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THE EQUATION OF STATE OF Mg0.6Fe0.40 TO 200 GPa 
M. S. Vassiliou and Thomas J. Ahrens 

Seismological Laboratory 252-21, California Institute of Technology 
Pasadena, CA 91125, U.S.A. 

Abstrac,t. New Hugoniot data on polycrystalline 
(avg.porosity 6.9%) samples of the magnesiowustite 
Mgo.6Fe0.40 are presented, covering the pressure range 
up to 200 GPa. When our data are fit by a single 3rd 
order Eulerian Hugoniot with K 0 constrained to its 
ultrasonic value of •61.5 GPa, the required isentropic 
pressure derivative K 0' is 4.37 +/- 0.37. This value 
is significantly lower than the ultrasonic one of 
6.18; existing isothermal compression data, however, 
are in agreement with our value rather than the 
ultrasonic one. Our data are adequately explained 
without phase transitions. There is some marginal 
evidence for a possible phase transition around 120 
GPa. If such a transition indeed occurs it i• 
probably of Small volum• change compared to the 
transition observed in FeO; we place ans..extreme upper 
bound of 3% on the density change such a 
transformation could involve and still be consistent 

with the data. Contrary to earlier hypotheses, we 
believe that a phase transition in magnesiowustite is 
not a likely explanation of the seismic effects in the 
D' ' region of the lower mantle. The wustite 
transition may be a more complex phenomenon than 
initially supposed-- perhaps an effect of 
nonstoichiometry localized to the irOn-rich end of the 
solid solution series. 

i. Introduction 

Current thought concerning the composition of the 
Earth's lower mantle involves magnesiowustite aS a 
possible phase• in equilibrium with ferromagnesian 
perovskite (e.g., Yagi et al, 1979). The proportion 
of magnesiowustite in a simple model lower mantle 
could vary from zero for a pure pyroxene stoichiometry 
to A mole fraction of 1/2 for pure olivine. 

Jeanloz and Ahrens (1980) reported a major 
shock-induced phase transition in Fe0.940 at ~ 75 GPa. 
They speculated that a similar tranSformatiOn in MgO 
at pressures as high as 170 GPa could, given solid 
solution behavior, imply a transition in lower-mantle 
composition magnesiowustite, perhaps explaining in 
part the observed seismic anomalies in the D'' region. 
Such anomalies include a non-increasing velocity 
profile with depth and seismic wave Scattering, with 
possible heterogeneities (e.g. Cleary, 1974). 
R•cently, a seismic phase preceding ScS has been 
Observed at distances beyond 70 ø , indicating the 
presence of a discontinuity in the region (Lay and 
Helmberger, 1981). 

Since then, there has been cohsiderable 
discussion in the literature abodt the nature and 

effects of a possible phase transition in 
magnesiowustite. Navrotsky and Davies (1981) prefer 
nickel arsenide as a structure for the high pressure 
phase of FeO rather than the B2 structure favored by 
Jeanloz and Ahrens (1980). Jackson and Ringwood 
(1981) consider both a change to the NiAs structure 
and an electronic transition more likely than a B1 + 
B2 transformation. Va•Siliou and Ahrens (1981) have 
studied periclase under shock compression to 200 GPa, 
and found no phase transformation comparable to that 
observed in wustite. Thus a •irect examination of the 
equation of state of an intermediate composition 
magnesiowustite has become necessary. In this paper 
we present new shock wave data for the Hugoniot of 
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Mg0.6Fe0.40 to 200 GPa. This composition of 
magnesiowustite was chosen both because it is near the 
middle of the solid solution series and because 

partitioning calculations (Yagi et al, 1979; Watt and 
Ahrens, 1981) indicate that it might be close to the 
composition actually expected for magnesiowustite in 
the lower mantle. 

2. Experimental 

The samples of magnesiowustite used in this study 
are from a group of •amples prepared and studied 
ultrasonically by Bonczar and Graham (1981). As 
described in that paper, the samples were prepared by 
reacting MgO, Fe203, and Fe to obtain a powder which 
was then hot-pressed. Bonczar and Graham (1981) 
characterised the samples using both microprobe and 
wet chemical analyses; the former yielded a 
composition of Mg0.6Fe0.40 , and the latter revealed 
no appreciable non-stoichiometry. Our own microprobe 
analyses yielded an average composition of 
Mg0.6Fe0.40 , with a range from Mg0•57 to Mg0.63. The 
hot-pressed samples used here h•d an average bulk 
density of 4.257 g/cc, suggesting an average porosity 
of 6.9% by comparison with the X-ray density of 4.57 
g/cc. Porosity was on a scale of 10-50 microns, and 
the discrepancy between the X-ray density and the 
Archimedean densities (Table 1) shows that it was not 
all interconnected. 

