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ABSTRACT

We present a practical implementation of a Monte Carlo method to estimate the significance
of cross-correlations in unevenly sampled time series of data, whose statistical properties
are modelled with a simple power-law power spectral density. This implementation builds
on published methods; we introduce a number of improvements in the normalization of the
cross-correlation function estimate and a bootstrap method for estimating the significance
of the cross-correlations. A closely related matter is the estimation of a model for the light
curves, which is critical for the significance estimates. We present a graphical and quantitative
demonstration that uses simulations to show how common it is to get high cross-correlations
for unrelated light curves with steep power spectral densities. This demonstration highlights
the dangers of interpreting them as signs of a physical connection. We show that by using
interpolation and the Hanning sampling window function we are able to reduce the effects of
red-noise leakage and to recover steep simple power-law power spectral densities. We also
introduce the use of a Neyman construction for the estimation of the errors in the power-law
index of the power spectral density. This method provides a consistent way to estimate the

significance of cross-correlations in unevenly sampled time series of data.

Key words: methods: data analysis —methods: statistical — techniques: miscellaneous.

1 INTRODUCTION

Studies of the variability in astronomical sources can reveal aspects
that are not accessible to imaging, which is limited by the angu-
lar resolution of current instruments. For example, variability can
be used to set limits on the sizes of the emitting regions through
causality arguments (e.g. Abdo et al. 2011), to determine the size of
the broad-line region in active galactic nuclei (e.g. Peterson & Cota
1988) or to detect extrasolar planets (e.g. Charbonneau et al. 2000)
among many other applications. In this paper, we describe the prac-
tical implementation of a cross-correlation technique to determine
the location of the gamma-ray emission site in blazars, by study-
ing the relation between the variability in the radio and gamma-ray
bands. For this purpose, we are carrying out a blazar monitoring
programme with the Owens Valley Radio Observatory (OVRO)
40 m telescope (Richards et al. 2011) and the Large Area Telescope
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(LAT) on board of the Fermi Gamma-ray Space Telescope (Fermi,
Atwood et al. 2009). Our approach is to search for correlated vari-
ability between these two energy bands, which would enable us to
determine the location of the gamma-ray emission regions relative
to the radio emission regions. The study of cross-correlations be-
tween two energy bands presents a number of challenges from the
data analysis and statistical point of view: among these are uneven
sampling, non-equal error bars, and short time duration of the light
curves. The techniques we develop here should be useful for other
applications.

Related methods have been presented in the literature, for ex-
ample the study of cross-correlations with unevenly sampled light
curves has an extensive literature about its application to rever-
beration mapping (e.g. Peterson 1993). These methods present a
detailed treatment of the estimation of cross-correlations and time
lags, but not of the estimation of significance of the observed cor-
relations, a critical aspect for the interpretation of cross-correlation
results. The literature abounds with claims of statistically significant
correlations that are not backed up by rigorous statistical analyses.
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This paper presents a detailed discussion of the methods used
for our investigation of time correlation between radio and gamma-
ray activity in blazars, which is discussed in Max-Moerbeck et al.
(2014). Here, we present a description of the Monte Carlo method
used to estimate the significance of cross-correlations between un-
evenly sampled time series using the method of Edelson & Krolik
(1988). In order to estimate the distribution of cross-correlations in
two uncorrelated data streams, we need a model for the light curves.
A commonly used model for time variability in blazars and other
AGN:ss is a simple power-law power spectral density (PSD o 1/v#),
as has been measured for a small number of sources at various wave-
lengths (e.g. Hufnagel & Bregman 1992; Edelson et al. 1995; Uttley
et al. 2003; Arévalo et al. 2008; Chatterjee et al. 2008; Abdo et al.
2010). The results presented in Abdo et al. (2010) are of particular
interest for the OVRO blazar monitoring programme. In their paper,
they find a value of 8, = 1.4 £ 0.1 for bright BL Lacs and 8, =
1.7 £ 0.3 for bright flat spectrum radio quasars (FSRQs) in the
gamma-ray band. In the radio band, a number of publications have
measured Bragio- It has been found that B4 = 2.3 £ 0.5 for 3C279
at 14.5 GHz (Chatterjee et al. 2008) using a fit to the PSD foran 11 yr
light curve. Additional indirect estimates for the PSD power-law in-
dex are obtained by Hufnagel & Bregman (1992) using structure
function fits. For five sources, they obtain values of @ = 0.4 £ 0.2
to 1.5 £ 0.1, where « is the exponent on the structure function
SF(tr) o %. The same method is used for 51 sources by Hughes,
Aller & Aller (1992) who found that most values of « lie between
0.6 and 1.8, while a couple are closer to 0. However, the often as-
sumed relation between the exponents of the PSD and the structure
function (8 = « 4 1) is only valid under special conditions, not nec-
essarily found in real data sets (Paltani 1999; Emmanoulopoulos,
McHardy & Uttley 2010). The structure function has been widely
used in blazar variability studies but its interpretation is not straight-
forward, as has been recently discussed by Emmanoulopoulos et al.
(2010). These authors used simulations to demonstrate that many of
the features in the structure function are associated with the length
and sampling patterns of the light curves rather than anything of
statistical significance. For these reasons, values obtained from the
structure function can only be taken as a rough measure of the prop-
erties of the time series, and therefore we do not use them here.
Instead, we fit the PSDs directly.

We start by giving a brief description of the data sets used
(Section 2), and then provide detailed descriptions of the methods in
Sections 3 and 4. In Section 3, we describe our approach to the criti-
cal problem of estimating a model for the light curves to use with the
Monte Carlo significance estimate. Here, we describe an implemen-
tation of the method of Uttley, McHardy & Papadakis (2002) that
contains some important modifications. In Section 4, we provide a
description of a number of modifications we propose to common
methods used to estimate the significance of cross-correlations. We
give a justification for the use of the local normalization (Welsh
1999) in the Edelson & Krolik (1988) method, demonstrate the
strong dependence of the significance estimate on the model light
curves and introduce a bootstrap method to estimate the error in the
cross-correlation significance estimates. We close the paper with a
summary of our main findings and recommendations for the use of
this and related techniques (Section 5).

An important aspect of this work is the use of a statistically well-
defined data set, where long light curves are used independent of the
flaring state of the object. A fatal trap that many authors fall into is
that of ‘cherry picking’ the data by selecting small intervals of data.
This approach can produce spurious levels of significance for the
cross-correlations, and hence cannot be used to draw conclusions
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about blazar populations, or the long-term behaviour of individual
sources.

2 THE PARAMETERS OF THE OBSERVATIONS

The methods we discuss in this paper can be adapted to use with any
data set, but since we are describing a particular implementation,
our simulated data sets are generated making some choices related
to the intended application. These choices are motivated by the
data sets associated with our blazar monitoring programme in the
radio and gamma-ray bands. These data sets are described in detail
in Max-Moerbeck et al. (2014) and here we only summarize their
main properties.

