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Abstract

In this paper, we provide a graph theoretical frame-
work that allows us to formally define formations of
muiltiple vehicles and the issues arising in uniqueness
of graph realizations and its connection to stability
of formations. The notion of graph rigidity is cru-
cial in identifying the shape variables of a formation
and an appropriate potential function associated with
the formation. This allows formulation of meaningful
optimization or nonlinear control problems for forma-
tion stabilization/tacking, in addition to formal repre-
sentation of split, rejoin, and reconfiguration maneu-
vers for multi-vehicle formations. We introduce an
algebra that consists of performing some basic oper-
ations on graphs which allow creation of larger rigid-
by-construction graphs by combining smaller rigid sub-
graphs. This is particularly useful in performing and
representing rejoin/split maneuvers of multiple forma-
tions in a distributed fashion.

1 Introduction

Coordinated control of multi-agent/multi-vehicle sys-
tems in a distributed fashion has attracted several re-
searchers with rather diverse backgrounds in control
theory, computer science, biology, and physics. Multi-
agent systems arise in broad areas including formation
flight of unmanned aerial vehicles (UAVs), coordina-
tion of satellite clusters, automated highways, under-
standing the coordination and movement of flocks of
birds or schools of fish [1], and molecular conformation
problems.

The applications that are of primary interest in our
work include performing maneuvers by UAVs which
(possibly) require doing split/rejoin maneuvers in case
a group of vehicles come across an obstacle (see Fig. 1).
In addition, we are interested in reconfiguration of the
formation of a group of vehicles (Fig. 2) due to a
change of the team-strategy in team-on-team compet-
itive games.
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Figure 1: (a) Split/Rejoin maneuver for a group of 12
vehicles moving in R? and (b) the paths of cen-
ters of mass of two subgroups of vehicles in
split/rejoin maneuver for a group of 12 vehi-
cles moving in R2.

As a result, our theoretical objective is to provide ana-
lytical and computational tools for representation and
manipulation of formations of multiple vehicles such
as performing split, rejoin, and reconfiguration maneu-
vers in a distributed manner. As we realized from one
of our earlier works [2], a notion from graph theory
called graph rigidity turns out to be instrumental in
both representation and distributed coordinated con-
trol of formations of multiple vehicles. Minimally rigid
graphs (i.e. rigid graphs with n nodes and 2n — 3 di-
rected edges, see section 2.3) are an important class
of rigid graphs that their edges are closely related to
shape variables of formations of n vehicles. This in



turn leads to automatic generation of potential func-
tions from the interconnection graph of the group of
vehicles that guaraniee local structural formation sta-
bilization [2].

One of the contributions of this paper is introducing
new properties of minimally rigid graphs that allow
composition of smaller rigid subgraphs that construct
a larger rigid graph. This is used to represent and per-
form rejoin/split maneuvers for groups of vehicles. We
introduce an algebra over graphs that allows perform-
ing some basic operations on graphs including rejoining
two graphs, node augmentation to a graph, and attach-
ing graphs via their edges.
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Figure 2: A Hybrid System representing the switching
between multiple formations via performing a
set of maneuvers,

In general, performing -several types of operations on
formations might be necessary. For example, perform-
ing split/rejoin maneuvers, shown in Fig. 1 (a) (see
section 3 for a detailed discussion). A Hybrid System
(Fig. 2) can be used to provide a high-level represen-
tation of a sequence of admissible operations on for-
mations through performing certain maneuvers as dis-
cussed earlier. In Fig. 2, a diagram of such a hybrid
system is presented. Each discrete-state of this hybrid
systems consists of rigid formation graphs that repre-
sent the information flow among a group of vehicles.

In the past, several methodologies have been exploited
by different researchers in distributed control and co-
ordination of multi-vehicle systems that use a graph
theoretical framework (3, 4, 2], Furthermore, the work
in [5] identifies connections between graph rigidity and
multi-vehicle formations without providing any control
design approaches for stabilization of such formations
based on rigidity.

The field of graph rigidity is very broad and several sci-
entists and engineers from rather diverse backgrounds
in mathematics, physics, chemistry, biology, computer
science, and mechanical and civil engineering have been
actively working on this subject over the past three
decades (see [6] for a complete survey and the history of

the subject that goes back to Euler in 1766 and Cauchy
in 1813). Here, we ate interested in combinatorial rigid-
ity [7, 8] as supposed to infinitesimal rigidity [9].

