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ABSTRACT

Multiplicity is a key statistic for understanding the formation of very low mass (VLM) stars and brown dwarfs.
Currently, the separation distribution of VLM binaries remains poorly constrained at small separations (�1 AU),
leading to uncertainty in the overall binary fraction. We approach this problem by searching for late-M/early-L
plus T dwarf spectral binaries whose combined light spectra exhibit distinct peculiarities, allowing for separation-
independent identification. We define a set of spectral indices designed to identify these systems, and we use a
spectral template fitting method to confirm and characterize spectral binary candidates from a library of 815 spectra
from the SpeX Prism Spectral Libraries. We present 11 new binary candidates, confirm 3 previously reported
candidates, and rule out 2 previously identified candidates, all with primary and secondary spectral types in the
range M7–L7 and T1–T8, respectively. We find that subdwarfs and blue L dwarfs are the primary contaminants
in our sample and propose a method for segregating these sources. If confirmed by follow-up observations, these
systems may add to the growing list of tight separation binaries, whose orbital properties may yield further insight
into brown dwarf formation scenarios.
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1. INTRODUCTION

Brown dwarfs are self-gravitating objects with physical and
atmospheric properties intermediate between stars and planets.
With masses below �0.075 M� (Kumar 1963; Hayashi &
Nakano 1963),13 these objects cannot sustain hydrogen fusion,
and hence they cool and dim as they age, radiating primarily
at infrared wavelengths. The evolution of their spectra spans
the spectral classes M, L, T, and Y, with transitions demarcated
by the appearance and disappearance of absorption lines and
bands as molecules form and condense out of their atmospheres
at different temperatures and pressures (Kirkpatrick 2005 and
references therein).

Despite having a basic understanding of their evolution,
brown dwarf formation remains an open question. Standard
Jeans collapse of molecular clouds requires high densities so
that gravity can overcome thermal pressure. Once the collapse
has begun, halting the accretion becomes problematic (Shu

12 Visiting Astronomer at the Infrared Telescope Facility, which is operated by
the University of Hawaii under Cooperative Agreement no. NNX-08AE38A
with the National Aeronautics and Space Administration, Science Mission
Directorate, Planetary Astronomy Program.
13 Minimum mass for hydrogen fusion may vary between 0.072 and 0.078 M�
depending on age and metallicity. See Burrows et al. (1997) for an extensive
discussion of evolutionary models.

et al. 1987). Several mechanisms have been proposed to resolve
this issue, including turbulent fragmentation of protostellar
clouds (Padoan & Nordlund 2002), fragmentation of prestellar
disks (Stamatellos & Whitworth 2009), ejection by dynamical
interactions with other protostars (Reipurth & Clarke 2001),
and photoerosion of prestellar cores (Whitworth & Zinnecker
2004). In principle, these formation mechanisms should leave
traces on the statistical properties of brown dwarfs, including
the occurrence of multiple systems and distributions of their
separation, relative masses, and eccentricity.

Observationally, it has been shown that multiplicity increases
with primary mass, even at the lower mass end of the main
sequence, with the G dwarf binary fraction being 57% higher
than that for M dwarfs (Fischer & Marcy 1992; Delgado-Donate
et al. 2004). Current estimates of the binary fraction of very
low mass (VLM) late-M to T dwarfs (VLM Mtotal < 0.1 M�)
are 20%–25%, with a peak in separation at ∼4 AU and a
mass ratio distribution peaking at nearly equal masses (Bouy
et al. 2003; Close et al. 2003; Burgasser et al. 2006b; Allen
2007; Kraus & Hillenbrand 2012). However, these multiplicity
statistics have been largely determined from resolved imaging
programs, sampling separations greater than 3 AU. Burgasser
et al. (2007b) pointed out that the current peak in the binary
angular separation distribution is coincident with the resolution
limit of Hubble Space Telescope (HST) and ground-based
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adaptive optics (AO) imaging, indicating that tight (<1 AU)
VLM binaries could be undercounted. Likewise, Pinfield et al.
(2003) and Chappelle et al. (2005) report a higher unresolved
binary fraction (30%–50%) based on overluminous binary
candidates in color–magnitude plots. Conversely, spectroscopic
radial velocity (RV) studies find binary fractions of 2.5% in
systems separated by <1 AU (Blake et al. 2010) and 2%–28% up
to 3 AU (Joergens 2008). For the 0–6 AU range, Basri & Reiners
(2006) estimate a binary fraction of 26% ± 10%. However,
the difficulty of obtaining high-resolution spectra of faint VLM
dwarfs results in a small sample size. Since total binary fractions
for VLM stars and brown dwarfs could range between 2%
and 50%, it is imperative to constrain this statistic to make
conclusions about brown dwarf formation.

An alternative method for detecting tight unresolved binaries,
developed by Burgasser (2007a), involves identifying blended
light pairs, or spectral binaries. We will refer to spectral binaries
as those objects whose combined-light spectrum shows distinct
peculiarities that come from the highly structured spectra of
single M, L, and T dwarfs when blended together, as opposed
to spectroscopic binaries, which are binaries that show RV
variations. The first brown dwarf spectral binary, 2MASS
J05185995−2828372, was serendipitously identified by Cruz
et al. (2004) based on its hybrid characteristics containing
features of both L and T dwarfs. The superposition of L plus
T dwarf spectra proved to be the simplest model of its peculiar
spectrum, and it was later resolved as a binary using HST
(Burgasser et al. 2006b). The unusually blue L dwarf SDSS
J080531.84+481233.0 was next identified as a spectral binary
with L4.5 and T5 components by Burgasser (2007b), based
on a peculiar methane absorption band starting at 1.60 μm,
and was later confirmed as an astrometric variable by Dupuy
& Liu (2012). A third system, 2MASS J03202839−0446358,
was concurrently identified as an unresolved M9+T5 spectral
binary (Burgasser et al. 2008a) and an RV variable with an
orbital period of 8 months (Blake et al. 2008). These examples
serve to illustrate how spectral binaries can encompass a broad
range of system architectures. To date, 34 VLM spectral binaries
and candidates have been reported (see Table 1), and 10 have
been confirmed by direct imaging, RV, or astrometric variability
(Burgasser et al. 2011a; Stumpf et al. 2011; Burgasser et al.
2012; Dupuy & Liu 2012; Faherty et al. 2012; Manjavacas et al.
2013; D. Bardalez Gagliuffi et al., in preparation).

Detecting binaries using the spectral binary method is partic-
ularly useful for multiplicity statistics, as the method is indepen-
dent of separation within 0.′′5, which translates to <10–20 AU
for field brown dwarfs at distances of 20–40 pc. The closest sep-
aration pairs can be followed up to measure orbits and compo-
nent masses, as well as infer ages by comparison to evolutionary
models (Burgasser & Blake 2009). Systems with independent
age constraints can also be used to test the evolutionary models
directly (Dupuy et al. 2009; Liu et al. 2010; Burgasser et al.
2011a). Additionally, unresolved binaries are strong contami-
nants in luminosity functions that later lead to uncertainties in
mass functions and studies of formation history through stellar
populations (Day-Jones et al. 2013), so their identification is ex-
tremely important. Finally, spectral binaries with late-M/early-
L primaries and T dwarf secondaries can straddle the hydrogen-
burning limit, thus giving additional insight into brown dwarf
evolution.

In this paper we adapt the technique of Burgasser et al.
(2010a) to search for spectral binaries composed of late-M or
early-L dwarf primaries with T dwarf secondaries. M dwarfs are

the most common stars in the galaxy (Bochanski et al. 2010) and
are the brightest VLM objects, enabling better statistics through
larger magnitude-limited search volumes and sample sizes.
M-dwarf spectra are also intrinsically distinct from T-dwarf
spectra, but they differ in brightness by several magnitudes,
rendering peculiar features extremely subtle. In Section 2 we
describe our spectral sample used to find spectral binaries,
drawn from the SpeX Prism Libraries and new observations.
In Section 3 we explain our two methods to identify spec-
tral binary candidates: by visual examination (Section 3.1)
and through spectral indices (Section 3.2). In Section 3.3 we
perform single and binary template fitting to identify 14 bi-
nary candidates. In Section 4 we describe the properties of
the candidates. In Section 5.1 and Section 5.2 we discuss
our major contaminant, blue L dwarfs, and show preliminary
evidence that the separations of spectral binaries are tighter
than the resolved population. Our results are summarized in
Section 6.

2. SpeX SPECTRAL SAMPLE

The SpeX Prism Library is composed of low-resolution
(λ/Δλ = 75–120) spectra acquired with the SpeX 0.8–2.5 μm
spectrograph, mounted on the 3.0 m NASA Infrared Telescope
Facility (IRTF), located in Mauna Kea, HI (Rayner et al. 2003).
All spectra were obtained using the prism-dispersed SpeX mode,
which continuously samples wavelengths between 0.75 and
2.5 μm at a dispersion of 20–30 Å pixel−1. The library includes
close to 2000 sources, both previously published data (e.g.,
Burgasser et al. 2010a; Chiu et al. 2006; Cruz et al. 2003)
and 530 new spectra acquired between 2000 November and
2013 December (Table 2). The new observations were obtained
with the 0.′′5 or 0.′′7 slit, generally aligned with the parallactic
angle. Total integration times ranged between 360 s and 1200 s,
depending on source brightness and atmospheric conditions,
and were obtained in an ABBA dither pattern along the slit.
Spectra of nearby A0V stars were used to flux-calibrate the raw
spectra and correct for telluric absorption. Internal flat fields and
argon arc lamps were observed with each flux standard for pixel
response and wavelength calibration. All data were reduced with
the SpeXtool package (Cushing et al. 2004; Vacca et al. 2003)
using standard settings. A detailed description of our reduction
procedures is given in Burgasser (2007b).

The sources observed have optical and/or near-infrared (NIR)
spectral classifications reported in the literature. To obtain a self-
consistent set of spectral types, we computed SpeX spectral
types based on spectral indices, following the method described
in Burgasser (2007a). From these, we selected two samples: the
“candidate” sample, which has been purged of spectral types
outside the M7–L7 range, optical subdwarfs, giants, and poor-
quality spectra, but keeping binaries, objects suspected of being
binaries from previous studies, young objects, and unusually
red and blue dwarfs, and the “template” sample, which has
been purged of binaries, candidate binaries, giants, and poor-
quality spectra (as determined by visual inspection) only. The
“candidate” sample contains 815 spectra of 738 objects with
SpeX spectral types between M7 and L7, as those would be
the potential primaries for late-M/early-L plus T binaries. The
“template” sample comprises 1110 spectra of 992 single sources
whose spectral types range between M7 and L7 for primaries
and between T1 and T8 for secondaries used in spectral
fitting.
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Table 1
Compilation of All Confirmed and Candidate Spectral Binaries Discovered to Date

Name Spectral Type J (mag) J − Ks ΔJ Separationa Confirmationb Ref.

Optical NIR Primary Secondary (AU) method SB; Conf.

