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Impact Cratering: 
The Effect of Crustal Strength and Planetary Gravity 

JOHN D. O'KEEFE AND THOMAS J. AHRENS 

Seismological Laboratory, California Institute of Technology, Pasadena, California 91125 

Upon impact of a meteorite with a planetary surface the resulting shock wave both 'processes' the ma- 
terial in the vicinity of the impact and sets a larger volume of material than was subjected to high pres- 
sure into motion. Most of the volume which is excavated by the impact leaves the crater after the shock 
wave has decayed. The kinetic energy which has been deposited in the planetary surface is converted into 
reversible and irreversible work, carried out against the planetary gravity field and against the strength of 
the impacted material, respectively. By using the results of compressible flow calculations prescribing the 
initial stages of the impact interaction (obtained with finite difference techniques) the final stages of cra- 
tering flow along the symmetry axis are described, using the incompressible flow formalism proposed by 
Maxwell. The fundamental assumption in this description is that the amplitude of the particle velocity 
field decreases with time as kinetic energy is converted into heat and gravitational potential energy. At a 
given time in a spherical coordinate system the radial velocity is proportional to R -z, where R is the 
radius (normalized by projectile velocity) and z is a constant shape factor for the duration of flow and a 
weak function of angle. The azimuthal velocity, as well as the streamlines, is prescribed by the in- 
compressibility condition. The final crater depth (for fixed strength Y) is found to be proportional to 
Ro[2(z + l)Uor2/g] l/(z+l), where Uor is the initial radial particle velocity at (projectile normalized) radius 
P,o, g is planetary gravity, and z (which varied from 2 to 3) is the shape factor. The final crater depth (for 
fixed gravity) is also found to be proportional to [PUor2/Yz] l/(z+•), where p and Y are planetary density 
and yield strength, respectively. By using a Mohr-Coulomb yield criterion the effect of varying strength 
on transient crater depth and on crater formation time in the gravity field of the moon is investigated for 
5-km/s impactors with radii in the 10- to 107-cm range. Comparison of crater formation time and maxi- 
mum transient crater depth as a function of gravity yields dependencies proportional to g-O.SS and g-O.•9, 
respectively, compared to g-O.61s and g-O. 165 observed by Gault and Wedekind for hypervelocity impact 
craters in the 16- to 26-cm-diameter range in a quartz sand (with Mohr-Coulomb type behavior) carried 
out over an effective gravity range of 72-980 cm/s 2. 

1. INTRODUCTION 

In order to obtain the relative ages of cratered surfaces 
formed on different terranes on a single planet [e.g., Neukum, 
1977], as well as to obtain meaningful interplanetary com- 
parisons [e.g., Gault et al., 1975; Neukum and Wise, 1976], the 
effect of planetary crustal strength and gravity on the dimen- 
sions of craters must be understood. Because the largest man- 
made impact craters (produced on the moon by empty rocket 
casings) are only some 40 m in diameter [Whitaker, 1972] and 
the largest nuclear explosions (formed in wet coral sand) are 
only 1.8 km in diameter [F'aile, 1961], the experimental data 
available are limited, and theoretical estimates must be used 
to understand crater populations. 

There have been a number of studies entailing the analyti- 
cal and numerical prediction of cratering phenomena and the 
scaling of laboratory experimental data to planetary cratering. 
In order to test theories [e.g., Chabai, 1965] of scaling of the 
sizes of explosive (and impact) craters in a variety of gravita- 
tional fields, centimeter scale explosion cratering experiments 
have been carried out under conditions both less than the 

earth's gravity field [Johnson et al., 1969; Gault and Wedekind, 
1977] and greater than the earth's gravity field [F'ictorov and 
Stepenov, 1960; Schmidt and Holsapple, 1980]. The effect of 
rock or soil strength on laboratory cratering experiments has 
been addressed by Moore et al. [1964], Gaffhey [1979], and 
Holsapple and Schmidt [1979], and on the basis of extensive 
numerical calculations the scaling of hypervelocity impact 
craters is discussed by Dienes and Walsh [1970]. In the latter 
paper the conditions are described for similitude of the hydro- 
dynamic flows induced by hypervelocity impacts in materials 
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at sizes and time scales for which gravity does not affect the 
flow. Theoretically based scaling laws for relating final crater 
dimensions to target and projectile densities and projectile ki- 
netic energy or momentum (or a combination of these), plan- 
etary gravity, sound speed, and material strength have been 
developed on the basis of laboratory and field data [e.g., 
Chabai, 1965; Gault, 1973; Gault et al., 1975; O'Keefe and Ah- 
rens, 1978]. 

In the present paper we examine how maximum transient 
crater depth is related to projectile energy for a range of plan- 
etary gravities and crustal strength conditions. Moreover, we 
examine how the scaling laws themselves depend on gravity 
and target strength. Although, in principle, such a study could 
be carried out by using only the finite difference numerical 
methods previously applied to meteorite impact cratering on 
the earth and the terrestrial planets [Bjork, 1961; O'Keefe and 
Ahrens, 1975, 1976, 1977a, b, 1978; Swift, 1977; Bryan et al., 
1978], this would be computationally uneconomical. The ap- 
proach taken is (1) to establish the validity for impact crater- 
ing of the Maxwell z model, which was previously applied t6 
explosive cratering by Maxwell [1973, 1977] and Maxwell and 
Seifert [1976], (2) to compute the partitioning of impact en- 
ergy into gravitational potential energy for large-scale crater- 
ing and the effect of weakening of planetary material via 
'shock processing,' and (3) to make a comparison of calcu- 
lated and laboratory crater excavation times and depths. The 
physical basis for the incompressible flow description of late 
stage cratering processes is described in detail in the next sec- 
tion. Specifically, we use the incompressible formalism to ex- 
amine the effects of planetary crustal strength and gravity on 
the moon and to compare calculational results with laboratory 
cratering experiments. 
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Fig. 1. Incompressible flow field cratering model. (a) Particle velocity vectors for R0 -- 1 m, a -- 10 m/s, and z -- 3 for 0 
= 0ø-110 ø. (b) Streamlines for incompressible flow for Ro = 1 m, a = 10 m/s, and z = 2. 

