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The prevailing paradigm for G protein-coupled receptors is that
each receptor is narrowly tuned to its ligand and closely related
agonists. An outstanding problem is whether this paradigm applies
to olfactory receptor (ORs), which is the largest gene family in the
genome, in which each of 1,000 different G protein-coupled re-
ceptors is believed to interact with a range of different odor
molecules from the many thousands that comprise ‘‘odor space.’’
Insights into how these interactions occur are essential for under-
standing the sense of smell. Key questions are: (i) Is there a binding
pocket? (ii) Which amino acid residues in the binding pocket
contribute to peak affinities? (iii) How do affinities change with
changes in agonist structure? To approach these questions, we
have combined single-cell PCR results [Malnic, B., Hirono, J., Sato,
T. & Buck, L. B. (1999) Cell 96, 713–723] and well-established
molecular dynamics methods to model the structure of a specific
OR (OR S25) and its interactions with 24 odor compounds. This
receptor structure not only points to a likely odor-binding site but
also independently predicts the two compounds that experimen-
tally best activate OR S25. The results provide a mechanistic model
for olfactory transduction at the molecular level and show how the
basic G protein-coupled receptor template is adapted for encoding
the enormous odor space. This combined approach can signifi-
cantly enhance the identification of ligands for the many members
of the OR family and also may shed light on other protein families
that exhibit broad specificities, such as chemokine receptors and
P450 oxidases.

O lfactory (odor) receptors (ORs) in the mammalian olfac-
tion system exhibit a combinatorial response to odorant

molecules (1). A single odor elicits response from multiple
receptors and a single receptor also responds to multiple odor-
ants, so every odorant has been thought to have a unique
combination of responses from several receptors. This endows a
discriminatory power to the mammalian olfactory system that
could discriminate thousands of odors. The mechanisms by
which the olfactory system accomplishes its multitude tasks are
not clear. However, it is known that each olfactory neuron
expresses only one receptor. Odor detection is mediated by
'1,000 ORs that are G protein-coupled membrane-bound pro-
teins. Malnic et al. (1) recently reported the differential re-
sponses of individual mouse OR neurons to 24 organic odor
compounds (linear alcohols, acids, diacids, and bromoacids with
four to nine carbons) by using Ca21-imaging techniques, fol-
lowed by single-cell reverse transcription–PCR to determine the
sequence of the responsive OR. These clean single-cell experi-
mental results (1) lead to the compelling question ‘‘what is the
molecular basis of odor recognition?’’ Such questions can be
answered only with the atomic level model of these ORs. No
structural information is available for ORs. Also for any member
of the membrane protein family, the insolubility of membrane
proteins and the difficulty in crystallizing membrane proteins
makes it harder to obtain structural information. In this work, we
have derived an atomic level structural model for the mammalian
OR S25 sequenced by Malnic et al. (1) and also identified the
potential binding site for simple aliphatic alcohol and acid
odorants to this receptor. The order of binding energies correlate

well with the experimental recognition profiles and the binding
site predictions also correlate well with the speculations.

Modeling Techniques
Prediction of the Structure of ORs. ORs are seven helical trans-
membrane G protein-coupled receptors. We have derived the
atomic model for OR S25 by using a combination of hydropho-
bicity profile prediction methods (2) and large-scale coarse grain
molecular dynamics (MD) methods (3–8) with proper descrip-
tion of differential solvent environment.

Prediction of helical regions by using hydrophobicity profiles and
optimization. The transmembrane helices were identified on the
basis of hydrophobicity by the multisequence profile method of
Donnelly (2), implemented in PERSCAN. A window size of 21
residues was used. For validation, the analysis was done on 21 rat
ORs reported by Singer et al. (9). Sequences were aligned by the
iterative profile alignment utility of WHATIF (10). The sequence
for the receptor S25 (1) was used to build canonical right-handed
a-helices. The structure of these helices were optimized by using
the Newton-Euler Inverse Mass Operator torsional MD method
(5–7) that scales linearly with the number of torsional degrees of
freedom.