SDSS J000649.16-085246.3c, d M9 · · · M8.5 ± 0.5 T5 ± 1 14.14 ± 0.04 1.01 ± 0.05 3.15 ± 0.31 0.29 ± 0.01 RV 2; 2
ULAS J004757.41+154641.4 · · · T2.0 ± 2.0 L8.0 T7.0 17.83 ± 0.05 1.41 ± 0.07 · · · <65 22
2MASS J00521232+0012172 L5 · · · L4 T3 16.36 ± 0.11 0.90 ± 0.19 · · · <49 24
SDSS J011912.22+240331.6 · · · T2 T0 ± 0.7 T4 ± 0.4 17.02 ± 0.18 < − 0.02 −0.42 ± 0.19 <43 21
ULAS J020529.62+142114.0 · · · T1.0 ± 0.5 T1.0 T3.0 17.99 ± 0.04 1.06 ± 0.07 · · · <71 22
2MASS J02060879+22355930 · · · L5.5 L5.1 ± 0.5 T3.2 ± 2.3 16.56 ± 0.11 1.39 ± 0.17 1.61 ± 0.89 26
2MASS J02361794+0048548 L6.5 · · · L5.0 ± 0.6 T1.9 ± 1.1 16.10 ± 0.08 1.43 ± 0.12 1.05 ± 0.48 <48 26
SDSS J024749.90-163112.6 · · · T2.0 ± 1.5 T0 ± 0.2 T7 ± 0.3 17.19 ± 0.18 1.57 ± 0.27 0.68 ± 0.10 <36 21
2MASS J03202839-0446358c, d M8: L1 M8.5 ± 0.3 T5 ± 0.9 12.13 ± 0.03 1.13 ± 0.04 3.5 ± 0.2 <0.58 RV 5; 1
SDSS J035104.37+481046.8 · · · T1.0 ± 1.5 L6.5 ± 0.7 T5 ± 0.7 16.47 ± 0.13 1.47 ± 0.18 0.31 ± 0.31 <34 21
DENIS-P J04272708-1127143 · · · dM7 M7.4 ± 0.2 T5.1 ± 1.5 13.74 0.99 ± 0.14 4.13 ± 0.62 26
2MASS J05185995-2828372d · · · · · · L6 T4 15.98 ± 0.10 1.82 ± 0.12 0.13 ± 0.19 1.80 ± 0.50 DI 10; 7
2MASS J07354882+2720167 L1 · · · L1 L4 16.94 ± 0.13 1.28 ± 0.21 · · · <112 23
SDSS J080531.84+481233.0c, d L4 L9.5 L4.5 T5 14.73 ± 0.04 1.46 ± 0.05 1.50 ± 0.09 0.9-2.3 AV 6; 11
SDSS J090900.73+652527.2 · · · T1.5 T1.5 ± 0.5 T2.5 ± 0.3 16.03 ± 0.09 0.86 ± 0.17 −0.12 ± 0.10 <29 21
SDSS J092615.38+584720.9 T4.5 · · · T3 T6 16.77 ± 0.14 <1.57 0.4 ± 0.2e 2.6 ± 0.5 DI 16; 7, 8
SDSS J093113.23+280227.1 L3 · · · L1.4 ± 0.1 T2.6 ± 0.9 14.98 ± 0.04 1.25 ± 0.06 2.22 ± 0.23 <37 26
2MASS J09490860-1545485 · · · T2 T1 ± 0.2 T2 ± 0.2 16.15 ± 0.12 0.92 ± 0.20 −0.07 ± 0.05 <25 21
2MASS J10365305-3441380 L6 · · · L5.2 ± 0.4 T1.4 ± 0.4 15.62 ± 0.05 1.82 ± 0.06 0.51 ± 0.32 <30 26
SDSS J103931.35+325625.5 · · · T1 L7 ± 0.2 T4 ± 0.2 16.41 ± 0.15 1.25 ± 0.22 0.26 ± 0.09 <34 21
2MASS J10595138-2113082 L1 · · · L0.6 ± 0.4 T3.4 ± 1.3 14.56 ± 0.04 1.35 ± 0.06 2.58 ± 0.32 <52.5 26
2MASS J11061197+2754225d · · · T2.5 T0 ± 0.2 T4.5 ± 0.2 14.82 ± 0.04 1.02 ± 0.07 −0.37 ± 0.06 <2.67 OL 4, 14; 15
SDSS J120747.17+024424.8 L8 T0 L6.5 ± 0.7 T2.5 ± 0.5 15.58 ± 0.07 1.59 ± 0.09 0.48 ± 0.28 <17 21
2MASS J12144089+6316434 · · · T3.5 T2 T6 16.59 ± 0.12 0.71 ± 0.26 · · · <24 24
2MASS J13114227+3629235 L5pec · · · L4.8 ± 0.6 T4.1 ± 2.7 15.54 ± 0.05 1.40 ± 0.09 2.19 ± 1.02 <27 27
2MASS J13153094-2649513c, d L5 · · · L3.5 ± 2.5 T7 ± 0.6 15.07 ± 0.05 1.63 ± 0.07 3.03 ± 0.03 6.60 ± 0.90 DI 3; 3
2MASS J13243559+6358284 · · · T2: L8 ± 0.2 T3.5 ± 0.2 15.60 ± 0.07 1.54 ± 0.09 −0.05 ± 0.06 <23 21, 2 4
2MASS J13411160-30525049 L3 · · · L1.2 ± 0.3 T6.3 ± 1.0 14.61 ± 0.03 1.53 ± 0.04 3.28 ± 0.53 <39 26
SDSS J141530.05+572428.7 · · · T3 ± 1 L8 ± 0.5 T5 ± 0.3 16.73 ± 0.16 <1.19 −0.13 ± 0.20 <29 21
SDSS J142227.20+221557.5 L6.5 · · · L4.2 ± 0.6 T4.1 ± 2.3 16.87 ± 0.03 1.23 ± 0.04 2.36 ± 0.78 <43 26
SDSS J143553.25+112948.6 · · · T2 ± 1 L7.5 ± 0.4 T6 ± 0.3 17.14 ± 0.23 <0.23 0.41 ± 0.12 <39 21
SDSS J143945.86+304220.6 · · · T2.5 T1 ± 0.2 T5 ± 0.6 17.22 ± 0.23 <1.34 0.06 ± 0.24 <45 21
2MASS J14532589+1420418 L1 · · · L1.1 ± 0.0 T6.0 ± 1.1 15.07 ± 0.04 1.18 ± 0.05 3.27 ± 0.46 <72 26
SDSS J151114.66+060742.9d · · · T0 ± 2 L5.5 ± 0.8 T5 ± 0.4 16.02 ± 0.08 1.47 ± 0.13 0.54 ± 0.32 <21 OL 4; 12
SDSS J151603.03+025928.9 · · · T0: L7.5 ± 1.1 T2.5 ± 2.2 17.23 ± 0.20 1.80 ± 0.27 0.30 ± 0.65 <27 21, 24
WISE J16235970-0508114 · · · L1 L0.6 ± 0.3 T6.0 ± 0.8 14.94 ± 0.04 1.39 ± 0.06 3.39 ± 0.40 26
2MASS J17072529-0138093 · · · · · · L0.7 ± 0.5 T4.3 ± 2.0 14.29 ± 0.03 1.22 ± 0.04 2.87 ± 0.75 <31 26
2MASSI J17114573+2232044 L6.5 · · · L1.5 ± 0.6 T2.5 ± 1.0 17.09 ± 0.18 2.36 ± 0.20 1.20 ± 0.40 <35 21
2MASS J17310140+5310476 L6 · · · L5 L8 16.37 ± 0.11 1.52 ± 0.18 · · · <48 23, 24
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Table 1
(Continued)

Name Spectral Type J (mag) J − Ks ΔJ Separationa Confirmationb Ref.

Optical NIR Primary Secondary (AU) method SB; Conf.

2MASS J17373467+5953434 L9 · · · L5 T5 16.88 ± 0.16 1.16 ± 0.31 · · · <50 23
2MASS J20261584-2943124 L1: · · · L0.1 ± 0.5 T5.8 ± 1.0 14.80 ± 0.03 1.44 ± 0.05 3.42 ± 0.40 <9.00 DI 13
SDSS J205235.31-160929.8d · · · T1 ± 1 L7.5 ± 0.6 T2 ± 0.2 16.33 ± 0.12 1.21 ± 0.19 0.04 ± 0.18 3.20 ± 0.50 DI 4; 17
2MASS J21265916+7617440 L7 T0 L7 T3.5 14.34 ± 0.03 1.18 ± 0.05 · · · 28
2MASS J21392676+0220226 · · · T1.5 L8.5 ± 0.7 T3.5 ± 1.0 15.26 ± 0.05 1.68 ± 0.07 −0.14 ± 0.21 <14 21
ULAS J222958.30+010217.2 · · · T3.0 ± 0.5 T1.0 T5.0 17.89 ± 0.04 0.67 ± 0.10 · · · <62 22
ULAS J223348.82+002214.0 · · · T0.0 ± 0.5 L5.0 T4.0 18.07 ± 0.05 1.43 ± 0.07 · · · <90 22
ULAS J235618.01+075420.4 · · · T0.0 ± 1.0 L7.0 T7.0 18.09 ± 0.05 1.87 ± 0.06 · · · <58 22
ULAS J232315.39+071931.0 · · · T2.0 ± 0.5 T0.0 T2.0 17.30 ± 0.02 1.01 ± 0.04 · · · <49 22
Kelu-1A L3pec ± 1.5 L2.0 ± 1.0 L0.5 ± 0.5 T7.5 ± 1 13.88 ± 0.03 1.57 ± 0.04 · · · 6.4+2.4

−1.3 25

Notes.
a Upper limits based on SDSS angular resolution (1′′; York et al. 2000) and distance reported or estimated from absolute magnitudes (Looper et al. 2008a).
b RV, radial velocity; DI, direct imaging; AV, astrometric variability; OL, overluminous.
c Used as M+T binary benchmark.
d Spectral binaries with confirmed separations. See Figure 6.
e Estimated from F110W filter (Burgasser et al. 2006b).
References. (1) Blake et al. 2008; (2) Burgasser et al. 2012; (3) Burgasser et al. 2011b; (4) Burgasser et al. 2010a; (5) Burgasser et al. 2008a; (6) Burgasser 2007b; (7) Burgasser et al. 2006b; (8) Carson et al. 2011;
(9) Chiu et al. 2006; (10) Cruz et al. 2004; (11) Dupuy & Liu 2012; (12) Faherty et al. 2012; (13) Gelino & Burgasser 2010; (14) Looper et al. 2008a; (15) Manjavacas et al. 2013; (16) Metchev et al. 2008; (17) Stumpf
et al. 2011; (21) Burgasser et al. 2010a; (22) Day-Jones et al. 2013; (23) Geißler et al. 2011; (24) Metchev et al. 2008; (25) Stumpf et al. 2008; (26) this paper; (27) Kirkpatrick et al. 2011; (28) Kirkpatrick et al. 2010.
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Table 2
New SpeX Observations of M7–L6 Dwarfs