A radio observation for each one of the monitored blazars is
attempted twice per week, but because of the effects of weather
and other technical problems we obtain unevenly sampled light
curves (Richards et al. 2011). Fermi observes the whole sky once
every three hours (Atwood et al. 2009), but because of the highly
varying nature of blazars in gamma-rays, sources may sometimes
fall below that detection threshold, resulting in upper limits for
a given integration period. We consider gamma-ray light curves
with a time binning of one week, which allows us to detect about
100 sources most of the time. We have upper limits for about
30 per cent of the data. At this level, we find that treating the
upper limits as non-observations does not have important effects
in the measured time lags or significance of cross-correlations for
the cases with interesting values of the cross-correlation significance
(Max-Moerbeck et al. 2014). This behaviour could be a result of the
particular properties of the light curves we considered in that study,
such as long time-scales for the variability compared to the gaps cre-
ated by ignoring the upper limits or the PSDs, and it might not hold
in other situations. We thus obtain unevenly sampled gamma-ray
light curves as the ones we discuss here.

3 PSD ESTIMATION FOR UNEVENLY
SAMPLED TIME SERIES OF SHORT
DURATION

We begin with a brief summary of the standard methods used for
the estimation of the PSD and then move to the uneven sampling
and short time series cases. This discussion is based on the method
presented in Uttley et al. (2002) which is modified to suit our data set
and the range of PSDs we fit. Additional justification of the need for
binning and interpolation of the light curves is given in Section 3.2.2.
We also present an example of the application of our method to a
simulated light curve, and a number of tests using real data sampling
for simulated light curves that demonstrate the accuracy of the
fitting procedure under different conditions. The real data sampling
is based on the data set presented in Max-Moerbeck et al. (2014),
which have 4 yr 15 GHz radio light curves from the OVRO 40 m
telescope blazar monitoring programme, and 3 yr gamma-ray light
curves from the LAT on board Fermi. A study of the effect of
increasing the number of simulations in the fitting procedure is
performed to guide our choice of parameters for the data analysis.
A summary of the method, with emphasis on the improvements we
add to the original formulation, is given in Section 5.

3.1 The basics of PSD estimation

We define a time series as a time-ordered sequence of triplets (z;, f;,
e;), where t; is the observation time, f; is the measured value of the
quantity of interest (e.g. flux density, photon flux, etc.) and e; is an
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estimate of the observational error associated with the measurement.
We assume that the time series is sorted in time and i =1, ..., N.!

An estimation of the PSD can be obtained through the peri-
odogram, which is conventionally defined as the squared modulus
of the discrete Fourier transform (DFT):

2

N 2
+1> fisin(Zm)kt,-)} , (1

i=1

N
P(y) = [Z fi cos(2mut;)

i=1

where the periodogram is evaluated at the discrete set of frequencies
v, =k/Tfork=1,..., N/2for Neven,or k=1, ..., (N —
1)/2 for N odd, vnyq = N/2T is the Nyquist frequency and T =
Ny —1)/(N = 1).2

Estimating the PSD in this way requires sampling a continuous
time series at discrete times for a finite amount of time. The sam-
pling operation is equivalent to multiplication of the time series by
a Dirac comb, while sampling for a finite time corresponds to a
multiplication by a rectangular observing window. These two mul-
tiplications appear as convolutions in frequency space: the original
spectrum is convolved with the Fourier transform of the Dirac comb
and of the rectangular window. As a final step, we only look at a
discrete set of frequencies which is equivalent to multiplication by
a Dirac comb in frequency space.’

Ignoring the effect of sampling with a Dirac comb in the fre-
quency domain, and omitting normalization factors, we find that
the periodogram is given by

P) = W)+ I (v) % F(v) 2, 2)

where F(v) is the Fourier transform of the time series (¢;, f;), [I1 1 (v)
is the Fourier transform of the Dirac comb with sampling interval
At, W(v) is the Fourier transform of the sampling window function,
which is by default a rectangular window and * denotes convolution.

As a result of the convolution with the Dirac comb, we do not
have access to the original spectrum but a modified version that re-
peats periodically. Another distortion comes from the convolution
with the sampling window function, which modifies the shape of
the original spectrum, and finally we only look at discrete set of
frequencies. All these factors have to be taken into account when
analysing data and interpreting the results. The periodic repetition
of the spectrum gives rise to aliasing, in which high-frequency com-
ponents are mistaken as low-frequency components. Convolution
with a window function can be a serious problem when the sidelobes
of the frequency window function lie on regions of the spectrum
where the power is much higher than at the frequency of interest
— this is the origin of the red-noise leakage problem. Having the
spectrum sampled at a number of discrete frequencies can be prob-
lematic if we are searching for narrow spectral components which
can be smeared or missed.

For the case of evenly sampled time series, PSD estimation
amounts to using the DFT along with periodogram or frequency
averaging to decrease the noise which is distributed as a x3 for
a single frequency component. Each of these averaging processes
can reduce the variance at the price of reduced spectral resolution.

!"'In what follows, we use v for the frequency and f; for time series data, e.g.
flux density, photon flux, etc.

2 This choice of T is consistent with the definition of the DFT (Brigham
1988) and allows us to make use of the Fast Fourier Transform algorithm to
increase the speed of the computations.

3 A graphical representation of these operations can help the reader under-
stand their effect. See fig. 6.1 in Brigham (1988) or elsewhere.
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For example, in the case of frequency or periodogram averaging of
M components, the resulting distribution is x7,,, which reduces the
variance by a factor of 1/M with respect to the non-averaging case.

The application of these methods is straightforward in the case
of long time series, where a good estimate of the PSD can be ob-
tained at the expense of reduced frequency resolution. Nonetheless,
problems of aliasing and red-noise leakage can still complicate the
analysis of broad-band signals like the simple power-law PSDs we
fit to our data (P(v) oc 1 /v#), for the reasons outlined below. For rela-
tively flat spectra (8 from O to 2), aliasing can be a problem as high
frequency-power above the Nyquist frequency contaminates low
frequencies. This problem is less serious for steep spectra (8 > 2),
which have relatively small amounts of power at high frequencies.
But in this case, red-noise leakage can flatten the high-frequency
part of the spectrum: power from low frequencies contaminates the
low-amplitude high-frequency parts of the spectrum through side-
lobes on the sampling window functions. To reduce the effects of
these problems, a combination of filters and sampling window func-
tions can be used (e.g. Brigham 1988; Press et al. 1992; Shumway
& Stoffer 2011).