Helix assembly. The orientation of each helical axis was built by
using the bovine rhodopsin 7.5-Å electron density map (11).
Helical z-coordinates were set such that the midpoint of each
helical axis was positioned in the same z-plane of the assembly.
The packing of the helix bundle was further optimized by using
rigid body dynamics with proper description of the membrane
bilayers surrounding the receptor that we found critical for
proper packing. We used the DREIDING force field (12) with
polar group charges derived from charge equilibration to sim-
ulate the lipids. The performance of this combination of charges
and parameters was evaluated through a series of constant
temperature and pressure MD simulations of crystals. The
systems 1,2-dilauroyl-DL-phosphatidyl ethanolamine acetic acid,
disodium b-glycerophosphate hydrate, and L-a-glycerol phos-
phorylcholine were chosen for simulation to evaluate the per-
formance of the force field and atomic charges progressively,
from a simple polar head group to a crystal lipid bilayer. We
compared our results with experimental data and other simu-
lation results available in the literature. Our choice of charges
and force field gives densities and cell parameters with less than
4% error from the experimentally determined parameters. Thus,
we have used the combination DREIDING force field and
charges calculated with charge equilibration method (13) for
representing lipids. The helix bundle surrounded by lipid bilayers
was optimized by using rigid body dynamics with DREIDING
force field and CHARMM22 (14) charges for the protein. The rigid
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body dynamics was done for 150 ps by which equilibration was
attained.

Optimization of the full atomic model. After the rigid body
dynamics, loops were added to the helices by using WHATIF (10)
software. After the addition of loops, we performed a full-atom
minimization of the complete model with a barrel of lipid
surrounding the protein, followed by dynamics optimization of
the structure by using the MASSIVELY PARALLEL SIMULATION
program (MPSim) (8). MPSim includes state-of-the-art MD
techniques such as: (i) the cell multipole method (3, 4) for fast
and accurate calculation of nonbond forces; (ii) fast torsional
dynamic methods such as Newton-Euler Inverse Mass Operator
(5–7) and Hierarchical Newton-Euler Inverse Mass Operator
(15); (iii) continuum solvation techniques such as the Poisson-
Boltzmann description (16) and surface-generalized Born model
(17) that account for solvation in biological systems. Thus to
optimize the solution structure, we performed mixed mode
dynamics by using the following descriptions. The helices and
loops in the protein were modeled with the Newton-Euler
Inverse Mass Operator torsional MD, the lipids were treated as
rigid bodies, and the counterions Na1 and Cl2 as free Cartesian
atoms. Constant temperature dynamics using the Hoover algo-
rithm was performed for 50 ps with time steps of 1 and 5 fs. The
outside of the lipid layer was simulated with surface-generalized
Born model continuum solvent description. A low dielectric
constant of 60.0 was used to simulate the low dielectric region
surrounding the membrane.

Control simulations. The protocol described above was first
tested on bacteriorhodopsin (BRDP), a membrane protein for
which the crystal structure has been fitted with fair accuracy in
the transmembrane region of the protein. We started from the
sequence of bacteriorhodopsin and used no knowledge of the
crystal structure to build the complete model with the above
protocol. The membrane was represented by bilayers of diphos-
phatidyl glycerophosphate that is the lipid present in the purple
membrane from Halobacterium halobium. Although the se-
quence homology between BRDP and the ORs is not high (less
than 30%), they share the same tertiary motif common to
a-helical transmembrane proteins: a 7-helix barrel. The overall
rms deviation in coordinates of Ca atoms from the crystal
structure (18) for the final model is 5.98 Å for all 221 aa. The
overall rms deviation in coordinates for the residues in the
membrane region is 3.29 Å whereas that for the loops is 8.57 Å.
Thus, this modeling procedure gives a very reasonable structure
as compared with the crystal structure for a known membrane
protein.

Modeling of S25 OR. The sequence for OR S25 was taken from
Malnic et al. (1). The membrane was simulated by using explicit
lipid bilayers of dilauroylphosphatidyl choline. The choice of
lipid in the OR case is supported by experimental indications (19,
20) that the membrane surrounding the ORs in vivo can be
satisfactorily simulated by using a single-component lipid system
of dilauroylphosphatidyl choline. The final atomic level model of
S25 shown in Fig. 1 was used further in docking studies.