Source Designation Spectral Type 2MASS Date λ/Δλ Refb

Opt NIR SpeXa J J − Ks

2MASS J0000286-124515 J00002867-1245153 M8.5 · · · M9.2 13.20 1.23 2013 Aug 14 120 44; 44
LEHPM 1-162 J00054768-2157176 M8.5 M8 M8.7 13.27 1.07 2006 Sep 03 120 32; 75
2MASSI J0006205-172051 J00062050-1720506 L2.5 · · · L3.0 15.66 1.65 2008 Sep 08 120 25; 25
SDSS J000632.60+140606.4 J00063260+1406064 L1 · · · L0.4 15.85 0.79 2009 Jun 30 120 48; 48
SDSS J000646.81+151225.8 J00064681+1512258 L4:: · · · L4.3 16.22 1.41 2013 Sep 03 120 62; 62
2MASS J0007078-245804 J00070787-2458042 M7 · · · M7.7 13.12 1.05 2013 Oct 23 120 44; 44
2MASS J00100009-2031122 J00100009-2031122 L0 · · · M8.8: 14.13 1.25 2008 Jul 14 120 44; 44
2MASSI J0013578-223520 J00135779-2235200 L4 · · · L5.7 15.78 1.74 2009 Nov 04 120 25; 25
2MASSW J0015447+351603 J00154476+3516026 L2 · · · L1.0 13.88 1.61 2008 Sep 08 120 13; 13
SDSS J001608.44-004302.3 J00160843-00430209 · · · L5.5 L4.3 16.33 1.78 2013 Sep 03 120 34; 34

Notes.
a NIR classification from SpeX data based on index method described in Burgasser (2007a).
b First citation is the discovery reference; next citation(s) are classification references (optical and NIR).
References. (1) Haro & Chavira 1966; (2) Liebert 1976; (3) Becklin & Zuckerman 1988; (4) Bessell 1991; (5) Kirkpatrick et al. 1995; (6) Tinney et al. 1998;
(7) Rebolo et al. 1998; (8) EROS Collaboration et al. 1999; (9) Delfosse et al. 1999; (10) Martı́n et al. 1999; (11) Kirkpatrick et al. 1999; (12) Fan et al. 2000;
(13) Kirkpatrick et al. 2000; (14) Gizis et al. 2000b; (15) Basri et al. 2000; (16) Gizis et al. 2000a; (17) Scholz et al. 2001; (18) Wilson et al. 2001; (19) Schneider
et al. 2002; (20) Hawley et al. 2002; (21) Geballe et al. 2002; (22) Gizis 2002; (23) Lépine et al. 2002; (24) Phan-Bao et al. 2003; (25) Kendall et al. 2003; (26) Lépine
et al. 2003; (27) Cruz et al. 2003; (28) Cruz et al. 2003; (29) Berriman et al. 2003; (30) Wilson et al. 2003; (31) Kendall et al. 2004; (32) Pokorny et al. 2004;
(33) Scholz et al. 2004; (34) Knapp et al. 2004; (35) Golimowski et al. 2004; (36) Deacon et al. 2005; (37) Lodieu et al. 2005; (38) Billères et al. 2005; (39) Reid & Gizis
2005; (40) Chiu et al. 2006; (41) McElwain & Burgasser 2006; (42) Cushing et al. 2006; (43) Liebert & Gizis 2006; (44) Cruz et al. 2007; (45) Burgasser et al. 2007a;
(46) Caballero 2007; (47) Kendall et al. 2007; (48) West et al. 2008; (49) Reid et al. 2008; (50) Burgasser et al. 2008b; (51) Looper et al. 2008b; (52) Kirkpatrick et al.
2008; (53) Phan-Bao et al. 2008; (54) Zhang et al. 2009; (55) Faherty et al. 2009; (56) Cruz et al. 2009; (57) Shkolnik et al. 2009; (58) Jenkins et al. 2009; (59) Martı́n
et al. 2010; (60) Schmidt et al. 2010; (61) Kirkpatrick et al. 2010; (62) Zhang et al. 2010; (63) Bochanski et al. 2011; (64) Phan-Bao 2011; (65) Geißler et al. 2011;
(66) Kirkpatrick et al. 2011; (67) Shkolnik et al. 2012; (68) Folkes et al. 2012; (69) Thompson et al. 2013; (70) Scholz 2014; (71) Allers & Liu 2013; (72) Andrei
et al. 2011; (73) Boeshaar & Tyson 1985; (74) S. Schmidt et al. (in preparation); (75) this paper; (76) Cruz et al. 2013; (77) Deacon et al. 2009; (78) Forveille et al.
2004; (79) Hall 2002; (80) Irwin et al. 1991; (81) J. D. Kirkpatrick (private communication); (82) Kendall et al. 2007; (83) Lodieu et al. 2002; (84) D. Looper et al. (in
preparation); (85) Phan-Bao 2011; (86) Radigan et al. 2008; (87) Ruiz & Takamiya 1995; (88) Salim et al. 2003; (89) Tinney et al. 1993; (90) van Biesbroeck 1961.

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)
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Figure 1. Distribution of SpeX spectral types in the samples used for selecting
candidates (top) and template fitting (bottom).

(A color version of this figure is available in the online journal.)

The distribution of spectral types for both samples is shown
in Figure 1. In both samples, the number of spectra decreases
toward later spectral types owing to declining space densities for
L dwarfs (Cruz et al. 2003) and sensitivity limits for late L and

T dwarfs. Since there are significantly more sources with late-M
spectral types in our samples, it is more likely to find binaries
with a late-M primary. The sources included were observed
as part of several different programs, including our ongoing
program to compile a magnitude-limited sample of L dwarfs
(A. Burgasser et al., in preparation). As such, we do not claim
the sample to be complete or unbiased.

3. IDENTIFICATION OF SPECTRAL BINARIES

3.1. Visual Inspection

The spectral morphology of unresolved late-M/early-L plus
T dwarf binary systems gives rise to a distinctive feature in
blended-light spectra: a small “dip” centered at 1.63 μm, which
is the combination of CH4 absorption from the secondary
and FeH from the primary (Cushing et al. 2003; Burgasser
2007b). Methane does not exist in the spectra of late-M/early-
L dwarfs, so its presence indicates a T dwarf companion.
However, this feature is very weak in blended-light spectra since
a T dwarf is significantly fainter than the M/L primary (e.g.,
ΔJ ∼ 3.5 mag between an M8 and a T5, which is the case
for 2MASS J03202839−0446358). Moreover, variations in the
spectral slope for a blue or red L dwarf can make this feature
ambiguous, as can poor correction of hydrogen lines in the A0V
calibrators. Alternative indicators, such as a relatively higher
flux around the 1.25 μm peak and an inflated bump shortward
of 2.2 μm, may also reveal the presence of a T dwarf companion,
or that the spectrum of the source is unusually blue.

To facilitate our visual inspection, we fit the candidate sample
to templates of single objects, following the same chi-squared
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Table 3
Spectral Indicesa

Spectral Index Numerator Range Denominator Range Feature Ref.
(μm) (μm)

H2O-J 1.14–1.165 1.26–1.285 1.15 μm H2O 1
CH4-J 1.315–1.335 1.26–1.285 1.32 μm CH4 1
H2O-H 1.48–1.52 1.56–1.60 1.40 μm H2O 1
CH4-H 1.635–1.675 1.56–1.60 1.65 μm CH4 1
H2O-K 1.975–1.995 2.08–2.10 1.90 μm H2O 1
CH4-K 2.215–2.255 2.08–2.12 2.20 μm CH4 1
K/J 2.06–2.10 1.25–1.29 J − K color 1
H-dip 1.61–1.64 1.56–1.59 + 1.66–1.69b 1.63 μm FeH/CH4 2
K-slope 2.06–2.10 2.10–2.14 K-band shape/CIA H2 3
J-slope 1.27–1.30 1.30–1.33 1.28 μm flux peak shape 4
J-curve 1.04–1.07 + 1.26–1.29c 1.14-1.17 Curvature across J-band 4
H-bump 1.54–1.57 1.66–1.69 Slope across H-band peak 4
H2O-Y 1.04–1.07 1.14–1.17 1.15 μm H2O 4

Notes.
a Indices were calculated by integrating flux between the specified wavelength ranges.
b Denominator is average of these two wavelength ranges.
c Numerator is average of these two wavelength ranges.
References. (1) Burgasser et al. 2006a; (2) Burgasser et al. 2010a; (3)Burgasser et al. 2002; (4) this paper.

minimization routine as in Section 3.3, and then subtracted
the median combination of the 10 best-fitting single sources
from each spectrum. The objects with residuals consistent
with a T dwarf spectrum were selected as visual candidates.
To validate this procedure, we also performed the same tem-
plate subtraction on four confirmed spectral binaries: SDSS
J000649.16−085246.3, 2MASS J03202839−0446358, SDSS
J080531.89+481233.0, and 2MASS J13153094−2649513 (see
Table 1). The residuals from these subtractions clearly exhib-
ited T dwarf-like morphologies. Twelve sources were selected
as visual candidates.

3.2. Spectral Indices

In addition to visual inspection, we also used spectral indices
to identify additional candidate binaries due to the subtlety of
T dwarf features in combined-light spectra (Burgasser et al.
2010a). We initially examined standard classification indices
from Burgasser et al. (2006a), as well as the “H-dip” index from
Burgasser et al. (2010a), and further defined five new indices.
The new indices were designed by comparing the residuals of
the four known binary spectra after subtracting their best single
template fits. As a control sample, we also examined single
templates subtracted from each other, which showed no evidence
for a T dwarf companion.

The new spectral indices specifically designed in this paper
are as follows:

1. H-bump: measures the peak in the continuum from the
T dwarf in the H band relative to the dip centered around
1.63 μm seen in M+T binaries, making this index com-
plimentary to H-dip. A higher value of H-bump implies a
larger flux at 1.55 μm, possibly caused by the presence of
a T dwarf.

2. J-curve: designed to detect the flux coming from both the
1.05 μm and 1.27 μm peaks of a T dwarf, as compared to
the deep methane absorption at 1.12 μm.

3. J-slope and Ks-slope: measure the slope of the peaks in the
J and Ks bands at 1.27 μm and 2.10 μm. In both cases, the

peaks in a single late-M/early-L should look somewhat flat,
giving values close to 1, whereas in a late-M/early-L plus
T dwarf binary the slopes of the J- and Ks-band peaks are
slightly negative and positive, respectively.

4. H2O-Y: measures the prominence of the Y-band peak of the
T dwarf at ∼1.05 μm compared to the water and methane
absorption around ∼1.15 μm. M and L dwarfs do not
present peaks in the Y band.

The 13 indices examined are described in Table 3. We also
used J − Ks , J − H, and H − Ks colors synthesized from the
spectra themselves, and the source spectral type, for a total of
17 parameters.