3.2 PSD estimation for unevenly sampled data
and short time series

When working with time series data, problems often arise
because the time series is unevenly sampled and relatively
short. Uneven sampling requires the use of a different esti-
mate of the periodogram: the best-known alternatives are the
Deeming periodogram (Deeming 1975) and the Lomb-Scargle pe-
riodogram (Scargle 1982). The Lomb—Scargle periodogram is well
suited to the detection of periodic signals in white noise, because
its statistical properties are well understood. For the analysis of
broad-band signals, the Deeming periodogram is often used for
reasons that are mainly historical as it does not present any real ad-
vantages. These two methods allow us to obtain an estimate of the
periodogram for unevenly sampled time series directly, but do not
provide a way to correct for distortions produced by the sampling
window functions, which can modify the shape of the periodogram
significantly as explained below.

3.2.1 Description of the method

The method we present here was originally developed and described
in detail in Uttley et al. (2002). We describe the main steps here to
highlight the differences between theirs and our implementation.

(i) Obtain the periodogram for the light curve and bin it in fre-
quency to reduce scatter. The periodogram is given by a frequency-
binned version of the following expression

2

2T N N 2
Py = e [Z ficosQmuet;)| + Z fi sin(27rvkt,~)] ,
i=1 i=1
(3)
where the frequencies are v, = k/Tfork =1, ..., N/2 for N even,
ork=1,..., (N —1)/2 for N uneven. The minimum frequency

iS Vmin = 1/7, the maximum frequency is the Nyquist frequency
Unyg = (N/2)(1/T) and T = N(ty — t;)/(N — 1). The multiplicative
factor is a normalization, such that the integral from v; to vy is
equal to the variance contributed to the light curve in this frequency
range. The evenly sampled time series (;, f;) is obtained from the
original one by interpolation on to a regular grid. This interpolated
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time series is first multiplied by an appropriate sampling window
in order to reduce red-noise leakage. A justification of these steps
is given in Sections 3.2.2 and 3.2.3.

(i1) Choose a PSD model to test against the data. In this case, we
are fitting power laws of the form P(v) oc 1/v# but this can be gener-
alized to any functional dependence. For the given model, simulate
M time series, where M is a large number that allows us to represent
a variety of possible realizations of this PSD model. These and all
the simulated light curves used in this work are generated using the
method described in Timmer & Koenig (1995), which randomizes
both the amplitude and phase of the Fourier transform coefficients
consistent with the statistical properties of the periodogram.

(iii) For each simulated light curve, apply the same sampling, add
observational noise and interpolate into the same even grid. Calcu-
late the periodogram for each one. From these M periodograms,
determine the mean periodogram and its associated error as the
scatter at each frequency bin.

(iv) Using the mean periodogram and errors obtained in step (iii),
construct a x 2-like test, defined by

o= Z [Paim(¥) — Paors ()]
o APsim(v)2

V=Vmin

“

where P, (v) is the periodogram of the observed light curve, Pim(v)
and A Py, (v) are the mean and scatter in the periodogram obtained
from the simulated light curves and x2 is the x? of the observed
light curve when compared to the simulations for a given PSD
model. This x2, is then compared to the simulated distribution
of x* for which we can obtain M samples, x2, ;, by replacing
the Pgyys(v) term by the periodogram of the simulated light curves,
Pgim.i(v), in equation (4). The fraction of the distribution for which
X3, > X2 is the significance level at which the tested PSD model
can be rejected, also known as the p-value. Thus, a high value of
this percentage represents a good fit, while a low one corresponds
to a poor fit.

The process described above can be repeated for a number of
models with different parameters. The final step consists of selecting
the best model fit as the one with the highest value of p. As with
any statistical procedure, a measurement of the uncertainty in the
parameters of the model needs to be given. In this point we depart
from the original formulation and provide uncertainties based on
Monte Carlo simulations of the model fitting process (as described
in Section 3.2.6).

The most significant differences with the original implementation
are the use of sampling window functions to reduce red-noise leak-
age and the Monte Carlo estimation of fitting uncertainties. Another
difference is that we simulate the effects of aliasing by simulating
light curves with high-frequency components with a sampling pe-
riod of 1 d, instead of adding a constant noise term to the PSD
of the simulated light curves as in the original formulation. The
high-frequency cut at 1 d~! is justified in our implementation by
the small amount of power seen at higher frequencies specially in
the radio band. Intraday variable sources show variability in short
time-scales (Wagner & Witzel 1995), but even in these cases the
amplitude of the variability is only a few per cent for most sources
(Quirrenbach et al. 1992). At gamma-rays, this is not necessarily
true as fast variability has been observed, but given that gamma-ray
photon fluxes correspond to mean values of long integrations of at
least a week for most blazars, the effects of fast variability are less
important as they are averaged out. Other applications where fast
variability is expected might require a higher frequency cut, making
this approach impractical. Another important difference, although
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less important conceptually, is the use of the Fast Fourier Transform
to perform the computations, which substantially decreases com-
puting time. Further discussions of the most important elements of
the method are given below.

3.2.2 The necessity for rebinning and interpolation
of the light curves

This step is very important when estimating steep PSDs. It is easy
to get mislead by intuition developed from the behaviour of win-
dow functions for evenly sampled time series, but it turns out that
window functions for unevenly sampled data do not behave in the
same way. An example is presented in Fig. 1, where we show the
frequency response of an uneven sampling pattern with rectangular
and Hanning windows, for the periodogram of power-law PSDs
with different values of 8 from 0 to 5. These window functions are

() boosr=T (5)
Wrec =
' 0, otherwise

t=T/2)\2
cos(m—=+=)", 0<t<T
! . 6)
0, otherwise.

wHanning(t) = {

From Fig. 1, it can be seen that even though we can calculate the
periodogram directly for an unevenly sampled time series the results
we obtain are very noisy and do not vary much among different
values of 8. The main problem is that all the PSDs with g > 1
look very similar, showing almost the same slope when fitted with
a linear function after a log—log transformation. This is problematic
as the fitting procedure relies on the differences between different
PSD power-law indices to choose the best model.

Doing the same exercise for a time series with the same time
length and number of data points but with even sampling, we obtain
the results shown in Fig. 2. In this case, the results are much less
noisy and the estimated PSDs look different from each other even
for very steep PSDs. This allows for better discrimination and is
required to find an upper limit to the source power-law exponent of
the PSD.

The problems associated with the window functions become evi-
dent when trying to apply the fitting method using unevenly sampled
data, and show up as an inability to find an upper limit to the power-
law exponent S due to the lack of difference between the estimated
PSDs for the simulated data. This problem can be solved by the use
of interpolation and an appropriate window function, a subject that
is discussed in Section 3.2.3.

Figs 1 and 2 illustrate the limited use we can make of direct PSD
fitting, even for the case of long time series. In this case, red-noise
leakage makes it impossible to recover the right power-law index
for steep PSDs.

The subject of windowing of unevenly sampled data is briefly
discussed in Scargle (1982). In particular, fig. 3 in Scargle (1982)
shows a few example window functions for the cases of even and
uneven sampling using the classic periodogram. That figure illus-
trates the very different sidelobe structure that is obtained for the
uneven sampling case, which is at the root of the problem described
here.