Details of how the shock wave data are obtained 
and reduced will not be given here; a description can 
be found in Jeanloz and Ahrens (1980). AS in the 

study of Vassi!iou and Ahrens (1981), Crosstalk in the 
image- converter tube of the streak camera caused 
fuzziness in the arrivals, and was an important source 
of •r•or in the measurement of shock velocity in the 
light gas gun (LGG) shots. Also as in previous 
studies, projectile distortion at high velocities was 
a source of error (here, in shots LGG081 and LGG091). 
Shots LGG085 and LGG094, both made at high velocity 
using A1•2024 flyer and driver plates, yielded records 
with some spurious arrivals, which we believe 
represented small pieces of material spalling off the 
projectile. 

3. Results and Discussion 

The raw results are tabulated in Table 1., and 
upon correction for initial porosity (See e.g. 
Al'tshuler et al., 1965) are plotted in Figs. 1 and 
2. No data exist on the thermal expansion of our 
material, so we had td assume a value for the zero 
pressure Gruneisen parameter ¾0' We obtained a value 
of Y0 -- 1.5 to use in the correction of the data to 
crystal density by suitably averaging (McQueen, 1968) 
the available values of 1.32 for MgO and 1.63 for FeO 
(see Touloukian et al., 1966, for thermal expansion 
data on these materials). We assume d pY = constant. 

The ultrasonic data for Mg0.6Fe0.40 have a 
relatively large scatter. Bonczar and Graham (1981) 
obtained a bulk modulus K 0 of 161.5 +/- 8 GPa and a 
pressure derivative K 0' (isothermal) of 6.18 +/- 0.16 
for an aliquot from the same group whence our samples 
were derived. On an aliquot [rom another group of 
only slightly different composition (Mg0.585) , they 
obtained K 0 = 168.7 +/- 11.3 GPa, and did not report 
K0'. Jackson et al (1978) did not study any samples 
of our particular composition, but interpolation 
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Table I : Mgo.6Feo.40 Shock Wave Data 

Standard Errors Listed Underneath Measurements 

•XPER!MENTAL CONDITIONS HUGONIOT STATE RELEASE STATE 

Shot • Flyer/ Buffer Bulk Arch. Impact Shockwave Parttcle Pressure Density Shockwave Particle Pressure Density 
Driver Mater. Dens. Dens. Veloc. Ve!oc. Veloc. (GPa) (g/cc) Veloc. Veloc. (GPa) (g/cc) 
Mater. (4) (g/c½) (g/cc) (kin/s) (kin/s) (kin/s) (kin/s) (kin/s) 

486 W L 4.264 4.416 2.09 7.34 
0.003 0.004 0.01 0.07 

495 W L 4.256 4.413 2.39 7.70 
0.003 0.004 0.02 0.1 

LGC,094 • FQ 4.233 4.368 5.45 8.57 
0.004 0.005 0.03 0.32 

LGG085 • FQ 4.265 4.408 6.47 9.06 
0.004 0.005 0.02 0.3 

LOG087 Cu FQ 4.259 4.408 4.92 9.23 
0.004 0.005 0.01 0.12 

LGG098 Cu FQ 4.241 4.368 5.45 9.51 
0.004 0.004 0.04 0.19 

1.55 48.6 5.41 
0.008 0.4 0.02 
1.76 57.8 5.52 

0.016 0.8 0.03 
2.30 83.6 5.79 6.12 3.16 42.5 5.25 
0.04 1.7 0.12 0.3 0.19 4.6 0,3 
2.76 106.5 6.13 7.32 3.92 63.2 5.15 

0.04 1.9 0.13 0.3 0.19 5.6 0.4 
2.99 117.5 6.30 7.85 4.25 73.6 5.13 
0.01 1.I 0.05 O. 11 0.07 2.2 O. 15 
3.33 134.4 6.52 8.80 4.85 94.0 4.75 
0.02 1.9 0.09 O. 18 O. I 4.0 0.32 

LGG073 Ta FQ 4.274 4.416 5.34 10.19 3.62 157.5 6.62 9.30 5.16 105.8 5.07 
0.001 0.004 0.04 0.19 0.03 2.6 0.09 0.17 0.1 4.0 0.27 

LGC,081 Ta • 4.274 4.404 5.94 10.63 4.02 182.6 6.88 10.16 5.71 127.8 5.07 
0.003 0.005 0.01 0.17 0.02 2.1 0.08 0.16 0.I 4.3 0.27 

LGG091 Ta FQ 4.246 4.372 6.34 11.03 4.29 200.8 6.94 10.33 5.81 132.4 5.62 
0.001 0.005 0.01 0.17 0.02 2.3 0.09 0.16 0.1 4.3 0.21 

(4) L=Lexan, FQ=Fused Quartz 

between compositions they did study yields a value of 
roughly 168 GPa, which is within Bonczar and Graham's 
(1981) range. 