Comparing all 17 parameters against each other yielded
136 pairings. After visual examination to determine which
pairings best segregated the four known M/L+T binaries, 12
combinations were selected (Figure 2). We then used two
techniques to define regions of interest in each combination
for candidate selection. If a trend among all sources was clear,
we fit the points to a second-order polynomial and defined a
region demarcated in the y-axis by the +1σ or −1σ curves from
the fit function, and in the x-axis by the horizontal spread of the
binary benchmarks. Conversely, if the points did not indicate
any trends, then the region was demarcated such that it included
the four binary benchmarks. The limits to these regions are
described in Table 4.

Objects falling in eight or more selection regions were
considered strong index candidates, whereas those falling in
four to eight regions were considered weak index candidates
(Figure 3). The number of selected sources rises steadily below
four or five combinations, suggesting that sources selected fewer
than four times could be spurious. Three of our benchmarks
were selected by all 12 combinations, while SDSS J0006−0852
missed only the SpT/CH4-H cut, since it falls within one
standard deviation from the fitting curve.

In total, 8 strong and 22 weak candidates were selected,
including the previously identified spectral binaries 2MASS
J20261584−2943124 (Gelino & Burgasser 2010) and 2MASS
J13114227+3629235 (Kirkpatrick et al. 2011). Seven visual
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Figure 2. Index selection of spectral binary candidates. The indices calculated from the candidate sample of SpeX spectra are shown in black. The labeled red stars
represent the four binary benchmarks. Unusually blue sources are plotted as blue circles, while the large and small green triangles show the strong and weak candidates,
respectively. The green circles represent the visual candidates.

(A color version of this figure is available in the online journal.)
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Figure 2. (Continued)
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Table 4
Delimiters for selection regions in parameter spaces

x vs. y Limits

SpT vs. CH4-H Best fit curve: y = −4.3 × 10−4x2 + 0.0253x + 0.7178, σ = 0.0354.
Select points below the −1σ curve.

H2O-J vs. CH4-H Intersection of: y = −0.08x + 1.09 and x = 0.90.
Select points on lower left corner.

H2O-J vs. H-bump Intersection of: y = 0.16x + 0.806 and x = 0.90.
Select points on upper left corner.

CH4-J vs. CH4-H Intersection of: y = −0.56x + 1.41 and y = 1.04.
Select points on lower left corner.

CH4-J vs. H-bump Intersection of: y = 1.00x + 0.24, x = 0.74, and y = 0.91.
Select points on upper left corner.

CH4-H vs. J-slope Intersection of: y = 1.250x − 0.207, x = 1.03, and y = 1.03.
Select points on upper left corner.

CH4-H vs. J-curve Best fit curve: y = 1.245x2 − 1.565x + 2.224, σ = 0.088.
Select points above the 1σ curve, up to CH4-H = 1.03.

CH4-H vs. H-bump Best fit curve: y = 1.36x2 − 4.26x + 3.89, σ = 0.013.
Select points below the −1σ curve, down to H-bump = 0.92.

J-slope vs. H-dip Intersection of y = 0.20x + 0.27 and x = 1.03.
Select points on lower right corner.

J-slope vs. H-bump Intersection of: y = −2.75x + 3.84 and y = 0.91.
Select points on upper right corner.

K-slope vs. H2O-Y Best fit curve: y = 12.036x2 − 20.000x + 8.973, σ = 0.064.
Select points above the 1σ curve and between K-slope = 0.93-0.96.

J-curve vs. H-bump Best fit curve: y = 0.269x2 − 1.326x + 2.479, σ = 0.048.
Select points above the 1σ and greater than J-curve = 2.00 and H-bump = 0.92.
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Figure 3. Number of sources satisfying index combinations vs. total number
of combinations. Sources selected eight or more times are considered strong
candidates. Sources selected between four and eight times are considered weak
candidates.

candidates overlapped with the index candidates: five as strong
and two as weak.

3.3. Spectral Template Fitting

To statistically test the binary hypothesis for our visual
and index-selected candidates, we compared each spectrum to
templates of both single sources and binary systems, using the
method described in Burgasser et al. (2010a). The candidates

determined by visual inspection or spectral index selection
were first rejected from the template pool. Then, all spectra
were interpolated onto a common wavelength scale from 0.8 to
2.4 μm and normalized to the peak flux between 1.2 and 1.3 μm.
Each candidate spectrum C[λ] was directly compared to all
single templates T [λ] and ranked by a weighted chi-squared
statistic:

χ2 ≡
∑

λ

w[λ]

[
C[λ] − αT [λ]

σc[λ]

]2

, (1)

where w[λ] is a vector of weights proportional to the waveband
size of each pixel (see Cushing et al. 2008), α is a scaling
factor minimizing χ2, and σc[λ] is the noise spectrum for
each candidate. The statistic was computed over the wavelength
ranges {λ} = 0.95–1.35 μm, 1.45–1.80 μm, and 2.00–2.35 μm,
avoiding regions of strong telluric absorption.

Binary templates were constructed by first scaling each tem-
plate spectrum to absolute fluxes using the Two Micron All Sky
Survey (2MASS) MKs versus spectral type relation of Looper
et al. (2008a) and then combining all pairs of single templates,
such that the spectral type of the primary was earlier than
that of the secondary, resulting in a total of 638, 686 binary
templates.14 More specifically, the primary spectral type was
fixed to lie between M7 and L7 while the secondary spec-
tral type ranged between T1 and T8, since types earlier than
T1 do not evidence strong methane features yet. The best bi-
nary fits were ranked using a chi-squared minimization routine.
We determined the true significance that a binary template is
superior to a single template by comparing the χ2 distribu-
tions of the binary and single fits using the one-sided F-test

14 We do not explicitly include uncertainties for the absolute magnitude to
spectral type relation, but the extensive number of binary templates we use
already models the intrinsic scatter in the population.
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statistic ηSB:

ηSB ≡ min
({

χ2
single

})
min

({
χ2

binary

}) dofbinary

dofsingle
. (2)

Here dof is the degrees of freedom for each fit (Equation (2) in
Burgasser et al. 2010a). Candidates with an F-statistic falling
under the 90% confidence level were rejected, including five
visual candidates. In particular, 2MASS J14493784+2355378
and 2MASS J14232186+6154005 (also a weak index-selected
candidate), two previously identified spectral binary candidates
from Gizis et al. (2003) and Geißler et al. (2011), were rejected
owing to their low confidence level that the binary fit was
statistically better than the single fit. Since our template sample
includes a wide range of objects such as young and unusually
blue and red dwarfs, the peculiarities of these candidates
may be better explained by factors other than unresolved
binarity. One exception to the index selection was 2MASSI
J1711457+223204, whose SpeX spectral type was too late to be
included in the candidate sample, yet it was a visual candidate
and passed the binary fit F-test. Figures 4 and 5 show the best
single (left) and binary (right) template fits to our strong and
weak candidates. Table 5 summarizes the results of these fits.

Upon further visual examination, some binary fits still proved
unsatisfactory. This was the case for the blue L dwarfs 2MASS
J11181292−0856106, 2MASS J14162409+1348267, 2MASS
J15150083+4847416, and 2MASS J17114558+40285779
and the subdwarfs 2MASS J03303847−2348463, 2MASS
J03301720+3505001, 2MASS J04024315+1730136, 2MASS
J15412408+5425598, and 2MASS J23311807+4607310.
Section 5.1 discusses these issues in more detail. As a result,
14 candidates have been recognized, of which 11 are newly
identified.

In an effort to balance the trade-off between fidelity of binary
candidates and completeness, we are leaning toward the former.
Our binary selection criteria are conservative, and it is likely
that other spectral binaries may be identified with slightly looser
constraints.

4. INDIVIDUAL CANDIDATES

In summary, from the ∼800 sources compiled in the candidate
sample, 12 were selected by visual inspection and 30 were
selected by spectral indices. Seven sources overlapped the
results of these selection methods. After fitting all 35 candidates,
17 were rejected owing to their confidence level being lower
than 90%, and four more owing to their unusually blue colors
(see Section 5.1), leading to a final count of 14: 6 strong, 7
weak, and 1 visual candidate not overlapping with the index
selected. Labels of strong and weak candidates come from index
selection.

4.1. Strong Candidates

4.1.1. 2MASS J02361794+0048548

Originally discovered by Geballe et al. (2002), 2MASS
J0236+0048 was classified as an L6 in the optical and L6.5
in the infrared by Casewell et al. (2008). In their study,
Casewell et al. (2008) comment that this object may belong
to the Pleiades moving group, given its proper motion of
[μαcosδ, μδ] = [161.33±10.10, 176.33±19.16] mas yr−1 and
agreement between photometric and moving group distances
at d = 26 pc. However, Scholz et al. (2009) reclassified this
object as an L9, reducing its spectroscopic distance to 18 pc,

while its strong FeH band at 0.99 μm argues against low surface
gravity (Allers et al. 2007). Nevertheless, the spectrum of this
source does not show any signs of youth (Allers et al. 2007).
2MASS J0236+0048 is selected by 11 out of 12 spectral index
combinations, and its binary fit is significantly better than its
single fit, making this a strong binary candidate with L5.0 ± 0.6
and T1.9 ± 1.1 components.

4.1.2. SDSS J093113.09+280228.9

Schmidt et al. (2010) discovered SDSS J0931+2802 in the
SDSS catalog and classified it as an L3 at a mean distance of
29 ± 9 pc. Its spectrum shows excess flux in the J band at
∼1.27μm and a noticeable dip in the H band in the vicinity of
1.63 μm, as expected for a T dwarf component. This source was
selected as a visual candidate, and by 11 out of 12 spectral index
combinations, and our spectral fitting predicts component types
of L1.4 ± 0.1 and T2.6 ± 0.9.

4.1.3. 2MASS J13114227+3629235

Identified as a brown dwarf candidate by Zhang et al. (2009),
2MASS J1311+3629 is a peculiar L5. While also classified
as unusually blue in wavelengths longer than J band (Mace
et al. 2013), it lacks evidence of low metallicity or H2 collision-
induced absorption (CIA) in H and K bands. Kirkpatrick et al.
(2011) identified the methane feature in the H band centered
around 1.63 μm, suggesting unresolved binarity. In this study,
it was selected by 11 spectral index combinations and also as a
visual candidate owing to its methane absorption band starting
at 1.60 μm. Template fitting gives spectral types of L4.8 ± 0.6
and T4.1 ± 2.7.

4.1.4. 2MASS J13411160−30525049

2MASS J1341−3052 was discovered by Reid et al. (2008)
and classified as an L3 in the optical by Faherty et al. (2009),
who also measured its parallax and distance (24±2 pc). 2MASS
J1341−3052 was selected by eight spectral indices, and its
spectral fitting suggests component spectral types of L1.2 ± 0.3
and T6.3 ± 1.0.