This paper is organized as follows, The mathemati-
cal preliminaries required to discuss multi-agent for-
mations, graph rigidity, and minimally rigid graphs are
presented in Section 2. Our main results on split/rejoin
of groups of agents are presented in Section 3. Finally,
concluding remarks are given in Section 4.

2 Preliminaries: Formations and Graph
Rigidity

In this section, we provide the mathematical prelim-
inartes that allow us to define formations of multiple
agents/vehicles and its connection to graph rigidity.

2.1 Formations of Multi-Vehicles

In this section, we define a formation of n-agents, the
position, and the attitude of a formation. Consider a
group of n vehicles (n > 2} each with the following

dynamics
¢ = pi
. 1
{ Di = U (1)
where ¢;,p;,us € R™ for all 7 € T = {1,...,n}. There
fore, each vehicle has a linear dynamics.

(a)

Figure 3: (a) A formation of » > 2 agents with a
base (1,2) in R?, and (b) position and attitude
{ge, ) of the formation of three vehicles.

We refer to a set of n points in R™ as an n-grid. The
column vector g = (g1,...,qn)° € R™" is called the
configuration of the n-grid. Identifying an agent 1 € T
by its position gq;, an agent can be viewed as a point
in R™. Assume | g2 — ¢1] > 0 and connect the agents
1 and 2 by a directed partial-line ;5 that is called the
base-edge of the n-grid. An n-grid in which the distance
between each two agents is greater than zero is called
collision-free. The vector e;2 and its orthogonal ef;
(after +m/2 rotation) determine a body axes for the
n-grid. Let (x;,3),3 < ¢ < n denote the coordinates of
the ith agent in the body axes (see Fig. 3 (a)). Then,
an n-grid is uniquely specified by the following (2rn—3)-
dimensional vector ’

= ([Jx3:y3:$4yy4;"‘ !xn:yﬂ) S5 Q = RZD X R2n~4

2
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We refer to  as the vector of internal degrees of free-
dom of an n-grid. Apparently, | remains invariant un-
der rotation and translation of all the points in an n-
grid. Let ¢ = 1/n3"; 7@ and r = n(g;- — q.) where
J* € T is called the attitude leader and n(x) = =/||z|
denotes the normalization of vector © # 0. Then, g,
and r are called the position and etiitude of an n-grid
(see Fig. 3 (b)) which determine the external degrees of
freedom of an n-grid.

Definition 1. (formation) A formation ¢ of n-agents is
a point on the manifold @ {defined in (2)) associated
with the set of all n-grids in R? that have the same
internal degrees of freedom. The position and attitude
of a formation is defined as ¢ = {q.,r). ’

The method that is introduced here for representation
of formations of planar n-grids can be directly general-
ized to any other dimension m > 3.

2.2 Graph Rigidity

Let G = (V.£,W) be a weighted graph with the set
of vertices V = {#1,...,un} (i.e. [V| = n), the set of
edges &, and the set of weights W. In addition, define
T=1{1,2,...,n} as the set of indices of the element of
V. Each agent in a multi-agent system can be viewed
as a node of the graph G which represents the overall
system.

Remark 1. Throughout this paper, we assume that
controller of the multi-agent system is distributed. This
means that each agent performs sensing and communi-
cation with all of its neighbors J; = {j € T : e;; € £}
in a graph G = (V,£). As a special case, this definition

of a neighbor includes the case of spatial neighbors of

an agent that are located within & distance d > 0 of
each agent (see [1}).

Let ¢; € R™ denote the coordinates vector assigned to
node v; of the graph. Then q = col(qy,--- ,qn) € R™
is called a realization of G iff

llg; — qill = wij, VYes; € €,¢i,9; € R™

where W = {wy;},& = {ei;}. The pair (G,q) is called
a framework. An infinitesimal motion is an assignment
of a velocity vector p; to the vertex v; of the graph G
such that

\7'8” = (3)
where {-,-} denotes the inner product. A flexing of a
framework (G, ¢) is a family of realizations of ¢ param-
eterized by t, ¢(t) : [0,1] — R™" such that q(0) = ¢
and g(t) is a differentiable function of t. Let p(t) = ¢
be the vector of velocities assigned to each node. Then,
a flexing ¢(t) satisfies the following relation

(pi(t) — pi(t), q;(8) — qi(t)) =0, Vej; €€Vie 10,(1})
4

{pj — pig5 — @) =0,
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Clearly, the rigid motions of R™ are length preserving
and p; = p;(t) defines an infinitesimal motion of the
family of graphs G(¢f) with realization g(t) where ¢ €
[0,1]. These rigid motions are called #rivial flexings of a
framework. A framework (G, ¢} is called infinitesimally
rigid iff the only infinitesimal motions of the framework
are trivial flexings.