The shock data are not completely compatible with 
the ultrasonic results. We fit our data with a 

Hugoniot calculated from a Birch-Murnaghan principal 
isentrope, and hence parameterized by the isentropic 
values K0S and K0S' of the bulk modulus and its 
pressure derivative. The two parameter least-squares 

fit (Vassiliou and Ahrens, 1981) yields K0S = 196.0 
+/- 14.6 GPa, and K0s' = 3.44 +/- 0.25. The Hugoniot 
is represented by Curve 1 in Fig.2, with the highest 
and lowest density error bounds respectively 
represented by curves l(a) and l(b). These bounds are 
calculated by using extremal values of the parameters 

too large to be explained by the fact that the 
ultrasonic value is isothermal and our value is 
isentropic. We note that there is a similar 
discrepancy in the case of FeO. Bonczar and Graham 

obtain 19.07 +/- 0.25 for K0' , whereas the shock wave 
study of Jeanloz and Ahrens (1980) yields K 0' = 3.2 
+/- 0,3. wit h K 0 constrained to its ultrasonic value. 
For FeO, part of the explanation may lie in a possible 
pressure-temperature dependence (unknown at present) 
of the non-stoichiometry (Bonczar and Graham,1981). 
This explanation is not likely to apply to our case, 
however, as our magnesiowustite is stoichiometric. 
The static compression data of Rosenhauer et al (1976) 
for Mg0.6Fe0. 4 0 are more in agreement with our 
results than with the ultrasonic ones: when fit with 

within their error range. That K 0 and K 0' from shock a Birch equation, with K0'=4 , they yield a K 0 of 157 
waves are respectively higher and lower than the GPa. In other words, a fit to the isothermal 
corresponding Values from ultrasonics is in keeping compression data with a K 0 close to its ultrasonic 
with the trend observed in several materials by Ruoff value requires a significantly lower value of K 0' than 
and Chhabildas (1977, as cited by Davison and Graham, that measured ultrasonically-- as is the case with our 
1979). What is perhaps a more significant discrepancy data. We note that the uncertainties in the 
is that when K 0 is constrained to the Bonczar and ultrasonic K 0' may be larger than those quoted by 
Graham (1981) value of 161.5 GPa, the K 0' required by Bonczar and Graham (1981), as K 0' is a fairly 
our data is 4.37 +/- 0.37 (this constrained fit is difficult and indirect measurement; this could 
drawn as Curve 2 in Fig. 2), significantly lower than provide the explanation for the mismatch. 
the ultrasonic value of 6.18. The discrepancy is much Because of the apparent phase transition in FeO 
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Fig. I Sh•ck wave data f•r •0.6Feo.4 O, e•rrected f•r 
p•r•=ity •th •0 • 1.5, •Y • con=rant. A linear lea=t 
=quare= fit (•h•) •f the f•rm 6.73 +/- 0.16 •/=ec, = = 1.08 +/- 0.0•. 

and the possibility of a transition in MgO above 200 
GPa (Vassiliou and Ahrens, 1981; small volume 
transformations may also be possible below 200 GPa), 
we critically examine our data for evidence of a high 
pressure-high temperature phase transformation in 
Mg0.6Fe0.40. The error of estimate of K 0 from the 
shockwave data is rather large; such scatter in the 
data might lead one to suspect the possibility of a 
phase transition. Before making this interpretation, 
however, one should note that the err or in the 
ultrasonic determination is similarly large. 

