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Abstract—Measurements of small-signal intensity modulation
from direct-modulated distributed feedback (DFB) semiconduc-
tor lasers after propagation in dispersive fiber have previously
been used to extract intrinsic laser chirp parameters such as
linewidth enhancement factor and crossover frequency. Here, we
demonstrate that the simple rate equations do not satisfactorily
account for the frequency response of real DFB lasers and de-
scribe some experimental techniques that conveniently determine
the precise laser chirp. Implications for simulation of high-speed
lightwave systems are also considered.

Index Terms—Distributed feedback (DFB) lasers, gratings,
lasers, laser measurements, optical fiber communication, optical
fiber measurement applications, optical modulation, quantum-
well lasers, semiconductor.

I. INTRODUCTION

T HE performance of high-speed lightwave systems using
1.55 m distributed feedback (DFB) semiconductor lasers

with direct modulation is significantly affected by laser chirp,
the frequency modulation (FM) which accompanies the inten-
sity modulation (IM). Semiconductor laser chirp is commonly
characterized by two parameters, the linewidth enhancement
factor and the cross-over frequency between the adiabatic
and transient regimes of chirp [1], which follow from a rate
equation analysis of the laser.

Important effects that are not considered explicitly in simple
laser rate equation analyses of laser chirp include the longitu-
dinal and transverse spatial variations of the optical intensity
and/or carrier density. Roughly speaking, these contribute to
adiabatic chirp. Sophisticated, mostly numerical, analyses of
the dynamic characteristics of multiquantum-well distributed
feedback (MQW-DFB) lasers considering spatial hole burning,
carrier transport, and carrier capture exist in the literature
[2]–[8] and it is possible to infer from these analyses that
in a laser the adiabatic chirp is, in fact, not quite adiabatic.
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Recently, it has been demonstrated that the frequency mod-
ulation to intensity modulation (FM-to-IM) conversion effect
due to propagation in dispersive optical fiber can be used
to measure conveniently the linewidth enhancement factor
and crossover frequency of the laser [10]–[14]. In careful
examination of data we have obtained with this technique,
however, we have found that although a good fit to theory (and
hence a small variance for the parameters) can be obtained
when fitting results for a single length of fiber, for some
lasers a large variation of the parameters can occur for results
obtained with different lengths of fiber. We attribute this
variation for different fibers to the more detailed dependence
of laser chirp on modulation frequency that is implicit to a
more detailed laser model.

In this paper, we demonstrate a new measurement technique
that conveniently determines the precise characteristics of the
laser chirp using the effect of propagation in optical fiber. The
laser chirp thus measured can be directly compared to any of
the more complete laser models cited above and, in addition,
is shown here to lead to an improved agreement between
experiment and theory in an optical transmission experiment
involving fiber Bragg gratings.

In Section II, the small-signal baseband intensity transfer
function of an arbitrary optical filter is derived. In Section III,
it is demonstrated that the simple rate equation model can
fail to accurately characterize the laser chirp of semiconductor
lasers. Our technique for measuring the precise laser chirp
using an optical fiber is then presented. In Section IV, the
implications of the frequency dependence of laser chirp in sim-
ulation of transmission through fiber gratings are considered.

II. THEORY

A direct method for determining the laser chirp is to
observe the sidebands of the optical field spectrum using an
interferometer (see the Appendix). A more convenient method,
however, is to introduce some optical filtering to convert part
of the frequency modulation (FM) to intensity modulation (IM)
so that it can be photodetected. Propagation through dispersive
optical fiber can be used to produce this filtering [10]–[14].

The complex electric-field amplitude, at the output of
a semiconductor laser directly modulated with a small-signal
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modulation frequency can be expressed in the form:

c.c.

c.c. (1)

where and are the IM and FM indexes, respec-
tively. The ratio which for light produced by a
semiconductor laser is a function of the modulation frequency,

will be referred to in what follows as the phase to intensity
(modulation index) ratio PIR

In the small-signal regime, the electric field after propaga-
tion through an optical filter with transfer function is
given by

(2)

where is the laser optical frequency. The photodetected
current is proportional to the square of the electric field
amplitude. By squaring (2) and keeping linear terms in the
modulation frequency, the baseband small-signal transfer
function, which is defined as the complex amplitude
of the photocurrent at frequency that will be detected after
propagation through an optical filter normalized by that which
would be detected at the laser output, is obtained as

PIR (3)

where and are the conjugate-symmetric and
conjugate-antisymmetric parts of around
That is

(4a)