To clarity this point, we also include the window functions for
our test data along with the results of applying the Hanning window.
An examination of Fig. 3 helps us understand the results described
below. In conventional Fourier analysis, window functions change
the frequency response of the sampling, changing the sidelobe struc-
ture and thus helping mitigate the effects of red-noise leakage and
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Figure 1. Effect of the use of window functions for uneven sampling cases using the rectangular (blue) and Hanning window (green). Each figure shows the
result of simulating 1000 light curves with a given simple power-law PSD oc 1/vf, with 8 given in each figure title. The data points are the mean PSD and the
error is the standard deviation in the simulation, while the units of power (vertical axis) and frequency (horizontal axis) are arbitrary. Also included are direct
fits of the slopes of the mean PSDs for the simulated data for each window (individual panels legend). Note how the linear fits can hardly discriminate between
different slopes and how all the estimated PSDs look very similar.
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Figure 2. Effect of the use of window functions for even sampling cases using the rectangular (blue) and Hanning window (green). Each figure shows the
result of simulating 1000 light curves with a given simple power-law PSD o 1/v#, with § given in each figure title. The data points are the mean PSD and
the error bar is the standard deviation in the simulation, while the units of power (vertical axis) and frequency (horizontal axis) are arbitrary. Also included are
direct fits of the slopes of the mean PSDs for the simulated data for each window (individual panels legend). In this case, the shape of the PSDs is less noisy
and the estimated PSDs for steep cases look different from each other. Even in this case, direct linear fitting of the PSD produces biased results.
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Figure 3. Spectral window functions in the cases of even and uneven sampling. In the uneven sampling case, the rectangular (blue curve) and Hanning (red
curve) windows have a response with a relatively high sidelobe level, which does not decay as the frequency increases. For the even sampling case with the
same time length and number of data points, we see that the rectangular (green curve) and Hanning window (cyan curve) behave as expected in the usual case,
with a regular sidelobe structure whose amplitude decreases as the frequency increases.

aliasing. This behaviour can be seen when using evenly sampled
data sets, where the sidelobe structure is regular and decays as fre-
quency increases. The case for uneven sampling is very different:
the shapes of the window functions explains the strong red-noise
leakage seen in the simulations and the increased noise. In the case
of even sampling, we recover the results of conventional Fourier
analysis, with all the known properties of window functions.

For the reasons described above, we use linear interpolation and
rebinning to interpolate the unevenly sampled light curves to a
regular grid, thus allowing for the PSD fitting.

3.2.3 Spectral window function

One fundamental difference between the implementation of the
method of Uttley et al. (2002) and ours is that we use window
functions to reduce the effects of red-noise leakage. We found that
this is necessary when dealing with steep PSDs, like those found
in blazar studies. In our first attempts to fit the PSDs, we found
that with a rectangular window we were not able to set an upper
limit to the value of 8 and were only able to set a lower limit.
The upper limit on S is necessary to constrain the significance
of cross-correlations, as will be described in Section 4. In this
section, we explain the origin of that problem and the solution we
implemented.

For broad-band time series, a big problem is the leakage of power
through far sidelobes of the spectral window response. This problem
is evident when dealing with high dynamic range PSDs, such as
steep power laws. For these power-law PSDs, itis seen as a flattening
of the high-frequency part of the periodogram due to power leaking
from low-frequency part which has much higher power. In practical
terms, it means that after some critical value of the power-law
index all the periodograms have a flat slope which does not depend
strongly on the PSD (Figs 1 and 2). Most of this high-frequency
power is actually coming from low frequencies through sidelobes of
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the window function. One way to deal with this problem is by using
window functions with low-level sidelobes; some details about their
application to our data set are presented below.

Spectral window functions for our data sets. There is a great variety
of window functions, which differ mainly in the width of their main
lobe, the maximum level and the fall-off rate of the sidelobes. The
ideal window function will depend on the application and some
experimentation might be necessary. Properties of various window
functions can be found elsewhere (e.g. Harris 1978).

We tried a number of them and compared their performance
in recovering steep PSDs. We found that among the ones tested
the most suitable one was the Hanning window, which is able to
recover a steep spectrum in a range that allows us to fit our light
curves. Among the special characteristics of this window are its
low sidelobe level, more than 32 dB below main lobe, and the fast
fall-off at —18 dB/decade. As a downside, the Hanning window
has a broader main lobe at 3dB (1.44/T) when compared to the
rectangular window (0.89/7), where T is the length of the time
series.

The effect of different windows is illustrated in Fig. 4, which
shows the periodogram for a series of steep PSDs. From the figure, it
is also clear why other window functions fail to distinguish between
steep PSDs, and thus are not suitable to use with this method.

The results of Fig. 4 can be understood by comparing the prop-
erties of the window functions shown in Table 1 (Harris 1978). The
reduction of the red-noise leakage when using the Hanning window
allows us to discriminate between different steep power-law indices
of the PSD, and is due to the low level and fast fall-off its sidelobes.

Windowing is good for fitting a featureless PSD, but it can be a
source of problems if the goal is to find narrow spectral components.
This is because of the well-known trade-off between resolution and
sidelobe level: tapering the window function in order to decrease the
sidelobe level must reduce the resolution. This has to be considered
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Figure 4. Comparison of windowed periodogram for power-law PSDs for evenly sampled data. Each figure shows the result of simulating 1000 light curves
with a given simple power-law PSD o 1/v#, with 8 given in each figure title. The data points are the mean PSD and the error is the standard deviation in the
simulation, while the units of power (vertical axis) and frequency (horizontal axis) are arbitrary. Also included are direct fits of the slopes of the mean PSDs
for the simulated data in each case using a rectangular (blue), triangular (red) and Hanning (green) windows.

Table 1. Properties of selected window functions.

Window Sidelobe level  Sidelobe fall-off 3dB BW
(dB) (dB/octave) (bins)
Rectangular —13 —6 0.89
Triangle or Bartlett -27 —12 1.28
cos 2(x) or Hanning —-32 —18 1.44

when searching for periodic components, a case which is outside of
the scope of the current analysis.

3.2.4 Filtering

The windowing technique is able to solve the problem with red-
noise leakage, but another method that can be used is filtering in
the time domain followed by a correction to the frequency domain
result. The goal of filtering is to eliminate the low-frequency com-
ponents that produce the red-noise leakage before computing the
periodogram. Since this changes the spectrum of the time series, it
has to be compensated in the final periodogram by the application
of a frequency filter.

One of these techniques is called pre-whitening and post-
darkening by first differencing. In this case, the original time
series (#;, f;) with even sampling is transformed to (¢, g =
fi — fi—1). In the frequency domain, this is equivalent to filtering
with |H(v)|> = 2[1 — cos(27tv)]. Higher order filtering is possible,
for example by the application of first-order differencing multiple
times (Shumway & Stoffer 2011).

