure. The release adiabat associated with the shock-fused glass formation must be distinguished from the release adiabat discussed in the present study. The inferred release curves from the mixed region for quartz yield Hugoniot temperatures that are considerably higher than those of Wackerle (1962), but are consistent with the data of Lyzena et al. (1983). Moreover, the post-shock temperatures predicted agree closely with the data of Raikes & Ahrens (1979) at low pressures and the data of Chhabildas & Miller (1985) and Boslough (1988) at higher pressures. These agreements lend further support to the release model developed here.

ACKNOWLEDGMENTS

We are grateful to Michael Long and Epaprodito Gelle for their assistance in maintaining the guns and preparing samples. The helpful comments proffered by S. Peyton are appreciated. John Beckett helped us to make granite glass for probe analysis. The research was supported under AFGL and Mission Research Corporation Contracts GL F19627-88-K-0034 and SC-0064-90-0002, respectively. Contribution number 5004, Division of Geological and Planetary Sciences.

REFERENCES

Kipp, J.D. & Lawrence, R.J., 1982. WONDY V—A one-dimensional finite-difference propagation code, Rep. SAND 81-0930, Sandia National Laboratories, Albuquerque, N.M.