(4b)

where is the transfer function of the optical filter.
Equation (3) indicates that, in addition to the PIR of the

laser, the dispersion and the asymmetry of the optical filter
around the laser frequency determine the extent of FM-
to-IM conversion. In the case of dispersive fiber, the optical
transfer function can be approximated by

with . Here,
is the inverse of the group propagation velocity, is the

group velocity dispersion parameter andis the fiber length.
Substitution in (3) and (4) yields for the baseband transfer
function in this case

PIR (5)

The simple rate equation model of semiconductor lasers [1]
predicts a PIR in the small-signal regime of the form

(6)

Fig. 1. Experimental setup.

where is the linewidth enhancement factor andis the
crossover frequency between adiabatic and transient chirp
regimes. is related to the gain compression parameter,,
and the photon lifetime, , and via

For a more detailed laser model [2]–[8], (6) is only approx-
imately correct. The PIR can then be expressed, in general,
as in (6), but with replaced by a complex function of the
modulation frequency, Equation (6)
with , however, is overdetermined in the sense that
for any given value of some complex function can
be found that describes the PIR. Another possibility would be
to allow and [9] (an imaginary part
for is not needed in this case). However, the expression
above is employed because, by using an appropriate theoretical
model for the laser chirp, the value of can be seen to be
equal to that obtained from linewidth measurements, as will
be further discussed elsewhere.

III. M EASUREMENT

A. Simple Measurement of Laser Chirp

The baseband transfer function, after propagation
in a length of dispersive fiber, can be determined experimen-
tally by measuring the modulation response after propagation
in the fiber and normalizing it by the modulation response at
the laser output. The experimental setup is shown in Fig. 1.
The light of a directly modulated laser was coupled to the
optical fiber and was passed through an isolater and then a
variable optical attenuator. The optical power was attenuated
so that the maximum power launched into the fiber was 2
mW. It was checked that this attenuation was enough to avoid
nonlinear effects in the modulation response. After propagation
in fiber, the light was photodetected and then the phase and
magnitude of the modulation response was measured using a
network analizer. Using (5) and (6), the parametersand
together with if it is unknown, can be found [10]–[14] by
least squares fitting However, in our experience,
this procedure can yield very different values forand also
to a lesser extent for for different lengths of fiber.

Fig. 2 shows the change in modulation response,
after propagation through 2 and 50 km lengths of

fiber for measurements made with a 250-m long single-mode
MQW-DFB laser at 1.54 m. The parameters and
were fitted for different fixed values of from 19 to 21
ps/km2, and the value of and corresponding and were
selected that yielded the minimum quadratic error. This fitting
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(a)

(b)

Fig. 2. Change in modulation response after 2.3 km (circles) and 50.5
km (triangles) of standard fiber at 1.54�m. The parameters� and � are
determined that best fit the change in modulation response after 2.3 km (solid),
50.5 km (dashed), and both lengths of fiber (dotted). Output power at laser
facet= 18.8 mW.

procedure was not sensitive to the initial values forand
Fits to each of the experimental curves for different lengths of
fiber yield very different values for and (see Fig. 2), even
if different values of were used. These values, when used
to describe propagation in the other fiber length, produce poor
agreement between theory and experiment. We also attempted
to find values of and that minimize the combined error
for several fiber lengths, but no good fits were obtained.1

This disagreement is due to the fact that the simple laser
model does not fully describe the FM response of the laser.
The reason why good fits are obtained for single lengths of
fiber is that the value of mainly determines the width and
depth of the dips in that, for small occur near
frequencies such that:

(7)
1For a bulk laser, although a variation of� was also observed, it was not

so strong as in the case of this MQW laser.

where is an integer. The fitting procedure tends to adjust the
value of so as to obtain small error near these dips. Since
the position in frequency of these dips depends on the fiber
length, and is a function of the modulation frequency,
the fitted value changes for different lengths of fiber. In our
experiment, was mainly determined by the first dip, because
higher order dips are narrower, and therefore contained fewer
(evenly spaced) data points. (Thus, an estimate for the value
of at a particular modulation frequency can be obtained by
choosing a length of fiber, such that has its first
dip at the desired frequency.)

B. Precise Measurement of Laser Chirp

1) Description of Method:In this section we demonstrate
a technique that can conveniently determine the precise laser
chirp. In the above described method, a specific expression for
the PIR was used to fit for the unknowns. Here, the PIR
is directly extracted from the measurement. (Two approaches
are considered. The first one uses only the magnitude of
the transfer function, , whereas the second one
uses both magnitude and phase. The second one yields more
accurate results but the data reduction is more involved.)