It turns out that rigidity of graphs is a generic property
in the sense that almost all realizations of a particular
graph are either infinitesimally rigid, or flexible {10].
Thus, rigidity is a generic property of graphs. This
eliminates the necessity to check the rigidity property
for all possible realizations of a graph.

Note. In the context of rigidity of graphs, it is assumed
that all the edges are directed and the graph has neither
undirected edges, nor edges from one node to itself.

Throughocut this paper, we assume each agent. performs
sensing and communication with all of its neighbors:
that are defined as the following:

Definition 2. (neighbors} The indices of the neighbors
of the node v; in the graph G = (V, £} is denoted by J;
and defined as J; == {j € T : ¢;; € £}

A combinatorial characterization of rigidity of graphs
in R? was first obtained by Laman [7]. First, we need
to define the Laman subgraph of a graph.

Definition 3. (Laman subgraph) A Laman subgraph of
a graph G = (V, £) is a graph N = (Vx, £x) such that
Vi CV, [Vu| 2 2, and &y = €y, = {&;; € € -
03,05 € Vir} (We read &y is the restriction of £ to Vi)

Theorem 1. (Laman, 1970 [7]) A planar graph G =
(V, &) with n > 2 nodes is rigid iff there exists a subset
Ern C & with 2n — 3 edges of G such that for the graph
H = (V,&1) with n nodes, each Laman subgraph ¥ =
(Vy,Ey) of H satisfies the property |Ev| < 2[Vy| — 3.

We refer to H in Theorem 1 as the essential subgraph of
the rigid graph G. An edge e of a rigid graph @ = (V, £}
is called redundant, iff after removing e from £, the
graph remains rigid. Qtherwise, e is called an indepen-
dent edge.

According to Laman’s Theorem, eny planar rigid graph
G (n > 2} has at least 2n — 3 edges. Laman’s Theo-
rem was later generalized by Lovasz and Yemini in [8].
Based on their work, in [11] an O{n?) algorithm is avail-
able that determines whether a graph is rigid or not.

2.3 Minimally Rigid Graphs

Any rigid graph G with » > 2 nodes and 2n — 3 edges
is called a minimally rigid graph (MRG). Apparently,
any MRG is the essential subgraph of itself. In addition,
every edge of an MRG is independent.

Due to computational and communications costs in a



network of n-vehicles, we are interested in the least pos-
sible number of edges between the agents that creates
a rigid graph and thus a locally stabilizing distributed
control law for each vehicle [2]. This makes minimally
rigid graphs the ideal choice for us. Moreover, it will
become clear later that MRGs benefit from nice an-
alytic properties that allow one to construct bigger
graphs through connecting minimally rigid subgraphs.
This is explained in complete details in section 3.

The edges of a minimally rigid graph ¢ = (V,E, W)
define the following set of shape variables for the graph:

7= |lg; — @l —wi;, Yei; €€ (5)

We call the column vector 1 and manifold {(G) defined
by

n= {5} € Q(G) = Teyeel~wiy, 00) CR™2 ()

the shape configuration and shape manifold of G. Any
point at the boundary of Q(G) corresponds to a collision
between two agents. The structural potential function
of the graph G is defined as a smooth, proper, and
positive definite function V{n) that satisfies V' (0) = 0.
Two examples of V{(n) (or V(q)) are given in [2] as the
following:

Viln) = 3. ec i
1
Va(m) Teesll+m)i =1
Clearly, V(q) := V2(n) has a bounded gradient w.r.t.

¢ and this is the key in designing a bounded control
input for structural formation stabilization [2].

(7)

3 Main Results: Rejoin/Split of Formations of
Multi- Agents

To study and manipulate rejoin and split of formations
of multiple agents, we need to formally define some ba-
sic operations on graphs that preserve the rigidity prop-
erties of the obtained graphs. For doing so, we discuss
the problem of joining two rigid graphs to construct
a new composite rigid graph. This operation is called
rejoining graphs. Later, we discuss how a rigid graph
can be decomposed into two sets of disjoint graphs that
are both rigid. The second operation is called splitting
a graph. These basic operations (together with some
other operations) constitute a novel graph elgebra. This
graph algebra greatly facilitates representation of the
rejoin/split operations on graphs.