4.1.5. 2MASS J14532589+1420418

2MASS J1453+1420 was classified as an L1 in both the
infrared (Kirkpatrick et al. 2010) and the optical (Schmidt et al.
2010), where it clearly shows excess flux in the J band and a
dip in the H band. It is selected by 11 out of 12 spectral index
combinations, and it is slightly blue with a J − Ks color of
1.18 ± 0.05 as compared to the median for the L1 spectral type
1.34 ± 0.19 (Schmidt et al. 2010). It is best fit by L1.1 ± 0.0
and T6.0 ± 1.1 components.

4.1.6. 2MASS J20261584−2943124

2MASS J2026−2943 had already been identified as a spectral
binary candidate by Gelino & Burgasser (2010), but it failed
to be resolved by Keck AO, thus setting an upper limit in
separation of 0.′′25 or a projected separation of 9 AU at a distance
of 36 ± 5 pc (Gelino & Burgasser 2010). This source clearly
shows a dip in its spectrum centered at 1.63 μm, and it is best
fit by a combination of L1.0 ± 0.5 and T5.8 ± 1.0 components.

4.2. Weak Candidates

4.2.1. 2MASS J02060879+22355930

2MASS J0206+2235 was discovered and classified as an L5.5
by Chiu et al. (2006), and characterized as a blue L dwarf by
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Figure 4. Best fits to single (left) and binary (right) templates for our strong candidates. The black line shows the candidate spectrum. For the single fits, the red line
is the best single template. For the binary fits, the green line is the best binary template, which is the addition of the red (primary) and blue (secondary) lines. The
gray line represents the uncertainty in the candidate spectrum. The gray horizontal bars at the top of the figures mark the parts of the spectrum being fit, while water
absorption dominates the gaps. Notice the significant fitting improvement on the binary fits as compared to the single fits, particularly around the methane absorption
feature centered at 1.63 μm (see inset).

(A color version of this figure is available in the online journal.)
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Figure 4. (Continued)

Schneider et al. (2014). It was selected by seven spectral index
combinations and fit to L5.1 ± 0.5 and T3.2 ± 2.3 components.

4.2.2. DENIS-P J04272708−1127143

2MASS J0427−1127 was discovered and classified as an
M7 by Martı́n et al. (2010). It was selected by five spectral
index combinations and best fit by M7.4 ± 0.2 and T5.1 ± 1.5
components.

4.2.3. 2MASS J10365305−3441380

2MASS J1036−3441 was classified as an L6 (Gizis 2002)
at a distance of 21 ± 3 pc. It almost made the cut for a strong
candidate, since it was selected by seven spectral index combi-
nations. This source was best fit by components with L5.2 ± 0.4
and T1.4 ± 0.4 spectral types. Despite not having a pronounced
methane absorption feature centered at 1.63 μm, the binary fit
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Figure 5. Best fits to single (left) and binary (right) templates for our weak candidates. Same color code as for Figure 4.

(A color version of this figure is available in the online journal.)

is significantly better than the single fit, especially at the J-band
peak.

4.2.4. 2MASS J10595138−2113082

2MASS J1059−2113 is an L1 (Cruz et al. 2003) at a distance
of 32.1 ± 2.2 pc. This source was selected by four spectral
index combinations, and its best binary fit yields components

with L0.6 ± 0.4 and T3.4 ± 1.3 spectral types. Its spectrum
shows a strong absorption feature centered at 1.63 μm, as well
as a flux excess at 1.23 μm and 2.20 μm.

4.2.5. SDSS J142227.20+221557.5

SDSS J1422+2215 was identified and classified as an L6 in
the NIR by Chiu et al. (2006) and also as an unusually blue
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Figure 5. (Continued)

L dwarf, showing strong H2O and FeH absorption bands, which
may be due to subsolar metallicity and/or thinner condensate
cloud decks. It was selected by 4 out of 12 spectral index
combinations with most likely component spectral types of
L4.2 ± 0.6 and T4.1 ± 2.3.

4.2.6. WISE J16235970−0508114

WISE J1623−0508 was classified as an L1 in the NIR
(Thompson et al. 2013). This source was selected by four

spectral index combinations and best fit by L0.6 ± 0.3 and
T6.0 ± 0.3 components.

4.2.7. 2MASS J17072529−0138093

2MASS J1707−0138 was discovered and classified as an
L2 by Martı́n et al. (2010). Selected by five spectral index
combinations, its spectrum is best fit by components with
L0.7 ± 0.5 and T4.3 ± 2.0 spectral types. Its spectrum shows a
strong absorption feature centered at 1.63 μm.
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Figure 5. (Continued)

4.3. Visual Candidates

4.3.1. 2MASSI J1711457+223204

2MASS J1711+2232 was first identified and classified as an
L6.5 in the optical by Kirkpatrick et al. (2000). Owing to its
FeH and CH4 absorption features in the H band, Burgasser et al.
(2010a) suggested that it could be a spectral binary with L5.0 and
T5.5 components. We find slightly different component spectral
types of L1.5 ± 0.6 and T2.5 ± 1.0, yet this source was not
selected by spectral indices because of its late SpeX spectral
type of L8.8. Despite having been imaged with HST/WFPC, it
remains unresolved (Gizis et al. 2003).

5. DISCUSSION

5.1. Blue L Dwarfs as Contaminants

Four of the candidates selected by spectral indices were
rejected after spectral fitting owing to their poor binary fits.
An example is shown in Figure 7. When we investigated
these sources in detail, we found they were classified as
blue objects in the literature and/or showed an unusually
blue spectrum. 2MASS J11181292−0856106 was classified
as a metal-poor subdwarf by Kirkpatrick et al. (2010). SDSS
J141624.09+134826.7 is part of a resolved binary system with
a T7.5 companion (Burningham et al. 2010; Burgasser et al.
2010b; Scholz 2010) that is itself a blue outlier. Bowler et al.
(2010) rejected unresolved binarity for the primary based on a
qualitative comparison to the unusually blue L dwarf 2MASS
J11263991−5003550. The L6 2MASS J15150083+4847416
shows a stable RV of −29.97 ± 0.14 km s−1 (Wilson et al. 2003)
and no signs of binarity from its spectrum. Finally, 2MASS
J17114558+40285779 was discovered by Radigan et al. (2008)
as an unusually blue wide companion to the K star G203-50.
They discuss the possibility that the object may be unusual
owing to unresolved binarity, but they argue in favor of low
metallicity. For all of these sources, the lack of single templates
akin to blue objects resulted in statistically better binary fits, yet
the match is still relatively poor around the 1.63 μm methane
absorption feature.

A few more previously unidentified NIR subdwarfs were
also selected as weak candidates and subsequently rejected
owing to their poor binary fits. The best binary fits for
2MASS J03303847−2348463, 2MASS J03301720+3505001,
2MASS J04024315+1730136, 2MASS J15412408+5425598,

and 2MASS J23311807+4607310 use another subdwarf as a
primary, which again indicates that they are part of a rare blue
population that has a short supply of examples in this sample.

M+T binaries have slightly bluer spectra caused by the extra
flux in the J band corresponding to the peak in the T dwarfs.
Particularly, some sources originally classified as unusually
blue have been later identified as spectral binaries (e.g., SDSS
J0805+4812; Burgasser 2007b; Dupuy & Liu 2012). In contrast,
intrinsically blue L dwarfs have low metallicity, thin cloud
coverage, large-grain clouds, or a combination of these, causing
a blue tilt to the NIR spectrum (Schmidt et al. 2010; Burgasser
et al. 2008b; Cruz et al. 2007). Faherty et al. (2009) have defined
red and blue photometric outliers as the objects whose J − Ks

color placed them 2σ or 0.4 mag away from the average for their
spectral type, while pointing out the difficulty to distinguish
outliers beyond a spectral type of L9 due to the small sample
of objects. Figure 8 shows the J − K colors for our sample as
compared to their spectral types, including the median and ±2σ
lines as calculated from the sample (solid lines) and reported in
the literature (dashed lines) by West et al. (2011) and Schmidt
et al. (2010) for samples of M and L dwarfs, respectively.
Figure 8 suggests that blue L dwarfs are a major contaminant in
our sample since a significant fraction of both known binaries
and candidates have similar colors and thus lie in the same region
as blue sources. We conclude that the blue L dwarf contaminants
can be recognized if rejected as a result of their poor fits to binary
template spectra.

5.2. Separation Distribution of Binary Systems

True confirmation of our candidates requires observational
follow-up to either resolve the systems or measure RV or
astrometric variability. As noted in the introduction, spectral
binaries can be used to devise an unbiased method to measure
the VLM binary separation distribution. Therefore, it is worth
examining the separation distribution of VLM and brown dwarf
spectral binaries confirmed to date, to see whether there are any
differences compared to the resolved population.

Figure 9 shows the distribution of projected separations
from 122 confirmed VLM binaries.15 Among the observational

15 Based on the compilation at the Very-Low-Mass Binaries Archive,
http://www.vlmbinaries.org, and more recent discoveries by Choi et al. (2013),
Duchêne et al. (2013), Luhman (2013), Radigan et al. (2013), Sahlmann et al.
(2013), Burgasser et al. (2012), Liu et al. (2012), Artigau et al. (2011),
Burgasser et al. (2011b), Dhital et al. (2011), Gelino et al. (2011), Geißler et al.

15

http://www.vlmbinaries.org
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Table 5
Binary Candidates Resulting from Spectral Fitting

Source Primary SpTa Secondary SpTa Confidenceb Δ J Δ K SB Ref. Commentsc

Strong candidates

2MASS J02361794+0048548 L5.0 ± 0.6 T1.9 ± 1.1 97% 1.05 ± 0.48 1.80 ± 0.55 1 · · ·
SDSS J093113.23+280227.1 L1.4 ± 0.1 T2.6 ± 0.9 >99% 2.22 ± 0.23 2.74 ± 0.25 1 V, B
2MASS J13114227+3629235 L4.8 ± 0.6 T4.1 ± 2.7 >99% 2.19 ± 1.02 3.14 ± 1.33 5 V
2MASS J13411160-30525049 L1.2 ± 0.3 T6.3 ± 1.0 98% 3.28 ± 0.53 4.82 ± 0.63 1 V
2MASS J14532589+1420418 L1.1 ± 0.0 T6.0 ± 1.1 >99% 3.27 ± 0.46 4.42 ± 0.63 1 V, (B)
2MASS J20261584-2943124 L0.1 ± 0.5 T5.8 ± 1.0 >99% 3.42 ± 0.40 4.82 ± 0.57 4 V

Weak candidates

2MASS J02060879+22355930 L5.1 ± 0.5 T3.2 ± 2.3 95% 1.61 ± 0.89 2.36 ± 1.25 1 · · ·
DENIS-P J04272708-1127143 M7.4 ± 0.2 T5.1 ± 1.5 92% 4.13 ± 0.62 4.98 ± 0.84 1 · · ·
2MASS J10365305-3441380 L5.2 ± 0.4 T1.4 ± 0.4 >99% 0.51 ± 0.32 1.41 ± 0.24 1 · · ·
2MASS J10595138-2113082 L0.6 ± 0.4 T3.4 ± 1.3 >99% 2.58 ± 0.32 3.30 ± 0.64 1 V
SDSS J142227.20+221557.5 L4.2 ± 0.6 T4.1 ± 2.3 96% 2.36 ± 0.78 3.22 ± 1.18 1 B
WISE J16235970-0508114 L0.6 ± 0.3 T6.0 ± 0.8 >99% 3.39 ± 0.40 4.80 ± 0.53 1 · · ·
2MASS J17072529-0138093 L0.7 ± 0.5 T4.3 ± 2.0 97% 2.87 ± 0.75 3.75 ± 1.01 1 · · ·