2. LATE STAGE CRATERING FLOW 

The z Model 

Bjork et aL [ 1967] first pointed out that the impact of a me- 
teorite with a solid half space, such as a planetary surface, sets 
a large region of the target into motion after the shock wave 
has 'processed' a portion of target (planetary material) in the 
immediate vicinity of the impact and that this large region is 
much greater in size than that which experienced peak dy- 
namic pressures. The decaying shock wave propagates away 
from the immediate region of impact and becomes 'detached' 
from the impactor. Thus a large low-stress region which was 
set into motion by the shock wave becomes involved in crater 
excavation. Once the initial impact-induced particle velocity 
flow in the target has been established and the stresses have 
decayed such that the kinetic energy per unit mass is much 
greater than recoverable strain energy, the size of the crater 
produced is solely controlled by conservation of energy for a 
fixed geometry, as was suggested in an early model of crater- 
ing by Charters and Summers [1959]. We assume in the in- 
compressible late stage flow z model that the kinetic energy of 
the mass of target material along a given flow streamline is 
equal to the irreversible work that is performed against the 
material due to its finite strength plus the work done against 
the planetary gravity field. Since the total kinetic energy im- 
parted to the impacted target region is bounded as a result of 
the initial shock and rarefaction wave interaction, the equality 
of initial kinetic energy along a streamline with the irrevers- 
ible work done against the material strength and the planetary 
gravity field limits the final crater dimensions. 

The key to utilizing the conservation of energy concept de- 
scribed qualitatively above is that although the shock-induced 
particle velocities in the flow field decrease in magnitude with 
time, the geometry of the streamlines remains nearly constant 
for the duration of the crater excavation process for a given 
explosion [Maxwell, 1973] and, as we will see in the next sec- 
tion, also for a given impact. The simple assumption made by 
Maxwell [1973] and demonstrated in section 3, which yields 
an approximate description of the late stage impact-induced 
flow, is that for the spherical geometry defined in Figure la 
the radial particle velocity Ur at a given time t is given by 

U r : dR/dt -- a(t)/R z (1) 

where R is the projectile-normalized radius, a(t) is a parame- 
ter which depends on the strength of the flow, and z is a con- 
stant for a given streamline which specifies the shape of the 
streamline. The validity of the latter statement can be demon- 
strated by considering the divergence of the flow (equal to 
zero on account of the incompressibility assumption) in two- 
dimensional spherical coordinates: 

0 = Sin O0(ReUr)/OR + RO(sin 0 uo)/00 (2) 

where 0 and uo are defined in Figure l a. Substituting (1) into 
(2) and integrating over the angular range 0-0 of the flow 

f0 fo (2 -- 2)Ur Sin 0 dO = d(sin 0 u0) (3) 

yields, for the azimuthal particle velocity, 

uo-- R dO/dt = sin 0 (z - 2)Ur/(I q- COS 0) (4) 

Again substituting dR/dt for Ur in (4) and integrating from 0o 
to 0 and Ro to R, the trajectory of a streamline (Figure lb) is 
given by 

(a/ao) (•-2) = (1 - cos •)/(1 - cos 00) (5) 

As is shown in Figure la, R0 and 0o refer to a point on a refer- 
ence surface which is taken to be on the boundary of the cra- 
ter transient cavity at a given reference time. The time depen- 
dence of the particle radial position can be obtained by 
integrating (1) to yield 

•0 t R(t) •+'- Ro(to) :+'= (z + 1) a(t) dt -- (z + (6) 

where (a) is the mean value. 

b. Transient and Final Cavity 

If the crater depth is denoted by Rc, it follows from (6) that 

ac(t) • [(z + 1)(a)t] •/(•+•) (7) 

for Ro >> Re. The final crater depth, and hence total crater ex- 
cavation time, is specified by total energy consideration, for 
example, (49). Equations (6) and (7) yield a general expression 
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for the radial position of a particle R(t) in terms of its initial 
radial position and the current transient crater depth: 

R(t) • [Ro(to) z+' + Rc(t)z+'] '/•+'• (8) 

which may be expressed as [Maxwell, 1973] 

In [R(O/Ro] • -In [1 - (Rc/Ro)•:+'•]/(z + 1) (9) 

c. Volume Integrals 

In order to compute (1) the loss in kinetic energy as a result 
of energy dissipation due to finite strength and (2) work done 
against the gravitational field (as is described in section 3) we 
require an expression for a volume element along a stream 
tube. A stream tube of initial area Ao at reference radius Ro 
with velocity Uo is shown with an area A at a radius R in Fig- 
ure 2. The incompressible assumption implies that 

Au ---- AoUo (10) 

and 

U '• (Ur 2 '•' U02) 1/2 (11) 

which from (1) and (4) is given as 

u = a {1 + [sin O(z - 2)/(1 + cos 0)]:} '/:ZlR: (12) 

Denoting values of A, u, R, and 0 at the reference surface with 
the subscript zero, and substituting (l l) and (12) into (10) 
yields 

A = Ao(R/Ro) • {1 + [sin Oo(z - 2)/(1 + cos 0o)]:} 

{1 + [sin O(z - 2)/(1 + cos 0)]:} '/: (13) 

since a volume element along a streamline is given by 

dV = A dS (14) 

where dS is the differential along the streamline given by 

dS -- dR/cos • = u dR/ur (15) 

and • is defined in Figure 2. 
Substituting (12) and (13) into (15) and this expression into 

(14) yields, for the volume element along a streamline, 

dV-- Ao(R/Ro) z {1 + [sin Oo(z + 2)/(1 + cos 0o)]:} '/: dR 

(16) 

d. Strain Energy 

Whereas the decrease in kinetic energy and gain in gravita= 
tional energy for a volume element may be simply expressed, 
the strain energy rate must be given in terms of the principal 

Tnitial 

AO-• C;avity 

Fig. 2. Relation of surface element A t• line element dS and stream- 
lines. 

R0 

Fig. 3. Radius versus time diagram showing the trajectory of a 
general point along a radius R, the crater depth Ro and the elastic de- 
formational boundary versus time. 

radial (dErldt), angular (dEo/dt), and azimuthal (d•ddt) strain 
rates [Batchelor, 1967, p. 601]: 

der/dt = OUr/OR = -z(dR/dt)/R = -az/R •+• (17) 

deo/dt = (Ouo/OO)/R + ur/R = Ur[1 + (Z -- 2)/(1 + COS O)]/R 

(18) 

•r-- --Z dR/R = -z In (R/Ro) (23) 

yields, upon substitution from (9), 

Er • Z In [1 - (Rc/Ro)•Z+')]/(z + 1) (24) 

which upon substitution into (22) yields 

-r(z + 1)/(3/•z) • In [1 - (Rc/Ro)•:+'•l (25) 

which specifies the radius to the elastic behavior surfa• • 
te•s of the radius to the Mterface between the yielded and 
not yet yielded material versus crater depth. 