3.1 Node Augmentation to Graphs

A key ingredient in formal definition of rejoin/split
of rigid graphs is the node augmeniation operation.
Before, we describe this operation, we need to define
proper Laman subgraphs and present an axiom.

Definition 4. (proper Laman subgraphs) A Laman sub-
graph Y = (W3, &) of a graph G = (V, &) satislying

the property |£y| < 2|Vy | — 3 is called a proper Laman
subgraph.

Axiom 1. (single node rigidity) Any gm;nh with o sin-
gle node is minimally rigid in R™.

Definition 5. (node augmentation for single node
graphs) Consider two single node graphs G, =
({r1},8,0) G2 = ({va},0,8), the node augmenio-
fion is an operation that creates a graph ¢ =
({v1,v2}, {e21}, {d21}) and is denoted by

G:=G &G (8)

where dz; = ||e21|| and |le}| denctes the length of an
edge e. By a slight abuse of notation, we write G; =
{v1},G2 = {v2} and then G can be rewritten as

G = {v1} & {w}

Notice that a graph with two nodes and one edge is
minimally rigid (due to Laman’s theorem). Before we
define the node augmentation for graphs with multiple
nodes, we need to define the union of two graphs.

Definition 6. {union) Let &, = (V1, &, W;) and Gp =
(Va, £2, Wh) be two weighted graphs. The union of G;
and G, is a graph

g:glugg = (V1 UVQ,Sl UEQ,WlUWQ)

Figure 4: Augmentation of the node k at the edge (3, 5)
of a multi-node graph.

Definition 7. (node augmentation for multi-node
graphs) Censider a graph ¢ = (V,£, W) with n = 2
nodes and let v, € V be the vertex of a single node
graph Gy = ({vi}, 0, 8) with no edges. By a slight abuse

of notation we denote Gy = {wx}. Let q1,...,q9, be a
realization of G and assume g does not coincide with
any vertices of G, ie. |lgy —qifl > 0, fori=1,...,n

The node avgmentation at (v;,v;) (i.e. an unordered
pair of distinct vertices) is an operation on two graphs,
respectively, with n nodes and one node that creates
a new graph G, = (V;,&,, W,) with n + 1 nodes and
|€e| = |E] + 2 edges defined as the following

V,;,:VU{Uk}, €a=£U{eki,€kj}, (Q)
Wa = WU {llex:]l, llexsll},
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where |lef| denotes the length of the edge e. The node
augmentation operation is denoted by

ga =g

{viy;) @ {ox}s (10)

whenever an edge ¢;; € &, this operation is equivalently
expressed as

ga ::g

ey & {Uk}' (11)

The operation of node-augmentation is shown in Fig. 4.
In this figure, the augmented node and edges are all
drawn by dashed lines.

Definition 8. {a triangular graph) A triangular graph
T is a graph with three nodes, i. e. V = {v,v2,v3},
and a set of three directed edges & C & =
{812,621,6137631,823,632}.

A (special) tkiangular graph can be created using two
consecutive node-augmentations as the following:

T =({v1} @ {v2}) ® {vs}

Since the graph {v,} @ {v2} only has a single edge, the
edge location in the last equation is dropped.

Remark 2. The operation of augmentation of a node
vy, at the pair (v;,v;) can be equivalently represented
by union of two graphs as follows. Let

T (vg, vi,v5) 7= ({vn, vi, v5}, {ens exgha {llens] lews |1
(12)

denocte a partial triangular graph with two edges and
three nodes. Then G,, defined in (10), can be expressed
as G, = GUT.

Here is our first result on construction of rigid graphs
via node augmentation.

Theorem 2. Any rigid graph § in R? remains rigid
after node augmentation, i.e. node augmentation pre-
serves rigidity in B2,

Proof. See section A.1 in the Appendix of [12]. O

Corollary 1. Any minimally rigid graph G in R? re-
. mains minimally rigid after node augmentation.

Proof. According to Theorem 2, the augmented graph
G, is rigid and has [€6, | = (2n—3)+2=2(n+1) -3
edges. Thus, G, satisfies the relation |€g_ | = 2|Ve, |-3.
The fact that G, is an essential subgraph of itself fol-
lows from the proof of Theorem 2 and that establishes
every Laman subgraph Y, of G, is proper. [

Corollary 2. The augmented edges in node augmen-
tation of a minimally rigid graph are independent edges
of the obtained graph.