Visual candidates

2MASSI J1711457+223204 L1.5 ± 0.6 T2.5 ± 1.0 >99% 1.20 ± 0.40 3.08 ± 0.64 6 V

Rejected blue L dwarfsd

2MASS J11181292-0856106 L1.4 ± 0.7 T2.3 ± 2.3 93% 1.50 ± 0.82 2.42 ± 1.11 · · · B
SDSS J141624.09+134826.7 L4.4 ± 1.1 T3.9 ± 1.4 >99% 2.12 ± 0.42 2.99 ± 0.67 · · · B
2MASS J15150083+4847416 L5.0 ± 0.6 T2.7 ± 1.9 93% 1.32 ± 0.61 2.17 ± 0.84 1 B
2MASS J17114559+4028578 L4.4 ± 0.3 T2.7 ± 0.8 >99% 1.60 ± 0.18 2.32 ± 0.33 · · · B

Rejected candidates

2MASS J03205965+1854233 M7.8 ± 0.1 T6.0 ± 1.5 58% 4.43 ± 0.73 5.47 ± 0.92 · · · V
2MASS J03264453+1919309 M8.5 ± 0.0 T6.7 ± 0.8 87% 4.66 ± 0.50 5.91 ± 0.58 · · · V
2MASS J03303847-2348463 M7.7 ± 0.3 T5.6 ± 1.6 49% 3.97 ± 0.85 4.58 ± 1.05 · · · · · ·
2MASS J03301720+3505001 M7.7 ± 0.5 T5.3 ± 1.7 55% 4.27 ± 0.81 5.08 ± 1.03 · · · · · ·
2MASS J03440891+0111249 L0.6 ± 0.5 T4.8 ± 2.1 56% 3.34 ± 0.88 4.14 ± 1.19 · · · · · ·
2MASS J04024315+1730136 M7.5 ± 0.2 T5.4 ± 1.7 48% 4.59 ± 0.78 5.29 ± 1.01 · · · · · ·
2MASS J04430581-3202090 L4.5 ± 0.3 T1.7 ± 1.0 85% 1.41 ± 0.34 2.05 ± 0.39 1 B
2MASS J08433328+1024435 L0.9 ± 0.3 T4.9 ± 2.0 80% 3.01 ± 0.75 3.99 ± 1.03 · · · · · ·
2MASS J08475148+0138110 L2.0 ± 0.7 T5.7 ± 2.1 59% 3.19 ± 0.74 4.61 ± 1.07 · · · · · ·
2MASS J14232186+6154005 L1.9 ± 0.8 T4.6 ± 1.9 72% 2.63 ± 0.67 3.78 ± 0.97 3 V
2MASS J14493784+2355378 M9.4 ± 0.3 T6.2 ± 1.7 51% 4.22 ± 0.69 5.39 ± 1.00 2 V
2MASS J15412408+5425598 M7.6 ± 0.3 T5.4 ± 1.6 55% 4.53 ± 0.75 5.22 ± 0.99 · · · · · ·
2MASS J16403561+2922225 M8.1 ± 0.7 T5.3 ± 1.7 51% 4.38 ± 0.77 5.09 ± 1.00 · · · · · ·
2MASS J17175402+64274503 M8.5 ± 0.1 T4.6 ± 1.8 86% 4.18 ± 0.70 4.93 ± 1.02 · · · · · ·
2MASS J19064847+4011068 L0.0 ± 0.4 T5.9 ± 1.8 74% 3.68 ± 0.75 4.85 ± 1.01 · · · · · ·
2MASS J20472471+1421526 M8.4 ± 0.2 T5.7 ± 1.6 81% 4.10 ± 0.70 5.13 ± 0.95 · · · V
2MASS J23311807+4607310 M7.5 ± 0.0 T5.7 ± 1.5 53% 4.60 ± 0.75 5.30 ± 0.95 · · · · · ·

Notes.
a Uncertainties include systematics from spectral classification of Burgasser (2007a).
b Confidence that the source fits the binary template better than the single template based on a one-sided F-test. See Section 3.3.
c B, unusually blue L dwarf; (B), from this paper; V, also a visual candidate.
d See Section 5.1.
References. (1) this paper; (2) Bouy et al. 2003; (3) Geißler et al. 2011; (4) Gelino & Burgasser 2010; (5) Kirkpatrick et al. 2011; (6) Burgasser et al. 2010a.

methods for detecting binaries, such as direct imaging, RV vari-
ations, astrometric variations, and microlensing, direct imaging
has proven to be the most successful so far (73% of confirmed
VLM binaries), but its biggest drawback is its limit in resolution.
At minimum angular scales of 0.′′1–0.′′2 for AO and HST pro-
grams, and typical distances of field brown dwarfs of 20–30 pc,
telescope sensitivity reaches its limit at separations of around
2–6 AU. At 2.90 AU, the mean projected separation of eight

(2011), Liu et al. (2011), Allers et al. (2010), Burgasser et al. (2010a), Hwang
et al. (2010), Stumpf et al. (2010), Allers et al. (2009) and Luhman et al.
(2009).

independently confirmed spectral binaries plotted in Figure 9
falls at the lower end of this sensitivity limit, at less than the
mean of known VLM binaries excluding the spectral binaries
(3.75 AU), raising the possibility that there may be significantly
more tightly bound systems.

To assess whether this is a significant difference, we per-
formed a two-sample Kolmogorov–Smirnov test comparing
the projected separation distributions of all binary systems to
the confirmed spectral binaries. Specifically, the distributions
were constrained in angular separation to 50–500 mas, where
the lower limit corresponds to the smallest possible imaging
resolution in good seeing, while the upper limit restricts the
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Figure 6. Best fits to single (left) and binary (right) templates for the only visual candidate not selected by indices. Same color code as for Figure 4.

(A color version of this figure is available in the online journal.)
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Figure 7. Example of best fits to the blue L dwarf SDSS J141624.09+134826.7.

(A color version of this figure is available in the online journal.)

maximum size of the slit. In addition, the distance was con-
strained to less than 30 pc, since objects that are farther away
would be more difficult to confirm as binaries. In this way, we
intend to fairly compare the spectral binary method to the other
available methods for binary detection. These constraints re-
duced the number of spectral binaries to six. The result was
a D statistic of 0.41 and a probability of 25%. While the low
probability is indicative of a difference between the samples, the
small sample size makes this statistic inconclusive. Many more
of the existing spectral binaries need to be characterized before
a significant difference can be confirmed or ruled out.

6. SUMMARY

We have identified 14 brown dwarf binary candidates with
late-M/early-L plus T dwarf components based on visual
inspection of low-resolution data and analysis with spectral
indices and template fitting. We combined five new spectral
indices, with previously defined ones, spectral type, and J − H,
H − Ks , and J − Ks colors to define pairings that effectively
select spectral binary candidates, and we confirmed them by
comparison to both single and binary template spectra from the

SpeX Prism Library. Unusually blue L dwarfs were the main
contaminant of this analysis, with four candidates classified as
unusually blue but nonetheless being poorly matched to binary
spectra. Exploring the separation distribution of binary systems,
we find suggestive evidence that spectral binaries are more
closely separated than other binaries, but the confirmed sample
is too small to be conclusive. We are now undertaking follow-up
AO imaging and RV monitoring of these candidates to confirm
them and measure orbital properties.

The authors thank telescope operators for their assistance
during the observations. D.B.G. would like to thank the
Friends of the International Center at UCSD for their gener-
ous scholarship, as well as Davy Kirkpatrick and fellow grad-
uate students Alex Mendez and David Vidmar for their help-
ful discussion and coding tips. This publication makes use
of data from the SpeX Prism Spectral Libraries, maintained
by Adam Burgasser at http://www.browndwarfs.org/spexprism,
the Dwarf Archives Compendium, maintained by Chris Gelino
at http://DwarfArchives.org, and the VLM Binaries Archive,
maintained by Nick Siegler at http://vlmbinaries.org. The au-
thors wish to recognize and acknowledge the very significant
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Figure 8. Comparison of spectrophotometric J − Ks colors of the “candidate”
sample as a function of spectral type. The solid black line shows the median
J − K colors from the sample, while the dashed black line represents the median
J − K colors as calculated by West et al. (2011) and Schmidt et al. (2010) from
samples of M and L dwarfs. The +2σ and −2σ boundaries are indicated in red
and blue, respectively. The dashed lines indicate the +2σ and −2σ boundaries
from West et al. (2011) and Schmidt et al. (2010). Outliers to these regions
indicate unusually red and blue dwarfs as described by Faherty et al. (2009).
Red stars indicate confirmed M/L+T binaries, while large and small green
triangles are strong and weak binary candidates as selected by spectral indices.
Blue circles represent unusually blue sources as listed in the literature.

(A color version of this figure is available in the online journal.)
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Figure 9. Projected separation (ρ) distribution of 122 confirmed brown dwarf
and VLM binary systems from the Very Low Mass Binaries Archive. Spectral
binaries are shown in red. Binary systems with only upper limits in separation
have been excluded.

(A color version of this figure is available in the online journal.)

cultural role and reverence that the summit of Mauna Kea has
always had within the indigenous Hawaiian community. We are
most fortunate to have the opportunity to conduct observations
from this mountain.