SMce, • general, I•/• << l, (25) may • s•p•ed to 

(Rc/R*)•:+'• • Y(z + 1)/3• (26) 

d%/dt = (Ou,/O4•)/(R sin O) + ur/R + Uo cot O/R 

= a[1 + (z + 2) cos 0/(1 + cos O)]/R <•+'• (19) 

where from cylindrical symmetry, 0u,/0•b = 0. 
We note, following Maxwell [1973], that for the on-axis 

strain rate (0 = 0), 

deo/dt-- d%/dt-- -(d•r/dt)/2 (20) 

and the principal stress difference between the radial 'stress p, 
and azimuthal stress Po is less than or equal to the Tresea yield 
stress Y in the spherical approximation: 

-- pol -< r (21) 

From (20) and Hooke's law it follows that 

2•[•r- (--•r/2)l --< --Y 

or 

3t•rIR_<R* ---- -- Y (22) 

at the position where R _< R*. Here Er is the maximum elastic 
radial strain and R* is the point beneath the crater where 
transition occurs between material which has and has not 

yielded (Figure 3). 
Denoting erlR_<n- from (17) as 
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For an elastic incompressible medium the (shear) strain en- 
ergy per unit volume is given by 

r•e -- t• (Er &r/dt + •o &ddt + % &,/dt) dt (27) 

ne -- t• {(-z) In (R/Ro)(-z) d(in R)/dt + 2[(z/2) 

ß In (R/Ro)(Z/2) d In (R/Ro)/dt} dt (28) 

•e = 1.5# •2 In2 (R/Ro) (29) 

Using (9) gives 

•e = 1.5].•[Z/(Z "[' 1)] 2 In2 [1 -- (ac/Ro) (z+!)] (30) 

or using (22) and (23) in (29) yields 

ne = y2/6•-• (31) 

In the case of material which has yielded, the energy density 
deposited by work carried out on the medium is given by the 
sum of the elastic work plus the plastic work. The latter is 
given by 

ft, t %-- -Y erdt (32) 

where t' is the time required for the stress at a depth R* to ex- 
ceed the material yield strength -Y. Substituting (23) into 
(32) yields 

n•-- Yz tn (R/R*) = Yz[tn (Ro/R*) + tn (R/Ro)] (33) 

Inverting the argument of the first term in (33) and sub- 
stituting (9) for the second term yields 

n•-= -Yz tn (R*/Ro) - Yz tn [• - (Rc/•){•+!q/(z + •) 
(34) 

Using (23) and then (22) to substitute in the first term of (34) 
yields 

n•-- YV3• - Yz tn [• - (Rc/R){•+!q/(z + •) (35) 

In the elastic-plastic deformation region the total strain en- 
ergy is given by 

• = 7½ "• •d (36) 

e. Energy Integrals 

Some simple equations for final crater depth versus plan- 
etary gravity and (constant) strength in terms of initial crater 
parameters may be obtained by considering integrals of the 
form 

Ed = •ld dV (38) 
c 

where the volume element for the axial stream tube from (16) 
for 19 -- 0 is 

dV = Ao(R/Ro) • dR (39) 

Substituting (30) and (39) into (37) yields 

Ee • 1.5p, Ao[z/(z + 1)]2/Ro z/R.øø1I!2 [1 - (Rc/Ro)(Z+!)]R z dR 
(40) 

which may be approximated by 

Ee -• 1.5pAo[Z/(Z + 1)]2Rc2(Z+!)/Ro z . R -{•+2• dR 
(41) 

Integrating (41) and using the approximation of (26) yields 

Ee • 0.5 Yz•oRc(Z+!)/[(z -{" 1):Roq (42) 
A more complete expression for the energy • the axial strem 
tube of an elastic-plastic target may • obta•ed by sub- 
stitut•g •to the sum of •tegrals of the forms of (37) and (38) 
us•g (31) and (35). This yields 

Et. = Ee + Ea • •Ao/[2•q dR' 
• R c 

+ r•a•c'•+"/[•o•(• + •)1 [•/• (43) 
• R c 

where the second tern h (35) has been s•p•ed by the ap- 
prox•ation of (26). Ushg (26) to s•pfify the results of both 
htegrals h (43) yields 

E, • •oYR?+!V(z + •)Rd {•.Sz - Y/2• 

+ z • [3•/Y(z + •)]/(z + •)} (•) 

The gravRational potential energy E s •volved h excavathg 
the axial stream tu• of area Ao h a planeta• surface of den- 
sity p is 

gg '• •/•W gR z+! dR (45) 

or, if g is assumed to be nearly independent of R, 

E s = AWgRc(Z+2)/(z q- 2) (46) 

Equations (42) and (46) were also given by Maxwell [1973]. 
Finally, the initial kinetic energy in the axial stream tube at t 
-- to is given, using (1), by 

E•e = [Aop/2] fn•[a(to)/R•]2R• dR = -Aopot2(to)Ro{!-•'/(2z - 2) 
(47) 

In order to observe the effect of varying Ro, g, and Y on the 
maximum transient depth crater it is useful to substitute the 
value of the initial particle velocity Uor in (47) to yield 

Etcœ = --pUor2Ro(Z+l)/(2Z- 2) (48) 

Equating the initial kinetic energy in the axial tube to the 
strain energy generated by producing the crater, the latter, ei- 
ther specified by (42) or (44) plus the gravitational energy of 
excavation of the axial tube, yields, for the final to initial cra- 
ter depth ratio, 

Rc/Ro -• (OUor2)!/(z+!)/ {2(z + 1)[pg/(z + 1) + 0.5 Yz/Roq} !/(z+l) 
(49) 

If Y = 0, we obtain 

Rc/Ro • [2(z + 1)Uor2/g]!/(z+!)/2(Z + 1) (50) 

whereas when g-- 0, 

Rc = (2pUor2/Y•)'/(z+')/2(• + 1) (51a) 

Using the results of section 3, in which values of z between 2 
and 3 are obtained for the centerline streamline, (50) and 



