Supporting Information

Aerosol liquid water driven by anthropogenic nitrate: implications for lifetimes of water-soluble organic gases and potential for secondary organic aerosol formation

Natasha Hodas, Amy Sullivan, Kate Skog, Frank N. Keutsch, Jeffrey L. Collett Jr., Stefano Decesari, M. Cristina Facchini, Annmarie G. Carlton, Ari Laaksonen, Barbara J. Turpin

Table of Contents

Figure S1 Page 2
Figure S2 Page 3
Figure S3 Page 4
Figure S1. Time series of solar zenith angle (SZA) calculated with the National Oceanic and Atmospheric Administration Earth Systems Research Laboratory Solar Position Calculator (http://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html) and temperature (T) and solar radiation (Rad) measured at the San Pietro Capofiume sampling site. Solar zenith angle was used in the main analysis as a surrogate for both temperature and photochemistry. As expected, temperature peaks each day just after the minimum in solar zenith angle and solar radiation is at a maximum when solar zenith angle is at a minimum.
Figure S2. Time series of particle-phase WSOC concentrations (WSOC$_p$), aerosol liquid water concentrations (ALW), and glyoxal partitioning potential ($P_{WSOC_{gly}}$) during the case period explored in the main text. The inset shows the case period which can be characterized as the end of a stagnation event during which WSOC$_p$ concentrations were double that compared to the remainder of the campaign.
Figure S3. Particle-phase water-soluble organic carbon concentrations (WSOC_p) and aerosol liquid water concentrations (ALW; panel a) and glyoxal partitioning potential (P_{WSOC,gly}; panel b). As discussed in the main text, during a period of elevated WSOC_p concentrations, both ALW and P_{WSOC,gly} were correlated with WSOC_p concentrations, suggesting an influence from local aqueous SOA production. The dashed line indicates the regression line with R-square values of 0.49 and 0.57 for ALW and P_{WSOC,gly}, respectively.