Facility: IRTF (SpeX)
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Shkolnik, E. L., Anglada-Escudé, G., Liu, M. C., et al. 2012, ApJ, 758, 56
Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23
Stamatellos, D., & Whitworth, A. P. 2009, MNRAS, 392, 413
Stumpf, M. B., Brandner, W., Bouy, H., Henning, T., & Hippler, S. 2010, A&A,

516, A37
Stumpf, M. B., Brandner, W., Henning, T., et al. 2008, arXiv:0811.0556
Stumpf, M. B., Geißler, K., Bouy, H., et al. 2011, A&A, 525, A123
Thompson, M. A., Kirkpatrick, J. D., Mace, G. N., et al. 2013, PASP,

125, 809
Tinney, C. G., Delfosse, X., Forveille, T., & Allard, F. 1998, A&A, 338, 1066
Tinney, C. G., Mould, J. R., & Reid, I. N. 1993, AJ, 105, 1045
Vacca, W. D., Cushing, M. C., & Rayner, J. T. 2003, PASP, 115, 389
van Biesbroeck, G. 1961, AJ, 66, 528
West, A. A., Hawley, S. L., Bochanski, J. J., et al. 2008, AJ, 135, 785
West, A. A., Morgan, D. P., Bochanski, J. J., et al. 2011, AJ, 141, 97
Whitworth, A. P., & Zinnecker, H. 2004, A&A, 427, 299
Wilson, J. C., Kirkpatrick, J. D., Gizis, J. E., et al. 2001, AJ, 122, 1989
Wilson, J. C., Miller, N. A., Gizis, J. E., et al. 2003, in IAU Symp. 211, Brown

Dwarfs, ed. E. Martı́n (San Francisco, CA: ASP), 197
York, D. G., Adelman, J., Anderson, J. E., Jr., et al. 2000, AJ, 120, 1579
Zhang, Z. H., Pinfield, D. J., Day-Jones, A. C., et al. 2010, MNRAS, 404, 1817
Zhang, Z. H., Pokorny, R. S., Jones, H. R. A., et al. 2009, A&A, 497, 619