Fig. 5 shows the result of applying this procedure to simulated
data with even sampling and a range of power-law slopes of the
PSD. It can be seen that this method has problems recovering flat
PSDs with 8 < 2 and very steep PSDs with 8 > 4. We also tested

it with the sampling of the OVRO data set and found that in a large
number of cases it was not able to provide good upper limits for
B and was outperformed by windowing with the Hanning window.
We therefore use Hanning windowing for the data analysis.

3.2.5 Adding noise to simulated light curves

A final issue is the addition of noise to simulated light curves, a
necessary step to consider the effect of observational uncertainties
in our ability to measure the PSD. This is not a serious problem for
the radio light curves, which in most cases have very high signal-
to-noise ratio. But it is important for most gamma-ray light curves,
which have moderate signal-to-noise ratios.

In order to add the observational noise to the light curves, we first
need to normalize the simulated data to match the observations. One
way to obtain an approximate normalization is by using Parseval’s
theorem, which with the normalization we use implies that

Vmax
o’ =) P)Av. @)
Vmin

We can estimate the variance for the observations and the simu-
lations and use a constant factor to make them equal, thus getting
an approximate normalization of the PSD. One problem is that the
data already contain observational noise added to the signal, so for
each data point we have d; = s; 4+ n;, where d is the data, s the signal
and n the noise. We estimate the variance to obtain 6} = 62 + 02,
under the assumption that the noise and signal are uncorrelated.

The variance of the noise can be obtained from the observational
uncertainty by o & e?, where ¢, is the 1o observational uncer-
tainty associated with the ith measurement. The final normalization
equation is

o2 = A (oj —e). ®)
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Figure 5. Effect of the pre-whitening and post-darkening filters in the PSD of evenly sampled time series. Each figure shows the result of simulating 1000
light curves with a given simple power-law PSD o 1/vf, with 8 given in each figure title. The data points are the mean PSD and the error is the standard
deviation in the simulation, while the units of power (vertical axis) and frequency (horizontal axis) are arbitrary. Also included are direct fits of the slopes of
the mean PSDs for the simulated data in each case using first difference (blue curve) and second difference (green curves).

We multiply the originally arbitrarily normalized simulated data
by A~!, to get a normalization equivalent to the one in the observa-
tions. In practice, we use A to transfer the observational error bars
to the simulations, to which we add Gaussian observational noise
to the time domain signal such that e, ; = A e;. In the original for-
mulation, the noise is applied to the periodogram, but we choose to
apply it directly to the time series in order to account for the differ-
ent magnitudes of the observational uncertainties. The assumption
of Gaussian error bars is only approximate for the gamma-ray data,
which have a Poisson distribution. Since in this analysis we are
only considering highly significant gamma-ray detections, we usu-
ally have at least five photons in each integration and in most cases
many more. In this regime, the difference between Poisson- and
Gaussian-distributed errors is negligible.

3.2.6 Estimation of the uncertainty in the model parameters

Uttley et al. (2002) defined the region of confidence for the fit-
ted model parameters as the region for which p(é) > Dconfs Where
p(0) is the p-value for a given set of parameters 0. For example, a
68.3 per cent confidence interval has peonr = 0.317, while a 95.5 per
cent confidence interval has peo,s = 0.045. One problem with this
rule is that it is not possible to get 68.3 per cent confidence intervals
for fits in which p < 0.317. This contrasts with the usual approach
to measure uncertainties from x? fits that define a 68.3 per cent (or
any other level) confidence interval by the region of parameter space
for which x2(9) — x2,, < Ax?, where Ax? depends on the number
of interesting parameters being fit and the confidence level (Avni
1976; Press et al. 1992; Wall & Jenkins 2003). In this widely used
method, a confidence interval can be obtained independently of the
value of 2, for the fit, thus effectively decoupling the goodness-
of-fit estimate from the estimation of confidence intervals.

MNRAS 445, 437-459 (2014)

For these reasons, we decided to estimate frequentist best-
fitting confidence intervals by using the method of the Neyman
construction. These intervals are constructed to include the true
value of the parameter with a probability greater than a speci-
fied level, as demonstrated in Beringer et al. (2012) and James
(2006). Here, we only describe the mechanics of obtaining con-
fidence intervals and refer the reader to the references for a for-
mal demonstration. The procedure requires that we know the
probability of a given experimental result S5, as a function of
the value of the unknown parameter 8. The distribution for the
fitted value of the power-law index for a given value of S is
estimated with a Monte Carlo simulation resulting in the distribu-
tion of B¢, as a function of B. At each value of B, we can construct
a confidence interval at a desired level; the results of these confi-
dence intervals are summarized in a figure with g8 in the vertical
axis and By in the horizontal axis (see the lower panel of Fig. 7 for
an example). For each value of 8, we can draw a horizontal line
going from the lower to the upper limit of the confidence interval.
We join the confidence intervals for a range of values of 8 to get
a confidence band. We then fit the PSD to the data, draw a vertical
line at B¢, and determine the confidence interval as the intersection
of the vertical line and confidence band. This procedure requires
that for each PSD fit we run a large number of fits to simulated
data, which increases the computational time. This is feasible when
fitting a single power-law index but it can be prohibitive when fit-
ting a larger number of parameters. In principle, we are required
to have a confidence interval for each possible value of g, but to
reduce the computational time we discretize a reasonable parameter
range and use linear interpolation to fill the gaps in the confidence
band.

An example of the application of this method is presented in
Section 3.3.1.
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Figure 6. Example of the PSD fit method applied to simulated data. Upper
panel is the simulated light curve with a PSD o 1/v? and no noise. Lower
panel is the data periodogram binned in frequency (black line) and the mean
PSD and scatter for the best fit with § = 1.85 &£ 0.2 (black dots and error
bars).

3.3 Implementation

This section starts with an example of the application of the method
to a simulated light curve of known PSD. We present four tests
intended to validate the procedure by fitting a large number of
simulated data with known PSD, using sampling patterns taken from
the OVRO programme, and with observational errors consistent
with our data. This section ends with a study of the effects of
changing the number of simulated light curves (M as defined in
Section 3.2.1), when fitting simulated data in one of them, and
an example light curve from the OVRO programme in the other.
The goal is to get an indication of the associated uncertainties by
changing M, as it can have a large impact on the computational
time.

3.3.1 An example of the application of the method

A simulated light curve with a power-law PSD with g = 2.0, no
observational noise and sampled in the same way as the source
J16534-3945 is shown in Fig. 6, along with the periodogram and
best fit.

The results of the fitting procedure are summarized by a plot of
p versus B (Fig. 7). The best fit corresponds to 8 = 1.85 &+ 0.2,
where the errors were obtained with a Neyman construction, whose
resulting 68.3 per cent confidence band is also shown in the figure.
In what follows, all the errors are obtained in this way. This error
can be compared with the original error prescription, which in this
case produces a value of 0.5, more than twice the value estimated
from the simulations.
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Figure 7. Example of the fitting method applied to simulated data of known
PSD. Upper panel is p versus S for the different model power-law ex-
ponents we tested. The peak at 1.85 indicates the best fit. The error on
the fit is obtained from the confidence band which is shown in the lower
panel. The intersection of the vertical line with the confidence band give us
B=185+0.2.