O'KEEFE AND AHRENS: CRATERING, STRENGTH, AND GRAVITY 

(5 la) are useful to predict the effect on maximum excavation 
depth of changing planetary gravity and strength for differ- 
ently shaped cratering flows. Maxwell [1977] shows that for 
craters for which z -- const, for the entire incompressible flow 
regime, 

Rc oc g-i/(2z+O (5lb) 

We demonstrate in Figure 6, and more recently, Austin etal. 
[1980] have also shown, that for impact-induced flows, z in- 
creases from a value between 2 and 3 along the centerline of 
the flow to values of •3.5-4 near 0 -- 90 ø. 

f. Variable YieM Strength 

In (31) and (32) we have treated - Y as a constant in the in- 
tegration over time. Whereas on a laboratory scale such an as- 
sumption may be adequate only if the coefficient of internal 
friction is zero, on a planetary scale, if it is assumed that crus- 
tal strength increases with overburden pressure or mean prin- 
cipal stress as 

I Y] = Y, + a• (52) 

where • is mean principal stress or pressure P and I Y] is al- 
lowed to increase until a maximum value Y3 is achieved (the 
von Mises limit), a more complicated model should be consid- 
ered. In addition to this static contribution to the pressure, al- 
though the late stage flow is incompressible, the vorticity of 
the flow gives rise to a dynamic pressure which will increase 
the effective pressure (D. E. Maxwell, private communication, 
1979). In order to describe the dynamic pressure P along an 
axial stream tube we consider one-dimensional flow along R 
with variable area ,4. Conservation of momentum and mass is 

then 

dur/dt --- OUr/Or + Ur OUr/OR ---- -(0Or/OR)/p 

hence 

where 

A OUr/OR + u, OA/OR = 0 

(53) 

(54) 

OUr/OR ---- -ud (55) 

f -- (O,4/OR)/,4 (56) 

Operating on (53) with O/OR yields 

02u,/OR Ot + u,(O2u,/OR 2) + (Ou,/OR) 2 -- -(02o,/dR2)/p (57) 

which, using (55), may be written as 

-f(du/dO 4- u2(f 2 - Of/OR) -- -(020,/OR2)/p (58) 

Substituting for du/dt from (53) yields 

(00r/og)f 4- 020r/OR 2 •-'•'-- pUr2q t-- f2) (59) 

where f' -- Of/OR. 
From (13), for 0 -- 0 we infer that 

where 

then 

,4 = ,4o'R z (60) 

Ao' --- Ao/Rd (6 l) 

f --- z/R (62) 

f' --- -z/R 2 (63) 

Substituting (62) and (63) with (59) yields 

020,/OR 2 + (00,/OR)g/R = -p[a(t)]2z(z + 1)/R (2z+2) (64) 

Assuming a general solution of (64) of the form 

o,-- [a(t)12•(R) (65) 

yields upon substitution 

n" + z•'/R = -pz(z + 1)/o, 2•+2 (66) 

Assuming a form for f] such that 

• •' GR m (67) 

yields, upon substitution and equating, exponents and coeffi- 
cients of R 

rn -- -2z (68) 

G -- -p/2 (69) 

respectively. 
The homogeneous form of (66), 

•t"+ z•t'/R -- 0 (70) 

has a solution of the form 

ft - A•R (•-• + A2 (71) 

Adding the solutions of the particular and homogeneous 
equation and taking into account (65) yields 

Or = [Ai R(l-z) 4- ,42- pR-2•/2l[a(t)] 2 (72) 

Applying the boundary conditions that at R -, oo, Or ---- O, and 
at R = Re, Or ---- 0 yields 

TABLE 1. Radial Stresses o, Derived From Velocity Gradients, 
Lunar Gravity, and Vorticity for z Model Flow 

Velocity Lithostatic Vorticity 
Radius,* Pressure, Stress, Stress, 

cm Mbar Mbar Mbar 

9.19• 0 0 0 
28 8.1 x 10 -4 1.2 x 10 -8 1.5 x 10 -5 
66 3.4 x 10 -• 2.5 x 10 -8 4.4 x 10 -5 

142 1.02 x 10 -4 4.3 x 10 -8 2.0 x 10 -8 
180 2.7 x 10 -5 5.5 x 10 -8 4.9 X 10 -9 

*From the lunar surface (2.94 g/cm3), Y• = Y3 = 10-7 Mbar im- 
pacted by a 10-cm-diameter projectile. 

-•The radius of the inner boundary at t -- 0 was 9 cm. After 2.57 
of flow the boundary moved 0.19 cm downward. 

,42 = 0 (73) 

,4, = o/[2R?+'•I (74) 

respectively; thus the final solution of (64) is 

Or = [a(t)] 2 {R('-')/R½ ('+') - R -2z} /2 (75) 

In calculating the pressure from the increased dynamic radial 
stress to specify the yield strength along the axis stream tube 
according to (52) the pressure calculated from (75) must be 
added to the lithostatic pressure. 

In the initial stages of incompressible flow, when the veloc- 
ity gradient is high, Or as calculated from (75) dominates the 
principal stresses. As is demonstrated in Table 1, O r varied 
from 1 to 10 n times either the gravitationally induced stress or 
that produced by the vorticity of the flow. 
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Fig. 4. Strength models used in incompressible flow calculations. 
(a) Mohr-Coulomb model; Y! represents cohesive strength, and Y3 
represents maximum or von Mises strength. (b) Shock-induced 
strength degradation model described by (76). 

3. MATERIAL STRENGTH MODELS 

The general material strength model, used in this study, is a 
Mohr-Coulomb type with avon Mises limit, as already dis- 
cussed in relation to (52). Referring to Figure 4a, the material 
under zero mean stress has a cohesion Y,, which increases lin- 
early with pressure as given by (51a), where a, the coefficient 
of internal friction, is a material constant. The value of the 
yield stress is limited to values less than or equal to the von 
Mises limit' YA. 

A number of researchers, including Knowles and Brode 
[ 1977], Orphal [ 1977], and Swift [ 1977], have proposed that the 
passage of the initial shock wave through rock, preceding cra- 
ter excavation, weakens the rock. Swift [1977] carried out a se- 
ries of explosive excavation calculations with a shock-induced 
degradation of the material strength model. 

The model used for shock degradation of material strength 
is shown in Figure 4b. Referring to Figure 4b, if the peak 
shock stress is less than a minimum stress for failure, PL, then 
there is no change. If the peak stress is greater than PL, then 
the cohesion is given by 

Y,' = (Y, - y,)(p,_.lp), + (76) 

where Y• is a lower limit on the shock alteration of the cohe- 
sion. 