Proof. This follows from the fact that the obtained
graph after node augmentation is minimally rigid and
all of its edges are independent.

The following corollary provides a simple proof of rigid-
ity for minimally rigid graphs.

Corollary 3. Any graph that can be constructed by an
ordered sequence of node augmentations starting from
a single node 15 minimally rigid.

Ezample 1. Here is a sequence of nodes and edges that
create a (minimally) rigid graph shown in Fig. 5 (a),

(b)-

ga : 1~ 23 (2: 1)1 37 (3) 1): (37 2): 4: (41 2)! (4: 3): 5: (51 2)
,(5,4),6,(6,4),(6,3).
Go: 1:2,(2,1):3,(3,1),(3,2);4,(4,2),(4,3);5,(5,3)
:(5a4);67(6=4))(6!5);7’(7a5)v(7’6)'
gc : 1;2: (2! 1);35 (Sv 1)7 (31 2);4: (472)’(473)'
Ga: 1;2,(2,1%:3,(3,1),(3,2)4,(4,2),(4,8);5,(5,3)
2(5!4)
{13)
1
I
4 35
/ 6 \4n7
5 ¢ ]
(a) (b)
1 3
. 2 4
E O OT =0T
1 3 5
2 4
(c) (d)

Figure 5: (a) A rigid graph G, with n = 6 nodes and
ne = 9 edges, (b) A rigid graph G representing
a V-formation of n = 7 vehicles with n. = 11
edges, (c) a square graph G, with a diagonal
edge representing a diamond formation of four
vehicles, and (d} A rigid graph Gs withn =5
nodes on a line representing a platoon of five
vehicles,

3.2 Rejoining Two Graphs

As described earlier in the introduction, the rejoin op-
eration of two subgroups of vehicles is very important
after they pass an obstacle (see Figures 1 (a}, (b)).
In this section, we present the graph theoretical
tools/operations that create a rigid composite graph by
combining the graphs associated with each subgroup of
agents/vehicles.

Let G, = (V1,&1, W) and Ga = (Va,E2, Ws) be two
graphs with disjoint set of vertices ¥, NV; = @ and
71 = 2 and nz > 2 nodes, respectively. We say G,
and Gy are edge-atiachable at e;; = (vi,v;) € £ and
exr = {vg,vy) € &z iff e;5 and g4 have the equal lengths,
1e. |lei;|l = llex:l|. Before describing the operation of
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edge-attachment of two graphs, we need to introduce
three basic operations on graphs. Namely, the opera-
tions of renaming of vertices, edge-addition, and edge-
subtraction in a graph.

Definition 9. (single-node renaming) Let G = (V,£) be
a graph and v, € V be an extra node. The operation
of renaming v; € V in G by vy means creating a new
graph G’ = (V',€') such that V' = (V' \ {v;}) U {ws}
and £ = (£\ &) UE, where

&;
Ex

fe€&:e={vv)Ve=(v;w)}

(14)
Definition 10. (multi-node renaming) Similarly, more
than one node in a graph can be renamed. The opera-
tion of renaming an ordered list of nodes vy, vs, ..
inG by vi,v5,...
is denoted by

-1 ¥m
, vl is called multi-node renaming and

’ ! ’ 7
G’ = Ren(G; v, v2,. .., umlvp, 0, ..., 05,)

This operation means creating a new graph G itera-
tively as the following

g = g
GF = Ren(G* lLimjui)k=1,...,m (15)
gf — L

With a minor abuse of notation, the renaming opera-
tion can be applied to the set of edges of a graph instead
of the whole graph.

Definition 11. (edge-addition/subtraction) Let G =
(V,€) be a graph and let G* := (V,£U {e}). Then the
operation []} on a graph defined as Gt = [G]} is called
edge-addition. Similarly, let G~ := (V, £\ {e}}. Then
the operation [-]; on a graph defined by G— = [G]]
is referred to as edge-subtraction. Notice that for
weighted graphs, edge addition (or subtraction) opera-
tion adds (or subtracts) the element w = ||e|} to (from)

the set of weights W.