There does appear to be a slight density shift 
around 120 GPa; it is difficult to say whether or not 
this is a real feature. Unfortunately, as noted in 
Section 2, the data which lie in this pressure region 
are among the least reliable. We are inclined to 
conclude that our data do not offer positive evidence 
of a phase transformation; we note in this connection 
that the release data shown in fig. 2 lie at a lower 
density than the Hugoniot, and hence do not display 
the anomalous behavior sometimes associated with 

mixed-phase regions (see, for example, the CaO data of 
Jeanloz and Ahrens, 1980). We will proceed, however, 
to place bounds on how large such a hypothetical 
transformation could be and still be consistent with 
the data. 
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Fig. 2 Porosity-corrected Hugoniot data for Mg0.6Fe0.40, 
with release data, in pressure-density space. Curve 1 is a 
two-parameter (K 0 and K0') least squares fit of a third order 
gulerian Hugoniot to the data. The fitted Hugoniot is 
calculated via a thermal correction from the principal 
isentrope, so that the modulus values are isentropic. Curves 
l(a) and l(b) are hounds to Curve 1, calculated by using 
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Fig. 4 Best fit K02 (rising Curves) and K02' (falling 
Curves) for a hypothetical high pressure phase for various 
choices of P02 (the hpp initial density). The assumed 
transition energies are 0.6 MJ/kg for one set of curves and 
0.3 MJ/kg for the other. 

extremal values of K 0 and K O' within their error ranges. 

Curve 2 is a fit to the data with• constrained to its parameters: K02 , K02' , ETR (the transition energy), ultrasonic value of 161.5 GPa. Oaryes (a) and 3(b) are and 002 (the hpp initial crystal density). This is 
respectively low and high pressure phase third order gulerian the case provided that a guess is made for y(p); we 
11ugoniots under the hypothesis of a phase transition. They 
are chosen to demonstrate the maximum magnitude of phase use Y0 = 1.5, and py = constant. Conceivably, a 
transition that could be consistent with the data. radically different y(p) for the hpp could affect the 

porosity correction in the hpp region enough to 
increase the visible density change associated with 

We note first that 120 GPa is a likely transition the hypothetical transition; such effects, however, 
pressure for this composition, assuming ideal solid are generally small, and in any case ¾(p) is unknown. 
solution behavior and a small volume transition in MgO Since even a two-parameter fit for K02 and K02' is not 
above 200 GPa. This can be seen by examining Fig. 3, well constrained by four data points, we make several 
which presents some examples of pressure-composition choices for P02 and for a given choice estimate ETR 
curves calculated under the assumption of ideality, from the product PTRAVTR, where we neglect an entropy 
according to the method described by Meijering and term likely to be small (McQueen et al, 1963). To 
Rooymans (1958). Of course, these are equilibrium estimate effectively the volume change AVTR of the 
diagrams, and one might not expect the implied transition, we need some knowledge of the hpp 
compositional segregation to occur under shock as Hugoniot, so some iteration is involved. If we fit a 
under static conditions• but such diagrams can still curve to the low pressure phase (lpp) assuming that 
give us a clue about expected transition pressures. this is represented by the lowest 4 data, we find that 

We consider the hypothesis that there is a phase it essentially coincides with Curve 1, and does not 
transition at ~ 120 GPa, and that the upper four suggest any phase transition. If we make the fit to 
points represent data for the high pressure phase the lpp including only the lowest 3 points, we obtain 
(hpp). In order to calculate the third order Eulerian Curve 3(a). We do not consider this a likely 
fit to the hpp, one must consider at least four representation, but choose it to maximise the 
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magnitude of the hypothetical phase transition and 
obtain an upper bound. The maximum ETR we estimate 
for the transition is 0.6 MJ/kg, corresponding to an 
upper bound density increase of roughly 3%. Fig. 4 
shows the best fit K02 and K02' for a variety of 
choices of P02' The various curves that can be drawn 
for the hpp using the parameters in Fig. 4 are 
essentially the same above the transition, and well 
represented by Curve 3(b); they can differ 
considerably, however, at lower pressures. The 
inferred zero pressure density increase for our 
transition differs depending on the assumed properties 
of the hpp. As can be seen from Fig. 4, high 
increases are inferred when K02 is high and K02' is 
low. 

As we have stated, we do not believe that our 
data provide sufficient evidence for a phase 
transition, although we cannot rule one out. The 
arguments we have made above suggest that if a 
transition indeed occurs, it is of relatively small 
volume change compared to the transition in wustite. 
We do not believe that phase transitions in (Mg,Fe)O 

Fig. 3 Pressure-Composition phase diagram calculations for are of direct importance to the lower mantle. Of 
the solid solution MgO-FeO assuming ideal behavior. These course, even a relatively small volume transition 
curves are for a temperature of 3000 øC, and transition could still explain some of the features of D'' pressures of 75 GPa and 250 GPa for FeO and MgO respectively. ' 
The solid lines assume a 4I density change for the depending on changes in the elastic moduli. If we are 
transitions in both endmembers; the dotted lines are for willing to accept the hypothesis of a phase transition 
density changes of 4% for FeO and 1% for MgO. in our data, we must recognize that there could be 
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