4. RELATING INCOMPRESSIBLE FLOW (z) MODELS 
TO COMPRESSIBLE FLOW CALCULATIONS 

As was discussed in section 2e, the incompressible (z) model 
requires initial values for the parameters a(to) and z at Ro(to). 
These have been obtained from compressible flow calcu- 
lations but could, in principle, also be derived from experi- 

TABLE 3. Material Strength Model Used in Compressible Flow 
Calculations 

Equation Condition 

Y= (.4 4- B# 4- C#2)(1 - E/Era) E _< Em 
Y=0 E>Em 

Parameter Value 

A, kbar 2.69 
B, kbar 33.8 
C, kbar -901.8 
Era, 10 !ø ergs/g 1.70 

A, B, and C are from O'Keefe and Ahrens [1976]. Em is the internal 
energy for incipient melting under standard conditions, and E is inter- 
nal energy. 

mental measurements. We have previously computed the flow 
fields due to the impact of anorthosite and iron projectiles on 
an anorthosite half space for impact velocities ranging from 5 
to 45 km/s [O'Keefe and Ahrens, 1977b]. The material strength 
model was based on Hugoniot elastic limit measurements by 
Ahrens et al. [1973] and is representative of strong rocks. In 
addition to these finite strength calculations we have, by using 
the formalism described by O'Keefe and Ahrens [1977b] and 
Ahrens and O'Keefe [1977], computed the flow fields for 
anorthosite projectties impacting an anorthosite half space at 
velocities from 5 to 45 km/s under the assumption of zero tar- 
get and projectfie strength. The equation of state and material 
strength parameters used are listed in Tables 2 and 3. In Fig- 
ure 5 we examine both the zero and the nonzero strength 5- 
km/s impact of anorthosite upon anorthosite to determine the 
applicability of the incompressible flow equations outlined in 
section 2. 

The applicability of (1) was determined by plotting the 
radial velocity field averaged over a given angular increment 
at various times in the crater evolution for the 5-km/s case. 
Referring to Figure 6, we see that the velocity profile behind 
the subkilobar shock is approximately satisfied by (1). Values 
shown for the parameters a and z were obtained by fitting the 
flow region behind the shock wave. Since the shock strength is 
expected to decrease as 8 increases, the average value of a de- 
creases with increasing angular coverage. The value of z near 
the axis and averaged over 0ø-10 ø is 2.1 +_ 0.2, and the value 
averaged over the whole flow field is 3.0 + 0.2 (see also Austin 
et al. [1980]). This latter value is approximately equal to the 
value z = 2.7 found by Maxwell and Seifert [1976] for calcu- 
lations of cratering flow from buffed nuclear explosions. 
Moreover, from the work of Oberbeck [1971] it has been 
shown that the flow fields from shallow buffed explosive simu- 
late those found in impact events; thus general agreement 
would be expected. 

The results of the calculations of the evolution of the crater 

radius are shown in Figure 5. At early times, in the shock 
wave-dominated regime the crater growth rate is identical for 
the zero and nonzero strength cases. Thus the transfer of the 

TABLE 2. Equation of State Parameters Used in Compressible Flow Calculations 

Density, A, B, Eo, 
g/cm 3 b Mbar Mbar 1012 ergs/g 

Gabbroic anorthosite 2.936 0.145 0.705 0.751 4.89 

(low-pressure phase) 
Gabbroic anorthosite 3.965 0.128 2.357 1.258 18.0 

(high-pressure phase) 

The parameters are from the Tillotson equation of state [Ahrens and O'Keefe, 1977]. 
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projectile kinetic energy into the initial target velocity field is 
insensitive to material strength. At later times the solutions di- 
verge and enter a regime in which the growth rate is approxi- 
mately constant. Maxwell and Selferr [1976] found that for ex- 
plosion cratering in porous and nonporous materials the 
velocity and stress fields behind the initial shock wave were 
the same. The crater growth rate is not strongly dependent 
upon strength; however, the duration of this regime is mate- 
rial strength dependent. In the case of strong materials the du- 
ration of this regime is short and is dominated by plastic work. 
In contrast, for weak materials the duration is long and is ter- 
mMated by gravitational work. It is the latter, or coasting, re- 
gime that results in very long computer run times for com- 
pressible flow calculations for low-strength geologic materials. 
The compressible flow code solutions were not carried out to 
the final crater depth because of this constraint. One of the 
major advantages of the z model is the efficiency achieved in 
calculations in the late time regime. The variable yield z 
model given by (52) and (75) was used to compute the crater 
depth evolution under the assumption of strength values cor- 
responding to the detailed code calculations (see Table 3). 
The effect of reducing the cohesive strength was to increase 
the crater depth by more than a factor of 4 and the crater for- 
mation time by more than 2 orders of magnitude. 

5. PARTITIONING OF ENERGY 

Using the results of a compressible flow calculation of the 
impact of a 5-km/s anorthosite sphere into an anorthosite half 
space depicted in Figures 5 and 6, the partitioning of energy 
in the axial stream tube was computed by using the values of 
a(to) and z obtained for the 0 = 0 ø- 10 ø sector. A shock degra- 
dation model for material strength was not assumed in these 
calculations. The z model parameters used are summarized in 
Table 4. There are several possible forms that the impacting 
energy may take. The partitioning of energy for impact at var- 
ious scales (assuming 10- to (2 x 107)-cm diameter projectiles) 
was studied by calculating the total plastic work (equation 
(35)), elastic energy (equation (31)), and gravitational poten- 
tial energy (equation (46)) in the axial flow tube for the grav- 
ity field of the moon. For each case studied, approximately 
102 time steps with several iterations per time step were car- 
ried out, using the above referenced integrals, to reduce all the 
initial kinetic energy in the flow tube to elastic, deformational, 

I I I 
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Fig. 5. Crater depth versus time calculated by using compressible 
flow calculation and linked incompressible calculations (z code) for 
the case of zero strength and various Mohr-Coulomb strength crusts 
with lunar surface gravity. Asterisks indicate final crater depths. Units 
of yield strength are megabars. 
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Fig. 6. Calculated radial pa•iclc vcl•ity distribution for 5-•/s 
•pact of ano•bositc imo ano•bositc, 60 •s after the impact of a 10- 
cm-diamctcr ano•bositc sphere, dcmonstrat•g average values 
and z which fit (1), upon averaging over diEcrcnt intc•als in 8. U•ts 
of • are kilometers per second. 