Docking Studies. We have studied the binding of aliphatic alcohols
and acids to OR S25 without any previous knowledge of the
binding site. The list of ligands studied are those for which data
on odor response preferences for several mouse OR was re-
corded recently (1). The list of 24 odorants includes aliphatic
alcohols, carboxylic acids, dicarboxylic acids, and bromocarboxy-
lic acids containing 4–9 carbon atoms. Among the odorants in
that list, S25 responds positively to hexanol and heptanol only.

Each ligand was built in the extended conformation. The
starting conformations were optimized by minimization of the
potential energy by using the conjugate gradient method with
DREIDING force field (12) and Gasteiger (21) charges. The
minimized conformations were used as starting conformations

for docking. The acids were considered in their protonated forms
for docking because the pH range in the human nasal mucus is
between 6 and 7 in normal individuals (22). The solvation
energies for the ligands were calculated by using Poisson-
Boltzmann continuum solvent model with the program JAGUAR
(ref. 23; http:yywww.schrodinger.com). The solvation energies of
the acids were calculated for the deprotonated species, because
they are the dominant form in solution.

HIER-DOCK protocol. ORs interact with molecules of widely
different structures and are therefore expected to exhibit high
structural diversity in the ligand-binding region. Hypervariable
regions in ORs have been identified in transmembrane domains
(TMs) 3–5 (24–27) and are supposed to be involved in odorant
binding. Nevertheless, the exact location of the binding site is not
known. Therefore, we have derived a hierarchical docking
protocol that could efficiently scan the whole receptor for all
possible sites without bias from structural information. This was
accomplished by combining the DOCK 4.0 program (28) with fine
grain MD techniques. A complete scanning of all possible
docking regions for S25 was done with the alcohol series because
the odor response data available for S25 indicates preference for
hexanol and heptanol (1), with no response reported for acids.
Once the most probable binding site was identified, the complete
alcohol and acid lists were optimized for calculating the binding
energies. The protocol used for docking consists of the following
steps:

Fig. 1. Predicted structure for mouse OR S25 with predicted binding site for
hexanol (purple). The membrane is represented by a barrel of dilauroylphos-
phatidyl choline bilayers (yellow) surrounding the TMs 1–7. The disulfide
bonds were assigned between Cys-107 to Cys-209, Cys-132 to Cys-192, Cys-199
to Cys-219, and Cys-157 to Cys-171.
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1. Mapping possible binding regions. The negative image of the
receptor molecular surface, as defined by Connolly’s method
(29), was filled with a set of overlapping spheres. A probe of
1.4-Å radius was used to generate a 5 dotsyÅ molecular
surface. Sphere clusters were generated for the whole recep-
tor by using the program SPHGEN (30).

2. Defining regions for docking. The sphere-filled volume repre-
senting the empty space inside the receptor was divided into
five overlapping regions. They cover the extracellular portion
of the receptor, as well as 2y3 of the inside of the helical
barrel. Regions expected to be in contact with the membrane
or involved in binding with the G protein were excluded from
docking.

3. Generating docked conformations of the receptor-ligand com-
plexes. Orientations of the ligands into the receptor were
generated by using the program DOCK 4.0 (28). We used
flexible docking with torsion minimization of ligands, a
nondistance-dependent dielectric constant of one, and a
cutoff of 10 Å for energy evaluation. The configurations were
ranked by using energy scoring. The best 10–30 configura-
tions for each ligand in each possible binding region were used
as input for the next step (annealing MD). We generated
110–120 configurations for each ligand in a total of 700
configurations covering the receptor space available for
docking.

4. Performing annealing MD for the complexes. Further optimi-
zation of ligand conformation in each binding region was
done by using an annealing MD technique. The annealing
MD also leads to a better scoring function by using a full atom
force field and solvation effects. (Nonetheless, annealing MD
does not allow for a long-range orientation search for which

step 3 is necessary.) All configurations generated in step 3
were used in annealing MD simulations performed in 10
cycles of 1 ps from 50 to 600 K, by using the DREIDING force
field (12), a nondistance-dependent dielectric constant of
one, and a nonbond list cutoff of 9 Å. The best conformers
from annealing were submitted to energy minimization.

5. Selecting the best configuration and probable binding site. The
conformations that have the lowest energy scores were se-
lected. These exhibit a preferential region for binding.