If the value of the dispersion product is known, then the
only unknowns in (5) are the PIR, which is a complex function
of the modulation frequency, and the propagation delay,
Measurement of for two different lengths of fiber
results in two equations that can be solved for the PIR.
However, the sign of the imaginary part of the PIR cannot
be determined by this procedure.

The PIR, including the sign of the imaginary part, can be
extracted from a measurement of the magnitude and phase of

and the propagation delay, for a single length
of fiber. The accuracy of this result can be improved if the

for each of several lengths of fiber is measured. Then,
at each modulation frequency, the change in modulation
response can be fitted as a function of fiber length to yield real
and imaginary parts of PIR for a fixed value of The PIR
can be determined from measurement of for two
lengths of fiber as shown in (8a) and (8b) at the bottom of the
page where is the dispersion
angle after a length of fiber. Determination of the PIR using

does not require measurement of the propagation
delay. The choice of fiber lengths determines at which fre-
quencies a good measurement for is obtained, since,
for a particular length of fiber, is less sensitive
to changes in at frequencies away from the dips.

The fiber lengths can be selected as follows. First, an
estimate for and is found by using the method described

Re PIR

(8a)

Im PIR Re PIR (8b)
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in Section A for a single fiber. Using this value for and
(7), the two lengths of fiber can be selected such that the first
dips occur near the maximum and minimum frequencies of
interest, respectively. However, if the frequency range is too
broad, two fibers might not yield sufficiently accurate results,
and then several lengths of fiber, not just two, should be used.

Measurement of phase and magnitude of after a
single length of fiber yields the PIR directly as long as the
propagation delay is known. From (5), we get

Re PIR
Re

(9a)

Im PIR
Im

(9b)

When the magnitude and phase of is used, the choice
of fiber length is not so critical, and the sign of the imaginary
part of the PIR can be found. The phase of can be
measured simultaneously with the magnitude using a network
analyzer. However, the phase depends on the propagation
delay. This linear phase term can be extracted using the
measurements of as follows. First, the PIR is obtained
in an arbitrary frequency range using after two or
several lengths of fiber, using the method explained above.
This PIR is substituted into (5) to find the theoretical phase of

in this frequency range in the absence of propagation
delay. The linear phase term added in propagation can be
determined by performing a linear fit to the difference of this
phase with the experimental phase.

2) Experiment: The same MQW-DFB laser mentioned
above and spools of fiber with fiber lengths of 2, 4, 8, and 25
km were used. The values and ps km
were estimated from the simple fittings with single lengths
of fiber. In the following figures, the notation in (6) is used
together with this estimate for and the real and imaginary
parts of are displayed, instead of the PIR This
makes it possible to visualize the frequency dependence of

which would otherwise be masked by the strong
term, and also to compare the values forthus obtained with
those of the simple model.

Fig. 3 shows the real (circles) and imaginary (triangles)
parts of obtained from for different combina-
tions of fibers. The measurement is compared with the results
using both phase and magnitude (solid and dashed curves,
respectively). In Fig. 3(a) and (b), was obtained from
measurement of two fibers. The sets of fiber were selected
to yield good results in the frequency range from 3.5 to 8
GHz and from 4 to 14 GHz, respectively. It is observed that
the measured is noisier at low frequencies for the first
set, and improves at higher frequencies with respect to the
second set. Fig. 3(c) shows the result when four fibers are
employed. Above 14 GHz the measurement is noisy because
that is the limit set by the shortest fiber that was used. Thus,
measurement of at higher modulation frequencies would
require shorter fibers.

Fig. 4 shows the measured using both phase and
magnitude of at several laser output powers. The
value of in Fig. 3(a) was used in a frequency range
from 1 to 7 GHz to determine the propagation delay, and

(a)

(b)

(c)

Fig. 3. Real (circles) and imaginary (triangles) part of�(
) with � = �5:5
obtained from jH(
; z)j2 for different combinations of fiber. Solid and
dashed curves are the result from using magnitude and phase ofH(
; z):
Output power at laser facet= 18.8 mW.

then the PIR was extracted from magnitude and phase of
after 2 km of fiber. The variance of the measured

PIR for different fibers was very small. At high frequencies,
becomes negative, which could not be determined from

measurement of For the sake of comparison, the
simple model would predict constant and

It was observed that can be decomposed into a quasi-
frequency-independent part that increases linearly with output
power and a power-independent part, which for this laser
is negative (see inset of Fig. 4) and has a strong frequency
dependence. The dependence of on output power was
found to be roughly quadratic. These results can be explained
in terms of spatial hole burning and carrier capture models,
although a full model that explains the power and frequency
dependence of is beyond the scope of this paper and
will be addressed elsewhere.