19

http://dx.doi.org/10.1051/aas:1999158
http://adsabs.harvard.edu/abs/1999A&AS..135...41D
http://adsabs.harvard.edu/abs/1999A&AS..135...41D
http://dx.doi.org/10.1111/j.1365-2966.2004.07803.x
http://adsabs.harvard.edu/abs/2004MNRAS.351..617D
http://adsabs.harvard.edu/abs/2004MNRAS.351..617D
http://dx.doi.org/10.1088/0004-6256/141/1/7
http://adsabs.harvard.edu/abs/2011AJ....141....7D
http://adsabs.harvard.edu/abs/2011AJ....141....7D
http://dx.doi.org/10.1051/0004-6361/201321691
http://adsabs.harvard.edu/abs/2013A&A...555A.137D
http://adsabs.harvard.edu/abs/2013A&A...555A.137D
http://dx.doi.org/10.1088/0067-0049/201/2/19
http://adsabs.harvard.edu/abs/2012ApJS..201...19D
http://adsabs.harvard.edu/abs/2012ApJS..201...19D
http://www.arxiv.org/abs/0912.0738
http://adsabs.harvard.edu/abs/1999A&A...351L...5E
http://adsabs.harvard.edu/abs/1999A&A...351L...5E
http://dx.doi.org/10.1088/0004-6256/137/1/1
http://adsabs.harvard.edu/abs/2009AJ....137....1F
http://adsabs.harvard.edu/abs/2009AJ....137....1F
http://dx.doi.org/10.1088/0004-637X/752/1/56
http://adsabs.harvard.edu/abs/2012ApJ...752...56F
http://adsabs.harvard.edu/abs/2012ApJ...752...56F
http://dx.doi.org/10.1086/301224
http://adsabs.harvard.edu/abs/2000AJ....119..928F
http://adsabs.harvard.edu/abs/2000AJ....119..928F
http://dx.doi.org/10.1086/171708
http://adsabs.harvard.edu/abs/1992ApJ...396..178F
http://adsabs.harvard.edu/abs/1992ApJ...396..178F
http://dx.doi.org/10.1111/j.1365-2966.2012.21132.x
http://adsabs.harvard.edu/abs/2012MNRAS.427.3280F
http://adsabs.harvard.edu/abs/2012MNRAS.427.3280F
http://dx.doi.org/10.1051/0004-6361:200400069
http://adsabs.harvard.edu/abs/2004A&A...427L...1F
http://adsabs.harvard.edu/abs/2004A&A...427L...1F
http://dx.doi.org/10.1086/324078
http://adsabs.harvard.edu/abs/2002ApJ...564..466G
http://adsabs.harvard.edu/abs/2002ApJ...564..466G
http://dx.doi.org/10.1088/0004-637X/732/1/56
http://adsabs.harvard.edu/abs/2011ApJ...732...56G
http://adsabs.harvard.edu/abs/2011ApJ...732...56G
http://dx.doi.org/10.1088/0004-6256/140/1/110
http://adsabs.harvard.edu/abs/2010AJ....140..110G
http://adsabs.harvard.edu/abs/2010AJ....140..110G
http://dx.doi.org/10.1088/0004-6256/142/2/57
http://adsabs.harvard.edu/abs/2011AJ....142...57G
http://adsabs.harvard.edu/abs/2011AJ....142...57G
http://dx.doi.org/10.1086/341259
http://adsabs.harvard.edu/abs/2002ApJ...575..484G
http://adsabs.harvard.edu/abs/2002ApJ...575..484G
http://dx.doi.org/10.1046/j.1365-8711.2000.03060.x
http://adsabs.harvard.edu/abs/2000MNRAS.311..385G
http://adsabs.harvard.edu/abs/2000MNRAS.311..385G
http://dx.doi.org/10.1086/301456
http://adsabs.harvard.edu/abs/2000AJ....120.1085G
http://adsabs.harvard.edu/abs/2000AJ....120.1085G
http://dx.doi.org/10.1086/374991
http://adsabs.harvard.edu/abs/2003AJ....125.3302G
http://adsabs.harvard.edu/abs/2003AJ....125.3302G
http://dx.doi.org/10.1086/423911
http://adsabs.harvard.edu/abs/2004AJ....128.1733G
http://adsabs.harvard.edu/abs/2004AJ....128.1733G
http://dx.doi.org/10.1086/345549
http://adsabs.harvard.edu/abs/2002ApJ...580L..77H
http://adsabs.harvard.edu/abs/2002ApJ...580L..77H
http://adsabs.harvard.edu/abs/1966VA......8...89H
http://adsabs.harvard.edu/abs/1966VA......8...89H
http://dx.doi.org/10.1086/340697
http://adsabs.harvard.edu/abs/2002AJ....123.3409H
http://adsabs.harvard.edu/abs/2002AJ....123.3409H
http://adsabs.harvard.edu/abs/1963PThPh..30..460H
http://adsabs.harvard.edu/abs/1963PThPh..30..460H
http://dx.doi.org/10.1088/0004-637X/723/1/797
http://adsabs.harvard.edu/abs/2010ApJ...723..797H
http://adsabs.harvard.edu/abs/2010ApJ...723..797H
http://dx.doi.org/10.1093/mnras/252.1.61P
http://adsabs.harvard.edu/abs/1991MNRAS.252P..61I
http://adsabs.harvard.edu/abs/1991MNRAS.252P..61I
http://dx.doi.org/10.1088/0004-637X/704/2/975
http://adsabs.harvard.edu/abs/2009ApJ...704..975J
http://adsabs.harvard.edu/abs/2009ApJ...704..975J
http://dx.doi.org/10.1051/0004-6361:200810413
http://adsabs.harvard.edu/abs/2008A&A...492..545J
http://adsabs.harvard.edu/abs/2008A&A...492..545J
http://dx.doi.org/10.1051/0004-6361:20040046
http://adsabs.harvard.edu/abs/2004A&A...416L..17K
http://adsabs.harvard.edu/abs/2004A&A...416L..17K
http://dx.doi.org/10.1111/j.1365-2966.2006.11026.x
http://adsabs.harvard.edu/abs/2007MNRAS.374..445K
http://adsabs.harvard.edu/abs/2007MNRAS.374..445K
http://dx.doi.org/10.1051/0004-6361:20030218
http://adsabs.harvard.edu/abs/2003A&A...403..929K
http://adsabs.harvard.edu/abs/2003A&A...403..929K
http://dx.doi.org/10.1146/annurev.astro.42.053102.134017
http://adsabs.harvard.edu/abs/2005ARA&A..43..195K
http://adsabs.harvard.edu/abs/2005ARA&A..43..195K
http://dx.doi.org/10.1086/592768
http://adsabs.harvard.edu/abs/2008ApJ...689.1295K
http://adsabs.harvard.edu/abs/2008ApJ...689.1295K
http://dx.doi.org/10.1088/0067-0049/197/2/19
http://adsabs.harvard.edu/abs/2011ApJS..197...19K
http://adsabs.harvard.edu/abs/2011ApJS..197...19K
http://dx.doi.org/10.1086/117323
http://adsabs.harvard.edu/abs/1995AJ....109..797K
http://adsabs.harvard.edu/abs/1995AJ....109..797K
http://dx.doi.org/10.1088/0067-0049/190/1/100
http://adsabs.harvard.edu/abs/2010ApJS..190..100K
http://adsabs.harvard.edu/abs/2010ApJS..190..100K
http://dx.doi.org/10.1086/307414
http://adsabs.harvard.edu/abs/1999ApJ...519..802K
http://adsabs.harvard.edu/abs/1999ApJ...519..802K
http://dx.doi.org/10.1086/301427
http://adsabs.harvard.edu/abs/2000AJ....120..447K
http://adsabs.harvard.edu/abs/2000AJ....120..447K
http://dx.doi.org/10.1086/420707
http://adsabs.harvard.edu/abs/2004AJ....127.3553K
http://adsabs.harvard.edu/abs/2004AJ....127.3553K
http://dx.doi.org/10.1088/0004-637X/757/2/141
http://adsabs.harvard.edu/abs/2012ApJ...757..141K
http://adsabs.harvard.edu/abs/2012ApJ...757..141K
http://dx.doi.org/10.1086/147589
http://adsabs.harvard.edu/abs/1963ApJ...137.1121K
http://adsabs.harvard.edu/abs/1963ApJ...137.1121K
http://dx.doi.org/10.1086/345943
http://adsabs.harvard.edu/abs/2002ApJ...581L..47L
http://adsabs.harvard.edu/abs/2002ApJ...581L..47L
http://dx.doi.org/10.1086/345972
http://adsabs.harvard.edu/abs/2003AJ....125.1598L
http://adsabs.harvard.edu/abs/2003AJ....125.1598L
http://dx.doi.org/10.1086/129934
http://adsabs.harvard.edu/abs/1976PASP...88..232L
http://adsabs.harvard.edu/abs/1976PASP...88..232L
http://dx.doi.org/10.1086/503333
http://adsabs.harvard.edu/abs/2006PASP..118..659L
http://adsabs.harvard.edu/abs/2006PASP..118..659L
http://dx.doi.org/10.1088/0004-637X/740/2/108
http://adsabs.harvard.edu/abs/2011ApJ...740..108L
http://adsabs.harvard.edu/abs/2011ApJ...740..108L
http://dx.doi.org/10.1088/0004-637X/758/1/57
http://adsabs.harvard.edu/abs/2012ApJ...758...57L
http://adsabs.harvard.edu/abs/2012ApJ...758...57L
http://dx.doi.org/10.1088/0004-637X/722/1/311
http://adsabs.harvard.edu/abs/2010ApJ...722..311L
http://adsabs.harvard.edu/abs/2010ApJ...722..311L
http://dx.doi.org/10.1051/0004-6361:20020698
http://adsabs.harvard.edu/abs/2002A&A...389L..20L
http://adsabs.harvard.edu/abs/2002A&A...389L..20L
http://dx.doi.org/10.1051/0004-6361:20042456
http://adsabs.harvard.edu/abs/2005A&A...440.1061L
http://adsabs.harvard.edu/abs/2005A&A...440.1061L
http://dx.doi.org/10.1086/590382
http://adsabs.harvard.edu/abs/2008ApJ...685.1183L
http://adsabs.harvard.edu/abs/2008ApJ...685.1183L
http://dx.doi.org/10.1086/591025
http://adsabs.harvard.edu/abs/2008ApJ...686..528L
http://adsabs.harvard.edu/abs/2008ApJ...686..528L
http://dx.doi.org/10.1088/2041-8205/767/1/L1
http://adsabs.harvard.edu/abs/2013ApJ...767L...1L
http://adsabs.harvard.edu/abs/2013ApJ...767L...1L
http://dx.doi.org/10.1088/0004-637X/691/2/1265
http://adsabs.harvard.edu/abs/2009ApJ...691.1265L
http://adsabs.harvard.edu/abs/2009ApJ...691.1265L
http://dx.doi.org/10.1088/0067-0049/205/1/6
http://adsabs.harvard.edu/abs/2013ApJS..205....6M
http://adsabs.harvard.edu/abs/2013ApJS..205....6M
http://dx.doi.org/10.1051/0004-6361/201321720
http://adsabs.harvard.edu/abs/2013A&A...560A..52M
http://adsabs.harvard.edu/abs/2013A&A...560A..52M
http://dx.doi.org/10.1086/301107
http://adsabs.harvard.edu/abs/1999AJ....118.2466M
http://adsabs.harvard.edu/abs/1999AJ....118.2466M
http://dx.doi.org/10.1051/0004-6361/201014202
http://adsabs.harvard.edu/abs/2010A&A...517A..53M
http://adsabs.harvard.edu/abs/2010A&A...517A..53M
http://dx.doi.org/10.1086/508199
http://adsabs.harvard.edu/abs/2006AJ....132.2074M
http://adsabs.harvard.edu/abs/2006AJ....132.2074M
http://dx.doi.org/10.1086/524721
http://adsabs.harvard.edu/abs/2008ApJ...676.1281M
http://adsabs.harvard.edu/abs/2008ApJ...676.1281M
http://dx.doi.org/10.1086/341790
http://adsabs.harvard.edu/abs/2002ApJ...576..870P
http://adsabs.harvard.edu/abs/2002ApJ...576..870P
http://dx.doi.org/10.1002/asna.201111574
http://adsabs.harvard.edu/abs/2011AN....332..668P
http://adsabs.harvard.edu/abs/2011AN....332..668P
http://dx.doi.org/10.1111/j.1365-2966.2007.12564.x
http://adsabs.harvard.edu/abs/2008MNRAS.383..831P
http://adsabs.harvard.edu/abs/2008MNRAS.383..831P
http://dx.doi.org/10.1051/0004-6361:20030188
http://adsabs.harvard.edu/abs/2003A&A...401..959P
http://adsabs.harvard.edu/abs/2003A&A...401..959P
http://dx.doi.org/10.1046/j.1365-8711.2003.06630.x
http://adsabs.harvard.edu/abs/2003MNRAS.342.1241P
http://adsabs.harvard.edu/abs/2003MNRAS.342.1241P
http://dx.doi.org/10.1051/0004-6361:20047009
http://adsabs.harvard.edu/abs/2004A&A...421..763P
http://adsabs.harvard.edu/abs/2004A&A...421..763P
http://dx.doi.org/10.1088/0004-637X/778/1/36
http://adsabs.harvard.edu/abs/2013ApJ...778...36R
http://adsabs.harvard.edu/abs/2013ApJ...778...36R
http://dx.doi.org/10.1086/592379
http://adsabs.harvard.edu/abs/2008ApJ...689..471R
http://adsabs.harvard.edu/abs/2008ApJ...689..471R
http://dx.doi.org/10.1086/367745
http://adsabs.harvard.edu/abs/2003PASP..115..362R
http://adsabs.harvard.edu/abs/2003PASP..115..362R
http://dx.doi.org/10.1126/science.282.5392.1309
http://adsabs.harvard.edu/abs/1998Sci...282.1309R
http://adsabs.harvard.edu/abs/1998Sci...282.1309R
http://dx.doi.org/10.1088/0004-6256/136/3/1290
http://adsabs.harvard.edu/abs/2008AJ....136.1290R
http://adsabs.harvard.edu/abs/2008AJ....136.1290R
http://dx.doi.org/10.1086/430462
http://adsabs.harvard.edu/abs/2005PASP..117..676R
http://adsabs.harvard.edu/abs/2005PASP..117..676R
http://dx.doi.org/10.1086/321121
http://adsabs.harvard.edu/abs/2001AJ....122..432R
http://adsabs.harvard.edu/abs/2001AJ....122..432R
http://dx.doi.org/10.1086/117488
http://adsabs.harvard.edu/abs/1995AJ....109.2817R
http://adsabs.harvard.edu/abs/1995AJ....109.2817R
http://dx.doi.org/10.1051/0004-6361/201321871
http://adsabs.harvard.edu/abs/2013A&A...556A.133S
http://adsabs.harvard.edu/abs/2013A&A...556A.133S
http://dx.doi.org/10.1086/374794
http://adsabs.harvard.edu/abs/2003ApJ...586L.149S
http://adsabs.harvard.edu/abs/2003ApJ...586L.149S
http://dx.doi.org/10.1088/0004-6256/139/5/1808
http://adsabs.harvard.edu/abs/2010AJ....139.1808S
http://adsabs.harvard.edu/abs/2010AJ....139.1808S
http://dx.doi.org/10.1088/0004-6256/147/2/34
http://adsabs.harvard.edu/abs/2014AJ....147...34S
http://adsabs.harvard.edu/abs/2014AJ....147...34S
http://dx.doi.org/10.1086/338095
http://adsabs.harvard.edu/abs/2002AJ....123..458S
http://adsabs.harvard.edu/abs/2002AJ....123..458S
http://dx.doi.org/10.1051/0004-6361/201014078
http://adsabs.harvard.edu/abs/2010A&A...510L...8S
http://adsabs.harvard.edu/abs/2010A&A...510L...8S
http://dx.doi.org/10.1051/0004-6361/201323015
http://adsabs.harvard.edu/abs/2014A&A...561A.113S
http://adsabs.harvard.edu/abs/2014A&A...561A.113S
http://dx.doi.org/10.1051/0004-6361:200400098
http://adsabs.harvard.edu/abs/2004A&A...428L..25S
http://adsabs.harvard.edu/abs/2004A&A...428L..25S
http://dx.doi.org/10.1051/0004-6361:20010811
http://adsabs.harvard.edu/abs/2001A&A...374L..12S
http://adsabs.harvard.edu/abs/2001A&A...374L..12S
http://dx.doi.org/10.1051/0004-6361:200811053
http://adsabs.harvard.edu/abs/2009A&A...494..949S
http://adsabs.harvard.edu/abs/2009A&A...494..949S
http://dx.doi.org/10.1088/0004-637X/699/1/649
http://adsabs.harvard.edu/abs/2009ApJ...699..649S
http://adsabs.harvard.edu/abs/2009ApJ...699..649S
http://dx.doi.org/10.1088/0004-637X/758/1/56
http://adsabs.harvard.edu/abs/2012ApJ...758...56S
http://adsabs.harvard.edu/abs/2012ApJ...758...56S
http://dx.doi.org/10.1146/annurev.aa.25.090187.000323
http://adsabs.harvard.edu/abs/1987ARA&A..25...23S
http://adsabs.harvard.edu/abs/1987ARA&A..25...23S
http://dx.doi.org/10.1111/j.1365-2966.2008.14069.x
http://adsabs.harvard.edu/abs/2009MNRAS.392..413S
http://adsabs.harvard.edu/abs/2009MNRAS.392..413S
http://dx.doi.org/10.1051/0004-6361/200913711
http://adsabs.harvard.edu/abs/2010A&A...516A..37S
http://adsabs.harvard.edu/abs/2010A&A...516A..37S
http://www.arxiv.org/abs/0811.0556
http://dx.doi.org/10.1051/0004-6361/201015392
http://adsabs.harvard.edu/abs/2011A&A...525A.123S
http://adsabs.harvard.edu/abs/2011A&A...525A.123S
http://dx.doi.org/10.1086/671426
http://adsabs.harvard.edu/abs/2013PASP..125..809T
http://adsabs.harvard.edu/abs/2013PASP..125..809T
http://adsabs.harvard.edu/abs/1998A&A...338.1066T
http://adsabs.harvard.edu/abs/1998A&A...338.1066T
http://dx.doi.org/10.1086/116492
http://adsabs.harvard.edu/abs/1993AJ....105.1045T
http://adsabs.harvard.edu/abs/1993AJ....105.1045T
http://dx.doi.org/10.1086/346193
http://adsabs.harvard.edu/abs/2003PASP..115..389V
http://adsabs.harvard.edu/abs/2003PASP..115..389V
http://dx.doi.org/10.1086/108457
http://adsabs.harvard.edu/abs/1961AJ.....66..528V
http://adsabs.harvard.edu/abs/1961AJ.....66..528V
http://dx.doi.org/10.1088/0004-6256/135/3/785
http://adsabs.harvard.edu/abs/2008AJ....135..785W
http://adsabs.harvard.edu/abs/2008AJ....135..785W
http://dx.doi.org/10.1088/0004-6256/141/3/97
http://adsabs.harvard.edu/abs/2011AJ....141...97W
http://adsabs.harvard.edu/abs/2011AJ....141...97W
http://dx.doi.org/10.1051/0004-6361:20041131
http://adsabs.harvard.edu/abs/2004A&A...427..299W
http://adsabs.harvard.edu/abs/2004A&A...427..299W
http://dx.doi.org/10.1086/323134
http://adsabs.harvard.edu/abs/2001AJ....122.1989W
http://adsabs.harvard.edu/abs/2001AJ....122.1989W
http://adsabs.harvard.edu/abs/2003IAUS..211..197W
http://dx.doi.org/10.1086/301513
http://adsabs.harvard.edu/abs/2000AJ....120.1579Y
http://adsabs.harvard.edu/abs/2000AJ....120.1579Y
http://dx.doi.org/10.1111/j.1365-2966.2010.16394.x
http://adsabs.harvard.edu/abs/2010MNRAS.404.1817Z
http://adsabs.harvard.edu/abs/2010MNRAS.404.1817Z
http://dx.doi.org/10.1051/0004-6361/200810314
http://adsabs.harvard.edu/abs/2009A&A...497..619Z
http://adsabs.harvard.edu/abs/2009A&A...497..619Z

	1. INTRODUCTION
	2. SpeX SPECTRAL SAMPLE
	3. IDENTIFICATION OF SPECTRAL BINARIES
	3.1. Visual Inspection
	3.2. Spectral Indices
	3.3. Spectral Template Fitting

	4. INDIVIDUAL CANDIDATES
	4.1. Strong Candidates
	4.2. Weak Candidates
	4.3. Visual Candidates

	5. DISCUSSION
	5.1. Blue LDwarfs as Contaminants
	5.2. Separation Distribution of Binary Systems

	6. SUMMARY
	REFERENCES