6. Redocking into the binding site. To obtain a comparative score
for all ligands in the most possible binding site, we chose a
10 3 5 3 5-Å box enclosing the best configurations for
butanol to heptanol. Steps 3–5 were then repeated for the
alcohol and acid series.

7. Cross-evaluating configuration energies by using perturbation
techniques. The lowest energy configurations among the
alcohols were used as template to build other members of the
alcohol series. These complexes then were submitted to
annealing MD. This was done to ensure that every ligand was
evaluated in the same orientation starting from the best
configuration of others.

8. Ranking ligand affinities by using binding energies. The binding
energies for the best complexes are calculated as the differ-
ence in the ligand energy in the receptor and in solution. The
binding energies corresponding to different ligands then can
be compared and ordered. The ligands for which the recep-
tor–ligand complex has more favorable binding energies will
have higher affinities to the receptor.

Results and Discussion
Identification of the Most Probable Binding Site. A recent site-
directed mutant (31) and several independent computational

Fig. 2. Calculated binding energies for 24 odorants docked to the mouse OR S25. The binding energies were calculated as the difference between the energy
of the ligand in protein and in solution. The solvation corrections were calculated by using the Poisson–Boltzmann continuum model for the solvent (22). Binding
energy bars are shaded according to the chemical classes indicated above them. The letter ‘‘C’’ followed by a number indicates the number of carbon atoms.
Hexanol and heptanol (marked with *) are the only two compounds of the 24 found experimentally to elicit responses (1). These compounds are correctly
predicted by our model as having the most favorable binding energies.
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studies (32–35) have pointed to an odor-binding pocket com-
posed of residues from TMs 3–7. We first tested this hypothesis
by allowing the six test odors in the alcohol series to search the
entire potential binding space; only parts of the structure in
contact with membrane or facing the intracellular side were
restricted from this analysis. Our docking protocol was applied
for the alcohol series in each one of the docking regions chosen
independently. The analysis of the best configurations by energy
for each alcohol in each docking region clearly shows a prefer-
ence for a particular region in the receptor. This preferred
binding region is the most probable binding site for alcohols in
this receptor. The best configurations for each ligand selected by
energy criteria defined the most probable binding site. We
cross-validated the results by each odorant in the preferred
configuration for the other ligands.

Binding Affinity Ordering. Having located the likely odor-binding
pocket and found that the location is consistent with several
previous lines of evidence, we proceeded to test how well the OR
S25 model predicted relative odor affinities. We applied the
docking protocol to the 24 ligands listed in Fig. 2 and predicted
the ligand-receptor affinities, taking into account the ligand
desolvation. The tests were run blindly, without reference to
previous experimental results. The binding energies, shown in
Fig. 2, correlated well with the experimental observations (1).
Thus, hexanol and heptanol, the two compounds predicted by
the OR S25 structure to have the highest binding energies, were
the only two compounds that elicited measurable responses in
the experiments. An important feature of the model is that it
predicts affinities for other, less avidly bound compounds that
may activate the receptor but are below the experimental
detection threshold. For example, the structural model predicts
that pentanol would have the third best binding energy, only 1.3
kcalymol less favorable than heptanol. Because the responses
observed for hexanol and heptanol were near threshold, binding
studies of pentanol at higher concentrations or in other assay
systems may show a response and would test our predicted
energetics. It will be important for studies of expression systems
to test carefully for these possible near-threshold responses,
which may indicate broader ligand affinities than obtained thus
far and which may be important for normal olfactory detection
and perception.