The measured in Fig. 4 was used in simulations of
propagation through fibers of length 2, 11, and 50 km. Fig. 5
shows the predicted magnitude and phase of (solid)
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Fig. 4. Real (solid) and imaginary (dashed) part of�(
) with � = �5:5 at
several laser output powers from magnitude and phase ofH(
; z): The inset
shows the real part ofkappa(
) as a function laser output power (circles)
together with a linear fit (dotted) at
=2� = 4 GHz.

(a)

(b)

Fig. 5. Measured change in modulation response after 2.3 km (circles), 11.1
km (squares) and 50.5 km (triangles) of standard fiber together with theoretical
curve using frequency dependent�(
): Output power at laser facet= 18.8
mW.

compared to the experimental points. The two longest fibers
had not been used in the original determination of

In the simple rate equation model, the value ofis usually
assumed to be positive, and the phase of can be
shown to be monotonic increasing. However, in real MQW-

Fig. 6. Baseband transfer function after transmission through fiber grating
predicted using frequency dependent�(
) (solid) and constant� (dashed)
compared to measurement (circles).

DFB lasers, can be negative at some frequencies and
the phase of loses monotonicity. In Figs. 2(b) and
5(b), it is observed that the simple model cannot describe the
phase of at the frequencies at which becomes
negative.

IV. A PPLICATION: TRANSMISSIONTHROUGH FIBER GRATINGS

As an example of the implications of the frequency de-
pendence of in modeling lightwave systems, we consider
transmission through fiber gratings. It is known that FM-to-
IM conversion can be used to advantage to obtain an increase
in modulation response [15] and/or decrease in laser relative
intensity noise [16]. Given the transmission coefficient of the
fiber grating, and a model for the optical source, the separation
between Bragg frequency and optical laser frequency that
yields optimal performance can be determined.

The baseband transfer function after transmission through
the grating is obtained from (3). As an example, transmission
through an unchirped fiber grating whose Bragg frequency
coincides with the laser frequency will result in no FM-to-IM
conversion, because in this case
and therefore

The amplitude of the transmission coefficient of a fiber
grating versus optical wavelength was measured using a
tunable laser source and an optical power meter. The phase
of the transmission coefficient was determined using a
Kramers–Kronig transformation as described in [15]. Using
this transmission coefficient, and the previously
determined the baseband transfer function, was
predicted. Fig. 6 shows predicted by using a frequency
dependent (solid) and a constant that best fits the change
in modulation response after several fiber lengths (dashed) in
comparison to the transfer function experimentally measured
(circles). Thus, better agreement between simulation and
experiment is achieved when the previously determined
is used to describe the FM of the optical transmitter.
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Fig. 7. Real and imaginary part of�(
) obtained from modulation response
(solid and dashed, respectively) and from optical spectrum side bands (circles
and triangles, respectively). Output power at laser facet= 16.3 mW.

V. CONCLUSION

In summary, a new technique has been presented that allows
precise determination of the FM response of semiconductor
lasers. This response can be compared to models of MQW-
DFB lasers that account for transverse as well as longitudinal
effects to determine which mechanisms contribute to laser
chirping, as will be described elsewhere. In addition, per-
formance of lightwave systems that use direct modulation
of semiconductor lasers can be better simulated using the
experimentally determined laser chirp.

APPENDIX

COMPARISON OFMODULATION RESPONSE

AND INTERFEROMETERTECHNIQUES

FOR DETERMINATION OF LASER CHIRP

In order to ensure that the measured was actually
an intrinsic laser parameter and was not influenced by other
phenomena occurring in transmission through optical fiber, we
contrasted it with an interferometer technique.

The power spectrum of the optical field was measured by a
scanning Fabry–Perot for a wide range of modulation powers,
and the IM index was determined using an electrical spectrum
analyzer. As a first approximation, the microwave power can
be adjusted so as to obtain known FM indexes. For example,
the amplitude of the carrier frequency is approximately zero
for a FM index [4]. However, the presence of IM
complicates the expressions for the power in each of the side
bands and this method was not used. Here, and

were obtained by fitting the power in the main
and first side bands as a function of . From them, we
derived and for a given

In Fig. 7, the results from the interferometer technique and
the modulation response technique have been plotted for com-
parison. The interferometer technique is noisier, especially at
high frequencies, because the microwave source and amplifier

we used could only yield a maximum IM index of 0.25.
Nevertheless, the same frequency dependence and order of
magnitude is observed. Note that in the simple model,
would be a constant value, and would be zero.
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