and gravitational energy. The initial projectile kinetic energy 
can be converted irreversibly by shock heating or deforma- 
tional work into internal energy or stored reversibly as elastic 
or gravitational energy. Irreversible heating of the axial 
stream tube material occurs as a result of hydrodynamic shock 
and is independent of scale for fixed impact velocity and is a 
constant fraction (-0.3) of the total kinetic energy. This was 
computed by using the compressible flow formulation de- 
scribed by O'Keefe and Ahrens [1977b]. Plastic work occurs at 
both high and low stress levels and was computed by using 
both the compressible and the incompressible formulations. 
The gravitational energy is important at late times and was 
computed by using the incompressible method. The partition- 
ing of energy as a function of meteorite radius is shown in 
Figures 7a and 7b for von Mises and Mohr-Coulomb-von 
Mises materials, respectively. 

Referring to Figure 7a, in avon Mises material (Y, = Y3 = 
2.7 x 10 -3 Mbar) the shock and plastic work account for 75% 
of the initial kinetic energy, and the stored elastic energy ac- 
counts for 25% for anorthosite meteorites having radii less 
than 2 x 105 cm. For meteorite radii greater than 2 x 105 cm 
the stored elastic energy is decreased, and gravitational poten- 
tial energy increased, the latter being completely dominant at 
radii greater than 107 cm. 

In the case of Mohr-Coulomb-von Mises materials (Y, _< 1 
x 10 -5, Y3 = 2.7 x 10 -3 Mbar) the shock and deformational 
work account for nearly all of the initial kinetic energy for 
meteorite radii less than 104 cm. In the range of meteorite 
radii between l0 4 and 107 cm the overburden pressure in- 
creases the yield stress, and part of the energy is partitioned 
into stored elastic energy. At meteorite radii greater than 2 x 
105 cm the gravitational energy starts to become important. 

TABLE 4. Summary of z Model Parameters Used in Cratering 
Calculations 

Material Strength Parameters 
Typical 

Case Yl, Mbar Y2, Mbar Y3, Mbar Medium 

1 10 -•ø 1.0 10 -lø fluid 

2 l0 -lø 1.0 2.7 X 10 -3 dry sand 
3 10 -5 1.0 10 -5 hard clay 
4 10 -5 1.0 2.7 X 10 -3 soft rock 
5 2.7 X 10 -3 1.0 2.7 X 10 -3 hard rock 

The density is 2.94 g/cm 3, and the initial velocity is 0.075 km/s. 
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Fig. 7. Energy partitioning versus meteorite radius for a 5-km/s 
impact of anorthosite on anorthosite in the gravity field of the moon, 
where the strength of the planetary surface is assumed (a) to be a con- 
stant 2.7 kbar and (b) to increase from a cohesive strength of 10 bars 
to a maximum strength of 2.7 kbar as a Mohr-Coulomb solid. 

6. CRATER FORMATION AS A FUNCTION 

OF STRENGTH AND GRAVITY 

Upon calculating crater depth formation times for lunar 
gravity for a 5-km/s impact of anorthosite on anorthosite as a 
function of meteorite radius Rm (Figure 8) it was discovered 
that the results are approximately describable in terms of dif- 
ferent assumed material strength properties (Table 4). These 
regimes are (1) cohesive strength, (2) Mohr-Coulomb, (3) von 
Mises, and (4) gravity. The first three regimes are determined 
by the material strength. In the cohesive strength regime (Rrn 
< 10 4 cm) the cohesive strength of the material dominates, 

and the final crater formation time scales as meteorite radius 

R,n. For the moon the range of meteorite radii separating the 
cohesive strength-dominated crater growth and the Mohr- 
Coulomb-dominated growth is around l0 3 cm and is depen- 
dent upon the specific combination of Yi and Y3 assumed. In 
the Mohr-Coulomb regime (R,n -• 104-106) the overburden 
stress increases the yield stress of Mohr-Coulomb materials, 
and the formation time scales as R,n/•, where 0 < fl < 1. In 
terms of impacting meteorite radius the Mohr-Coulomb re- 
gime extends to radii at which the overburden stress increases 
the yield strength of the bulk of the material involved in the 
excavation process to the von Mises limit. In the von Mises re- 
gime (R,n '" l0 s cm) the magnitude of the cohesive strength is 
less important than the von Mises limit. Here the crater for- 
mation time again scales linearly with meteorite radius. Fi- 
nally, in the gravity regime (R,n > •-106-107 cm) the gravita- 
tional work of excavation dominates the work done against 
the material strength. In this regime the crater formation time 
is proportional to R,n l/2. 

The crater depth was also computed as a function of the 
meteorite radius. As in the case of the crater formation times, 
the calculational results obtained can be cast in terms of four 

regimes. In the cohesive regime the crater depth for a given 
radius can vary by over an order of magnitude for differing 
magnitudes of cohesive strength. In the Mohr-Coulomb re- 
gime the overburden stress increases the yield stress such that 
the relative crater depth decreases with increasing meteorite 
radius. In the von Mises regime the depth is independent of 
the cohesive strength and depends only on the von Mises 
limit. In the gravity regime, crater depth is independent of the 
material strength. For example, as is shown in Figure 9, in the 
case of the moon, for avon Mises limit of Y3 = 2.7 x l0 -3 
Mbar the Mohr-Coulomb regime extends from meteorite radii 
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of--, 1• to l0 s cm, the von Mises regime extends from --, 10 s to 
• 107 cm, and the gravity regime extends from • 107 cm to 
greater values. 

A series of calculations were carried out using the shock 
degradation model specified by (76) with y -- 1. In this model 
the peak shock wave pressure reduces the magnitude of the 
cohesive strength Y, and not the yon Mises limit Y3. The 
shock wave amplitudes used to degrade the value of Y, were 
obtained from the pressure decay calculations given by Ahrens 
and O'Keefe [1977]. The resulting relative crater depth as a 
function of meteorite radius for a $-km/s impact is presented 
in Figure 10. The example chosen has an initially large cohe- 
sive strength which was equal to the yon Mises limit, Y, = Y3 
-- 2.7 x 10 -3 Mbar. The strength degradation effect was ex- 
pected to be most pronounced in this case. The passage of the 
shock wave reduced the cohesive strength to 10 -'ø Mbar for 
shock pressures greater than 10 -4 Mbar in one case and 10 -3 
Mbar in another. As is demonstrated in Figure 10, in the 
cohesive regime (meteorite radius <10 s cm), shock degrada- 
tion could be an important mechanism in determining crater 
depth. The crater depth more than doubles when rock is proc- 
essed by a threshold shock pressure of 10 -4 Mbar. The effect 
diminishes in the Mohr-Coulomb regime and vanishes in the 
yon Mises and gravity regimes. 