3.3.2 Validation of the implementation with simulated data sets

In order to validate the implementation, we tested it with simulated
data sets of known PSD. Typical sampling patterns and various rel-
ative amounts of noise are considered to investigate the behaviour
of the method under different conditions. In each of the tests, we
use M = 1000 to get the mean PSD and scatter at each trial value
of B. We use trial values of B from 0.0 to 3.5 in steps of 0.05.
Besides validating the method, these tests illustrate how our abil-
ity to measure the PSD and the associated error in the power-law
exponent depend on the sampling and noise for the particular light
curves.

OVRO sampling pattern 1 and no noise. In this test, we use the
sampling pattern for the source J16534-3945, the OVRO data are
shown in Fig. 8 as reference. Note that for all the tests in this section,
the fitted data are simulations, with only the sampling taken from
the OVRO observations. The results of the fit for simulated data as a
distribution of best-fitting values are shown in Fig. 8. We find that in
all cases we are able to recover the true § with a typical uncertainty
of 0.2.
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Figure 8. Upper panel shows the OVRO data used to get the time sampling.
The flux density uncertainties are not used in this test and we assume a perfect
measurement. Four lower panels are the distribution of best-fitting values for
1000 simulated light curves in each case. In each case, this distribution gives
an estimation of the error on the fit and is used to construct the confidence
band. Top left is for Bgm = 0.0 and Bg; = 0.0tgj?), top right is for Bgim = 1.0
and B = 1.0 £ 0.2, lower left is for fgm = 2.0 and B = 2.0701° and
lower right is for Bsim = 3.0 and Bs = 3.01‘8%5. In the case of Bgsim = 0.0,
we report the mode and dispersion about that value. All the other cases use
the median and dispersion.

OVRO sampling pattern 1 and noise. In this test, we use the sampling
pattern for the source J1653+3945 and error bars consistent with
the noise in this source. The results of the fit for simulated data as a
distribution of best-fitting values are shown in Fig. 9. In this case, the
large measurement errors make recovering the PSD exponent very
hard and the fitting procedure fails to yield a meaningful constraint.

OVRO sampling pattern 2 and noise. In this test, we use the sampling
pattern for the source J0423—0120 and error bars consistent with
the noise in this source. The OVRO data are shown in Fig. 10. The
results of the fit for simulated data as a distribution of best-fitting
values are shown in Fig. 10.

In this case, the procedure also provides good constraints on
except for the case of 8 = 3.0. If necessary this could be handled
by the use of a different window function.
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Figure 9. Upper panel shows the OVRO data used to get the time sampling
and the flux density uncertainties. Four lower panels are the distribution
of best-fitting values for 1000 simulated light curves in each case. In each
case, this distribution gives an estimation of the error on the fit and is used to
construct the confidence band. Top left is for Bsm = 0.0 and Bg, = 0.054:8:32,
top right is for Bgim = 1.0 and B = 1.3:1,:;5, lower left is for Bgjm = 2.0
and B = 1.970%, and lower right is for Bgm = 3.0 and B = 3.07045. In
the cases of Bsim = 0.0 and 3.0, we report the mode and dispersion about
that value. All the other cases use the median and dispersion.

OVRO sampling pattern 3 and noise. In this test, we use the sampling
pattern for the source J2253+1608 and error bars consistent with
the noise in this source. The OVRO data are shown in Fig. 11. The
results of the fit for simulated data as a distribution of best-fitting
values are shown in Fig. 11. In this last case, we are also able to
constrain B with an uncertainty of about 0.2.

3.3.3 Effect of increasing the number of simulations

Here, we study the effect of varying the number of simulated light
curves (M) on the repeatability of the results. We then establish
a criterion to select M for the data analysis and to get an idea of
possible errors associated with that choice. We test this by fitting
the same simulated data set used in Section 3.3.1, 100 times using
M =100, M = 1000 and M = 10 000 simulated light curves at each
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Figure 10. Upper panel shows the OVRO data used to get the time sampling
and the flux density uncertainties. Four lower panels are the distribution of
best-fitting values for 1000 simulated light curves in each case. In each
case, this distribution gives an estimation of the error on the fit and is used to
construct the confidence band. Top left is for Bsm = 0.0 and Bg, = 0.15f8:?5 R
top right is for Bgim = 1.0 and Bg; = 1.0 £ 0.15, lower left is for Bsm = 2.0
and Bg = 2.0 & 0.25 and lower right is for Bgim = 3.0 and Bg = 3.05 &+
0.3. In the case of Bsim = 0.0, we report the mode and dispersion about that
value. All the other cases use the median and dispersion.

trial power-law exponent of the PSD. The distribution of best-fitting
values is used to estimate the repeatability of the fitting process.
The second test does the same but in this case it fits the OVRO data
for J0423—-0120 shown in Fig. 10, and this time incorporating the
observational noise in the fit. The results are summarized in Table 2
which shows that the repeatability of the results increases as M
increases, as we would expect. The scatter is reduced by half when
going from M = 100 to 10 000. We also note that in the case of the
OVRO data we get a big increase (a factor of 1.9) in accuracy when
going from M = 100 to 1000, but a much smaller one (a factor of
1.2) by going to M = 10 000. This shows that exceeding M = 1000
is not necessary for these data and can save a significant amount of
time when studying large samples of sources. Similar tests can be
performed for other data sets to determine the required number of
simulations.
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Figure 11. Upper panel shows the OVRO data used to get the time sampling
and the flux density uncertainties. Four lower panels are the distribution of
best-fitting values for 1000 simulated light curves in each case. In each
case, this distribution gives an estimation of the error on the fit and is used to
construct the confidence band. Top left is for Ssim = 0.0 and B = 0.05;"8:32 N

top rightis for Bgm = 1.0 and B = 1.0}, lower leftis for Bgim = 2.0 and

Bt = 2.05 & 0.25 and lower right is for Bsm = 3.0 and Bg = 301’8:?5. In
the case of Bsim = 0.0, we report the mode and dispersion about that value.
All the other cases use the median and the 15.86 and 84.15 percentiles to
measure the 1o dispersion.

Table 2. Repeatability of fitted parameters as a function of number of
simulated light curves.

Test B B B
M =100 M =1000 M = 10000
Simulated, known PSD ~ 1.854+0.08 1.85+0.05 1.86 4 0.03
OVRO data with noise ~ 2.27 +0.13  230+£0.07 2.324+0.06

4 SIGNIFICANCE OF CROSS-CORRELATIONS
BETWEEN TWO WAVEBANDS

Here, we deal with the statistical problem of quantifying the signif-
icance of the cross-correlation between two time series, in the case
of uneven sampling and non-uniform measurement errors. The two
time series are assumed to contain no upper or lower limits.
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4.1 The estimation of the cross-correlation function

Our basic data sets are two time series we call A and B. These
time series are time-ordered sequences of triplets (7, a;, 0,;) with
i=1,...,Nand (t;, bj, op;) withj =1, ..., P. In both cases, t,;
is the observation time, x; is the measured value of a quantity of
interest (e.g. flux density, photon flux, etc.) and o,; an estimate of
the observational error associated with the measurement.