Figure 6: Edge-attachment between two graphs at the

edges (1,2) and {1,”,2") with equal length.
Definition 12. (edge-attachment) Let G
(V1,€1,W1) and G, = (Vg,gg,WQ) be two graphs
that are edge-attachable at e;; € £ and ey & &o.
Define

Gy =[G, = Vo, &2\ {ert}, Wa \ {wi}),

{wi,v) : (w1, v5) € EYU{ (v, v} : (v5,0:) € E}
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and let G} = Ren(gz_;vk,vﬂvi,v;.,-). Then, the edge-
attachment operation of Ga = {Va,£3) to G| = (V1,£1)
at e;; € £ is defined as

G:=G, UG, (16)
and denocted by

(17)

We call G the attachment (graph) of G and Gs. The
overall edge-attachment operation can be equivalently
expressed as follows

g = glle,-j o g2|e|;|

Gile.; @ G2len, = G1 URen([Ga]c, s vk, wlvg,v;)  (18)

Notice that the edge-attachment operation that is
shown schematically in Fig. 6 creates a new graph
G = (VEW) with Y = iU (V2 \ {p,mt}), € =
&1 URen(& \ {enr}; v, vilvs, v5), and W = ||€]. Fur-
thermore, the obtained graph G has n = (ny + ng} — 2
nedes (n > 2) and |£] = |E1] + [£2] — 1 edges.

FErample 2. Consider two triangular graphs
Ty = ({vi,v2,u3},{e12,€03,€3)) and T, =
({va.v5, 08}, {€45, €56, 864}) and let fleas]| = [less]

then the graph G = T e,, @ Ta)e, is a graph with the
set of vertices V = {v1, vz, v3,v4} and the set of edges
£ = {e12, €23, €31, €4z, a4 }-

Our main motivation to define the operation of edge-
attachment of two weighted graphs is the following re-
sult.

Theorem 3. (edge-attachment) Let G; and Ga be two
rigid graphs with disjoint set of vertices. Assume that
the corresponding essential subgraphs Hi and Mz of
these graphs possess attachable edges ey; € Ew, and
exs € Ex, . Then the attachment G = Gile,; @ Gale,, 15
a rigid graph.

Proof. See section A.2 in the Appendix of [12]. i

AN
XX

Figure 7: A Z-link in four possible configuration of edges.
Definition 13. (Z-link) We refer to a bipartite graph
K 2 with three edges, shown in Fig. 7, as a Z-link.

Remark 3. The name “Z-link” comes from the shape
of the graph in the upper left corner of Fig. 7.



Definition 14. (rejoining two graphs) The operation of
rejoining two graphs G = (V1,£1) and Ga = (M3, &;) via
a Z-link, Z = (Vz,£z), means creating a new graph

g - G1|f,1 Bz g?'eg (19)

where G = G, UZ UG, and Vz = V(e1) U V(ez), Le.
the vertices of the Z-link are the end-points of two
edges e; and es. The joining operation is schemati-
cally shown in Fig. 8. The edges that are removed
after edge-attachment are shown with dashed lines.

Figure 8: Joining two graphs using a Z-link {here the di-
rection of the edges can be chosen arbitrarily).

Here is an important result that states how two graphs
need to be connected such that the obtained graph after
connection is rigid. This is particularly useful in rejoin
maneuvers of two formations of muitiple vehicles.

Theorem 4. Let G1,Gy be two rigid graph each with
meore than two nodes. Assume e1, ez are edges of es-
sential subgraphs of G1,42, respectively. Then, the
connection of G ond Gz via a Z-link given by G =
Cile, ®z Gale, 15 a rigid graph.

Proof. See section A.3 in the Appendix of [12]. a

Corollary 4. Two minimally rigid graphs that are con-

nected using a Z-link construct a minimally rigid graph. '

Fzrample 3. In Fig. 2, two triangular formations of ve-
hicles are rejoined using a Z-link to create a formation
of six vehicles with a minimally rigid interconnection
graph. )

Remark 4. Splitting a group of vehicles into two dis-
joint subgroups is discussed in [12].

4 Conclusion

In this paper, we provide a unified graph-theoretical
framework that allows us to formally define forma-
tions of multiple vehicles and their stabilization issues.
We clarified the important role of graph rigidity and
minimally rigid graphs in construction of structural
potential functions and manipulation of multiple for-
mations. This includes formal representation of split,
rejoin, and reconfiguration maneuvers for formations
of multi-vehicle systems. We presented a hybrid sys-
tem framework for consecutive execution of a set of

tems.
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maneuvers for a group of agents/vehicles that allows
high-level planning of operations in multi-vehicle sys-
We introduce an algebra that formalizes per-
forming some basic operations on graphs and allows
creation of larger rigid-by-construction graphs by com-
bining smatler rigid subgraphs.
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