The effect of strength on the transient crater depth versus 
kinetic energy of impact (E) is presented in Figure 11 on the 
basis of various strengths listed in Table 4. We emphasize the 
word transient, because observationally, it has been found 
that the crater depths do not exceed •$ km, regardless of di- 
ameter, on the moon, Mercury, and probably other planets. 
We believe that the limit observed in crater depth for larger 
craters results from later stages of crater development than 
those described here [e.g., Melosh, 1977; McKinnon, 1978]. 
Like the relationship of the transient crater growth times and 
crater depth versus meteorite radius, the impact energy can 
also be described as occurring within several regimes which 
are related to the assumed strength model. In the case of very 
weak materials (case 1 in Table 4) the crater depth is domi- 
nated by gravity, and the depth scales as E '/4 [e.g., Chabai, 
1965; Gault et al., 1975; Sauer, 1978]. In the case of very strong 
materials the crater depth scales as E '/3 at impact energies of 
_<10 •ø ergs, whereas when gravitational forces dominate, the 
crater depth scales as E '/4 as energies approach 103ø ergs. In 
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Fig. 9. Normalized crater depth versus anorthositc meteorite 
radius for a 5-km/s impact on the moon for different Mohr-Coulomb 
strength models. 
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Fig. 10. Normalized crater depth versus anorthosite meteorite 
radius for a 5-km/s impact on the moon for different strength degra- 
dation models of the type shown in Figure 4b.. 

the case of Mohr-Coulomb materials (cases 2-5 in Table 4) 
and large yon Mises limits (e.g., Y3 = 2.7 x 10 -3 Mbar) the 
depth scales as E •'/3'4. This intermediate type of scaling was 
first proposed by Vaile [1961] on the basis of correlations of 
chemical and nuclear explosion data. 

7. COMPARISON OF INCOMPRESSIBLE MODEL 

WITH SAND CRATERING EXPERIMENTS 

The comparison of impact cratering experiments with de- 
tailed calculations has to date, surprisingly, only been carried 
out in the case of metals [Rosenblatt et al., 1970] and com- 
posite structures [Gehring, 1970]. 

Our objective was to find a set of well-controlled impact ex- 
periments in a medium of geologic interest and compare the 
incompressible flow model to those results so that we could 
have confidence in computing cratering over a broad range of 
conditions. The sand impact experiments of Gault and Wede- 
kind[1977] provide an appropriate data base. The properties of 
the sand used in these experiments was measured and demon- 
strated a Mohr-Coulomb type behavior for which the yield 
stress in shear can be approximated by 

Y (Mbar)= 25 x 10 -'6 + 33 x 10 -'4 P (77) 
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Fig. 11. Log,0 of transient crater depth versus anorthosite impac- 
tor energy for a 5-km/s impact on the moon for different strength 
models specified in Table 4. 
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TABLE 5. Parameters of z Model Used for Comparison With 
Experiments of Gault and Wedekind [ 1977] 

Material Strength Parameter Value 

Y•, Mbar 2.5 x 10 -•6 
Y•_, tan q• 0.33 
Y3, Mbar 2.7 x 10 -3 

The material strength parameters were calculated from a graph of 
the data of Gault and Wedekind [1977]. The density is 1.65 g/cm 3, and 
the initial velocity is 0.075 km?s. 

where 1 ø is the overburden stress, which is assumed to be equal 
to the average principal stress as used in (76). Gault and We- 
dekind's [1977] experiments were carried out on a size scale 
between that of cohesion- and that of gravity-dominated scal- 
ing and thus provide a stringent test of present modeling capa- 
bility in the Mohr-Coulomb regime. 

These experiments consisted of impacting aluminum pro- 
jectiles into sand at velocities in the range up to 6 km/s. Mea- 
surements of the crater diameter as a function of time for vari- 

ous values of acceleration, simulating various surface 
gravities, were carried out. The depth to diameter ratios re- 
mained nearly constant over the range of test conditions, so 
that the scaling of characteristic crater diameter and depth 
formation times should be proportional (i.e., have the same 
scaling exponent). 

We have made a comparison of the scaling of the crater for- 
mation time as a function of the size of impacting projectile 
and surface gravity. The objectives of these calculations were 
to show a correlation between theory and experiments of the 
scaling of crater depth with time and gravity. This scaling is 
insensitive to the exact magnitude of the initial velocity field. 
Because of this insensitivity we did not use the detailed com- 
pressible flow code to compute the initial flow field in sand 
but rather assumed the same flow field that we calculated pre- 
viously [O'Keefe and/lhrens, 1977b], associated with impact of 
anorthosite upon an anorthosite half space at 5 km/s. This im- 
pact flow field was used to determine the initial transient cav- 
ity size Ro, z, and velocity magnitude a (e.g., (1) and (7)). A 
summary of the z model parameters is given in Table 5. 

The crater depth formation time was computed by using the 
z model as a function of crater depth ranging from 0.4 cm to 4 
x 103 cm. The associated formation time varied from 3.5 x 

10 -3 to 0.4 s. Referring to Figure 12, the slope of the calcu- 
lated crater formation time or the scaling exponent is very 
close to the value found by Gault and Wedekind over the ex- 
perimental range. 

The crater depth formation time was also computed over a 
range of surface accelerations less than lg. Referring to Figure 
13, the slope or scaling exponent in that case also agreed quite 
well with the value found by Gault and Wedekind (t oc 
g-O.6,8). Note that for gravity-dominated craters the crater for- 
mation time scales as g-O.6•_5; thus the small shear strength of 
sand decreases the formation time in relation to strengthless 
gravity scaling. Finally, transient crater depth versus g is cal- 
culated over the range studied by Gault and Wedekind [1977] 
(except that they determined the diameter D). In Figure 14 we 
show that the calculated exponent of depth (or diameter) is 
again close to the value obtained by Gault and Wedekind 
[1977]. Both are less than the D oc g-O.•_5 expected for pure 
gravity scaling. 