Since the time interval between successive samples is not uni-
form and the A and B time series are not sampled simultaneously,
we need to resort to some kind of time binning in order to measure
the cross-correlation. The cross-correlation between two unevenly
sampled time series can be measured using a number of different
approaches. The usual approach is to generalize a standard method
and use time binning to deal with the uneven sampling. Here, we
consider two methods that are commonly encountered in the lit-
erature: the discrete correlation function (DCF; Edelson & Krolik
1988) and the local cross-correlation function (LCCF; e.g. Welsh
1999). A number of other alternatives have been used to handle
the problem of measuring the correlation between unevenly sam-
pled time series. Among them are the interpolated cross-correlation
function (Gaskell & Peterson 1987), inverse Fourier transform of
the cross-spectrum (Scargle 1989) and the z-transformed cross-
correlation function (Alexander 1997). We do not explore these
alternative methods in this work. These methods provide a way of
estimating the cross-correlation coefficients, but do not provide an
estimate of the associated statistical significance, which is discussed
in Section 4.2.

The two most commonly found alternatives are presented below.

4.1.1 The discrete correlation function

The DCF was proposed by Edelson & Krolik (1988) and developed
in the context of reverberation mapping studies. For two time series
a; and b;, we first calculate the unbinned discrete correlation for
each of the pairs formed by taking one data point from each time
series as

(a; —a)b; —b)

040p

UDCF;; = ©)
where a and b are the mean values for the time series, and o, and
o, are the corresponding standard deviations. This particular value,
UDCFj;, is associated with a time lag of At;; = 1;,; — t,;. The discrete
cross-correlation is estimated within independent time bins of width
At, by averaging the unbinned values within each bin,

DCF(t) = % > UDCF;;. (10)

The uncertainty in the binned discrete cross-correlation is given
by the scatter in the unbinned values for each time bin, and is given
by

1 N\ 12
opcr(t) = V=1 (Z[UDCFU — DCF(1)] ) . (11)
In the expressions above, the sum is over the M pairs for which 7 <
Atij < T + At, where 7 is the time lag, and all the bins have at least
two data points in order to get a well-defined error. In practice, it is
recommended to choose M much larger than 2 to reduce the effect
of statistical fluctuations.

In this case, the mean and standard deviation use all the data
points in a given time series, but the DCF for a given time lag only
includes overlapping samples. This particular choice for normaliza-
tion produces values of the DCF which are not restricted to the usual
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[ — 1, 1] interval of standard correlation statistics. This immediately
challenges the interpretation of the amplitude of the DCF as a valid
measure of the cross-correlation and invalidates the use of standard
statistical tests developed for other correlation statistics, forcing us
to find alternative ways to estimate the significance of correlations.
A modification that corrects this normalization problem but not the
significance evaluation issue is described below.

4.1.2 The local cross-correlation function

Motivated by the normalization problems presented by the DCF,
some authors have proposed a different prescription (e.g. Welsh
1999). In this case, we only consider the samples that overlap with
a certain coarse grain of the time delays, which is equivalent to the
width of time bins At. Hence, we have

i Z(ai - ar)(bj - Bt)
M B

OarObr

LCCF(r) = (12)
where the sum is over the M pairs of indices (i, j) such that 7 <
Aty < T + At. The averages (a, and b,) and standard deviations
(04 and o) are also over the M overlapping samples only.

The main motivation for using this expression instead of the DCF
is that we recover cross-correlation coefficients that are bound to
the [—1, 1] interval. This latter property is a result of using only the
overlapping samples to compute the means and standard deviations,
which in effect reduces the problem to a standard cross-correlation
bounded to [—1, 1], as a consequence of the Cauchy—Schwarz in-
equality. Additionally, Welsh (1999) shows that the LCCF can de-
termine time lags more accurately than the DCF in simulated data
sets. These are certainly desirable properties, but as explained in
Section 4.2, they do not solve the estimation of significance prob-
lem.

4.1.3 Relation between the DCF and LCCF

In Section 4.3, we perform a series of tests designed to help us
compare the detection efficiency of the DCF and LCCF. In looking
at these results, it is useful to consider the relation between those
two correlation measures.

From our previous discussions, we can see that the only difference
between the DCF and LCCEF is in the values used for the means and
standard deviations. In the case of the DCF, the mean and standard
deviation are calculated from the complete time series (@, b for the
means and o, o, for the standard deviations), while for the LCCF
only the overlapping samples at each time lag are used (d;, b, for
the means and o ,;, 0, for the standard deviations). It can be shown
that the two are related at a given time lag by

OatOpr (a_r - a)(b_r - E)

DCF(r) = LCCF(r) +
04,0p 040

13)

This linear relation has coefficients that depend on the sampling
pattern and the overlap between the two time series at different time
lags. For long stationary time series, the means and variances of the
overlapping and complete time series will be identical and the DCF
will equal the LCCFE. For short or non-stationary time series, the
coefficients will make the DCF different from the LCCF.
Deviations of the multiplicative coefficient (0 ,;04:)/(0,05)
from 1 change the amplitude of the DCF, while deviations of the
additive coefficient ((d@; — a)(b; — b))/(0,05) from 0 change the
zero-point of the DCF. The combination of these variations ex-
plains why the DCF is not bounded to the [—1, 1] interval as is
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Figure 12. Illustration of the time domain characteristic of simulated light curves with different power-law PSD. In all panels, the horizontal axis is time and
the vertical one is amplitude, both in arbitrary units. Top panels 1, 2 and 3 for PSD o 1/v°, central panels 4, 5 and 6 for oc 1/v! and lower panels 7, 8 and 9 for
oc 1/v2. The light curves with steeper PSD show more flare-like features that can induce high values of the cross-correlation coefficient as shown in Fig. 13.

the LCCEF, and can also explain why they have different detection
efficiencies.

4.1.4 Estimation of the uncertainty in the location of the
cross-correlation peak

The standard method used by the reverberation mapping community
(Peterson et al. 1998) uses bootstrapping and randomization to gen-
erate slightly modified versions of the original data set, in order to
quantify the uncertainty in the location of the cross-correlation peak.
A modified data set is constructed by the application of two proce-
dures. The firstis ‘random subset selection’, in which a bootstrapped
light curve is constructed by randomly selecting with replacement
samples from the original time series. In the second, we perturb
the selected flux measurements by ‘flux randomization’, in which
normally distributed noise with a variance equal to the measured
variance is added to the measured fluxes. Each of these modified
data sets is cross-correlated using the method of choice and a value
for the cross-correlation peak of interest is measured. By repeating
this for many randomized data sets, a distribution of measured time
lags for the cross-correlation peaks is obtained. This distribution is
used to construct a confidence interval for the position of the peak.