Residues Predicted as Directly Involved in Binding of Odorants. Fig. 3
shows the predicted binding pocket for the preferred compounds
hexanol and heptanol. The pocket is situated between TMs 3–7,
'10 Å deep from the extracellular surface. This is similar to the
epinephrine-binding pocket of the b-adrenergic receptor (36).
Docking results show that TMs 3, 5, and 6 have residues directly
involved in binding. A closer look at our model allows us to infer
that TM4 may have an important role in binding as it packs
against TM3 and TM5 and therefore can alter their relative
position if key residues of TM4 are mutated. TMs 3, 4, and 5 have
been implicated in binding (25–27, 35). Fig. 3A shows 15 residues
that constitute the hexanol-heptanol binding site. These residues
are variable in the sequence alignment of ORs (1), consistent
with their involvement in differential odor binding for different
OR subtypes. Lys-302, which hydrogen bonds to the hydroxyl
moiety, was critical for alcohol binding by OR S25. This presence
of a critical Lys on TM7 is reminiscent of the closely related
rhodopsin, where Lys-296 (TM7) binds the retinal chromophore
(25). Substitutions in this residue could switch receptor speci-
ficity toward other functional groups. Other receptors we have
reported had Val, Ser, and Ile residues at this position (1).
Hydrophobic residues Phe-225, Leu-131, Val-134, Val-135, and
Ala-230 formed Van der Waals contacts with the ligand, ac-
counting for the specificity of the OR S25 model for 6–7 carbon
compounds. Hydrophobic substitutions in these residues would

Fig. 3. Predicted recognition site for hexanol and heptanol in mouse OR S25.
Residues within 3 Å of the ligand (hexanol in purple) are displayed as thicker
with labels in bold font. Residues within 3–5 Å of the ligand have labels in
italics. Lys-302 forms a weak hydrogen bond to the hydroxyl group of the
alcohols. Phe-225 and Leu-131 seem to limit the chain length suitable to the
binding site. TM 3–7 have residues directly involved in binding. (A) Longitu-
dinal view. (B) Detail view. Hydrogen atoms were suppressed.
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be expected to modulate the preferred carbon length. In par-
ticular, the model predicts that substitutions of Val for Phe-225
and Val for Leu-131 would be expected to create more space in
the pocket and shift its specificity toward larger ligands. Substi-
tutions of Phe for Leu-131 would be predicted to have the
opposite effect. Polar residues Thr-284 and Gln-300 were also in
close contact with the ligand but did not appear to contribute any
hydrogen bonding specificity. These residues could be important
for interactions of other compounds with OR S25. This study
thus identifies critical residues likely to contribute to the differ-
ential affinities of a specific OR for different odor ligands.
Site-directed mutagenesis of these residues followed by func-
tional assays will test the present observations and constrain
future models. The agreement between the experimental and
computational results suggests that the combination of func-
tional assays and OR structure prediction will make it possible
to identify potential odors for other ORs and propose site-
directed mutants that increase selectivity for particular odor
compounds. We suggest that this provides an efficient system for
obtaining such knowledge of the atomic-level binding require-
ments for ORs, which can enhance the development of biosen-
sors for the fragrance and food industries, industrial and envi-
ronmental safety, and explosives and narcotics detection. The
insights gathered also may apply to other protein families that
display broad affinities for a range of compounds, such as the
chemokine receptors and P450 oxidases, which have important
implications for HIV, immunology, pharmacology, and
toxicology.

Conclusions
We have developed a modeling and a docking protocol that can
be combined to predict the binding site(s) of ORs from their
sequence. We applied these protocols to the amino acid se-
quence of the mouse OR S25. Besides the sequence, the only
additional information required for modeling are sequence
alignment of other ORs and the bovine rhodopsin electron

density map. By using binding energies that take into account
desolvation of the ligands, we can qualitatively reproduce the
odor response preferences reported for OR S25 (1). Among a set
of 24 species of linear alcohols, acids, diacids, and bromoacids
containing 4–9 carbon atoms, we successfully eliminated the acid
series that are not recognized experimentally. Within the alcohol
series, those with higher calculated binding affinities to the
receptor are the ones with positive odor preference response
(hexanol and heptanol). Some residues in TM 3, 5, and 6 are
predicted as directly involved in binding of odor molecules,
whereas TM4 and the four disulfide bridges in the model of OR
S25 are implicated in the correct assembling of the recognition
site.

We believe that the results of this work bring us one step
forward in the use of theoretical methodologies for the design of
biosensors for defense, perfume, or food industry applications.
By applying the protocols presented here, it is possible to
elaborate mutation studies aimed in the design of ORs for
specific odorants or suggest potential odorants for natural-
occurring ORs that can be tested experimentally. The knowledge
of the binding requirements for ORs at an atomic level is also
important for the development of artificial olfaction sensors.
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