8. CONCLUSIONS 

The effect of varying planetary crustal strength and surface 
gravity on the depth of impact craters was investigated by 

means of coupling the results of compressible flow finite dif- 
ference calculations carried out to stress levels below the com- 

pressional dynamic yield point (Hugoniot elastic limit) with 
the incompressible fluid flow model of Maxwell [1973]. The 
incompressible formulation is applicable to the flow after the 
stress levels had decayed to -• 1.5 kbar, resulting from the im- 
pact of a 5-km/s anorthosite sphere on a half space of 
anorthosite in the gravity field of the moon. We found that, 
like the case of explosions, the radial particle velocity at a 
given time field can be represented as being proportional to 
(I/R) z, where z • 2 along the axis stream tube and z • 3 when 
averaged over a larger portion of the half space. We outlined 
the physical and mathematical framework of the Maxwell 
model. This model assumes that the kinetic energy within the 
incompressible flow generated by the passage of the shock 
wave in the crater excavation region is converted into elastic, 
plastic, and potential energy by doing work against the tar- 
get's material strength and body forces (in this case, planetary 
gravity); thus the final crater depth and volume is determined 
from conservation laws. We developed expressions for the fi- 
nal crater depth in the strength-dominated case, for fixed 
gravity g, in terms of target density p and yield strength Y, 
which is proportional to [pUor•/Yz] •/(•+•), where Uor is the 
radial particle velocity on the surface of the early time cavity 
of radius Ro. In addition, we developed comparable ex- 
pressions for the gravity-dominated case for a fixed material 
strength, in which the final crater depth is proportional to 
Ro[2(z + 1)Uofi/g] •/•+•>. When Y is specified by a Mohr-Cou- 
lomb relation of the form Y-- Y, + a• up to a van Mises limit 
Y3, analytical solutions were not found, and the effect of 
strength on the crater depth was computed numerically by us- 
ing the lithostatic pressure in addition to the dynamic pressure 
resulting from the vorticity of the flow. 

The effect of shock wave degradation of material strength 
on crater depth was examined. The cohesive strength Y• was 
modeled as decreasing with the exposure of rock to increased 
shock pressure and was found to have the effect of increasing 
strong rock crater excavation depths by as much as a factor of 
2 for impactor radii of • 10 3 cm. 

The scaling of transient crater depth with impact energy 
was found in the case of the moon to be strength dominated 
for high-strength surfaces at impact energies E • 10 2ø ergs and 
hence scale as E '/3, whereas for weak materials and for strong 
surfaces where the impact energy is •10 3ø ergs, the crater 
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Fig. 12. Variation of crater depth formation time with crater 
depth using the present incompressible flow formulation with the as- 
sumption of a 5-km/s anorthosite-anorthosite velocity field. Shown 
also is the range of crater depths (diameters) observed in the sand ex- 
periments of Gault and I•edekind [ 1977] and the associated slope and 
scaling relationship. 
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depths scale as E 1/4. However, for a broad range of observable 
crater sizes and expected strength parameters the depth scales 
as -E •/3'4, which is consistent with chemical, nuclear, and im- 
pact crater statistics. 

The transient crater depth and formation time was shown 
to vary greatly depending upon planetary strength. For im- 
pacting meteorite radii less than 10 3 cm the crater formation 
time varied by about 5 orders of magnitude from 10 -3 to 10 S, 
and the crater depth to meteorite radius ratio varied from 4 
to 32; this behavior is characteristic of what we call the cohe- 
sive strength regime. For meteorite radii greater than 10 3 cm 
the crater depth decreased sharply with increasing meteorite 
radius for Mohr-Coulomb materials, and its rate was un- 
changed for von Mises materials. We denote this behavior 
with the terms Mohr-Coulomb and von Mises regimes. At suf- 
ficiently large meteorite radii (e.g., -10 s to -106 cm) the 
strength of Mohr-Coulomb materials is limited by the von 
Mises limit. Finally, for impactor radii of •10 ? cm the crater 
depth and formation time are dominated by gravity. 

The partitioning of energy in the axial stream tube was ex- 
amined for impacts on the moon in which the surface strength 
was constant and high (2.7 kbar) versus one whose strength 
increased with confining pressure from -0.01 to 2.7 kbar. For 
the former (von Mises type) material some 75% of the initial 
kinetic energy goes into reversible elastic strain energy, for 
meteorite radii less than 2 x l0 s cm, whereas for the latter 
(Mohr-Coulomb type) material, virtually all the impact en- 
ergy is deposited as shock, or deformational, energy for im- 
pactors having a diameter less than -104 cm. Moreover, it was 
demonstrated that some 25% of the impact energy goes into 
work against the moon's gravity field for meteorite radii ap- 
proaching-10 ? cm. 

The experimental data of Gault and Wedekind [1977] for 
cratering in sand with energies of 6 x 10 ? to 10 •ø ergs under 
effective gravities of 0.07g-lg provide a test of both strength 
effects and gravity on the present incompressible ttow calcu- 
lations. The starting condition for the calculations was the 
scaled ttow field for an anorthosite sphere impacting an 
anorthosite half space at 5 km/s. Using Gault and Wede- 
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Fig. 13. Variation of crater depth formation time with gravity us- 
ing the present incompressible flow formulation with the assumption 
of a 5-km/s anorthosite-anorthosite velocity field. Shown also is the 
slope and scaling relationship found by Gault and Wedekind [1977] in 
sand experiments. 
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Fig. 14. Variation of transient crater depth D with gravity using 
the present incompressible flow formulation with the assumption of a 
5-km/s anorthosite-anorthosite velocity field. Shown also is the slope 
and scaling relationship found by Gault and Werekind [1977] in sand 
experiments. 

kind's reported shear yield strengths, crater formation times 
were found to vary with gravity as g-o.ss, whereas they ob- 
served a g-O.6•8 dependence over a range from 0.03 to 0.12 s. 
Similarly, a maximum crater depth dependence was calcu- 
lated which varied as g-o.•9, whereas the diameter dependence 
of Gault and Wedekind's experiments followed a g-o.•6s de- 
pendence. The comparison of the present incompressible flow 
calculation with experiments demonstrates the need for data 
describing the strength properties of planetary surfaces in or- 
der to relate crater size populations to impact history on plan- 
ets with differing surface materials and gravities. 
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