4.1.5 Light-curve detrending

There has been some discussion in the literature about the effects of
detrending the light curves in order to improve the accuracy of the
time lag estimates. Welsh (1999) strongly recommended removing
at least a linear trend from the light curves. His results are based
on simulations with even sampling and do not directly apply to
uneven sampling as shown by Peterson et al. (2004). They find that
detrending does not improve accuracy in unevenly sampled data

sets, and produces large errors in some cases. Based on that finding,
we have decided not to detrend our light curves.

We emphasize that care must be taken when correlating time
series where long-term trends are present, as these are guaranteed to
produce large values of the cross-correlation coefficient. Our studies
are mostly concerned with the correlation between periods of high
activity in different energy bands for light curves that appear to have
a detectable ‘quiescent’ level. This is generally true for gamma-ray
light curves, but is not always true for radio light curves. Radio light
curves showing a single dominant increasing or decreasing linear
trend should be analysed with care, as they can produce spurious
correlations. In our opinion, the best remedy for those cases is to
collect longer light curves.

4.2 The estimation of the significance

A complete quantification of the cross-correlation needs an esti-
mate of its statistical significance. In our case, we need to consider
the intrinsic correlation between adjacent samples of a given time
series, which are produced by the presence of flare-like features;
a distinctive characteristic of blazar light curves. This behaviour
can be modelled statistically by red-noise stochastic processes (e.g.
Hufnagel & Bregman 1992 in the radio and optical, Lawrence &
Papadakis 1993 in the X-rays and Abdo et al. 2010 in gamma-rays).
Red-noise processes are characterized by their PSD, show variabil-
ity at all time-scales and appear as time series in which flare-like
features are a common phenomenon. The frequent appearance of
flares means that high correlation coefficients between any two en-
ergy bands are to be expected, even in the absence of any relation
between the processes responsible for their production. To illustrate
this point, Fig. 12 shows simulated light curves with power-law
PSDs (PSD o 1/v#).

In fact, every time we cross-correlate two time series, each of
which has a flare, we will get a peak in the cross-correlation at some
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Figure 13. Examples of the cross-correlation of simulated light curves shown in Fig. 12 using the DCF (upper figure) and LCCF (lower figure). In all panels,
the horizontal axis is time lag in arbitrary units and the vertical one is the amplitude of the cross-correlation. Upper panels: cross-correlation of independent
B = 0.0 light curves. Central panels: cross-correlation of independent § = 1.0 light curves. Lower panels: cross-correlation of independent g = 2.0 light
curves. The pair of numbers on the upper-left corner of each panel are the light-curve numbers from Fig. 12 which are correlated in each case. The light-curve
pairs have been simulated independently and yet show large peaks in the discrete cross-correlation function for the cases of 8 = 1.0 and 2.0. The existence and
amplitude of peaks in the cross-correlation appears to increase for steeper PSDs, independently of the method used.

time lag. Then quantifying the chances of such peak being just a
random occurrence is of critical importance. The problem is further
complicated by the uneven sampling and non-uniform errors, so the
only feasible method is to use Monte Carlo simulations. Standard
methods are not suitable for this analysis, as they assume that the
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individual data points are uncorrelated. The effect of ignoring the
correlations will lead to an overestimate of the significance of the
cross-correlations and to an erroneous physical interpretation.

In Fig. 13, we show the results of cross-correlating the indepen-
dently simulated light curves from Fig. 12, which have different
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Figure 14. Example of cross-correlation significance results. Upper panel shows simulated radio data with arbitrary flux units (top) and simulated gamma-ray
data with arbitrary units (bottom). Both light curves use a typical sampling pattern from our monitoring programme. Lower-left panel is for the DCF and
lower-right panel for the LCCF. The black dots represent the cross-correlation for the data, while the colour contours show the distribution of random cross-
correlations obtained by the Monte Carlo simulation with 1o (red), 20 (orange) and for 3o significance (green). A time lag v > 0 indicates that the gamma-ray

emission lags the radio and t < 0 the opposite.

values of the power-law exponent for the PSD. It can be seen that
correlating light curves with steep PSD, which show frequent flare-
like features, can result in high cross-correlation coefficients that
have nothing to do with a physical relation between the light-curve
pairs. The results illustrate how common it is to get high cross-
correlations for unrelated light curves with steep PSDs and the dan-
gers of interpreting them as signs of a physical connection. Standard
statistical tests that assume uncorrelated data are equivalent to the
case of white noise time series (PSD o< 1/v?), which is illustrated
in the upper panels of Fig. 13. Since blazar light curves are more
similar to simulated light curves with steep PSDs, it is easy to see
how misleading it is to use statistical tests that ignore the long-term
correlations in the individual time series.

4.2.1 Monte Carlo procedure for the estimation of the significance

To estimate the significance of the cross-correlation coefficients, we
use a Monte Carlo method to estimate the distribution of random
cross-correlations, which uses simulated time series with statistical
properties similar to the observations. These and related ideas have
been applied by several authors (e.g. Edelson et al. 1995; Uttley
et al. 2003; Arévalo et al. 2008; Chatterjee et al. 2008). The details
of the procedure vary from author to author, so we provide a detailed
description of our implementation to enable others to evaluate and
reproduce our analysis.

The algorithmic description of the method we use to measure the
significance of the time lags is as follows.

(i) We calculate the cross-correlation coefficients between the
unevenly sampled time series using one of the methods described
in Section 4.1.

(ii) Using an appropriate model for the PSDs at each energy band,
we simulate time series with the given noise properties and sampled
exactly as the data. The resulting flux densities are perturbed by
adding noise according to the observational errors. We calculate
the cross-correlation coefficients of the simulated light-curve pairs
using the same method as for the real data.

(iii)) We repeat the previous step for a large number of
radio/gamma-ray simulated light-curve pairs and accumulate the
resulting cross-correlation coefficients for each time lag.

(iv) For each time lag bin, the distribution of the simulated cross-
correlation coefficients is used to estimate the significance levels of
the data cross-correlation coefficients.

An additional detail is that the gamma-ray time series are the
result of long integrations, so each simulated data point is generated
by averaging the required number of samples to replicate the time
binning. For the radio light curves, the integrations are so short that
the closest sample can be chosen. Fig. 14 shows the application of
the method for an example using simulated data with the sampling
pattern from our monitoring programme. We use § = 2 in both
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bands for the DCF and the LCCF. In both cases, the cross-correlation
coefficient at each time lag is represented by the black dots and the
distribution of random cross-correlations by the coloured dotted
lines. A time lag T > 0 means that the gamma-ray emission lags
the radio, while T < 0 represents the opposite. The red lines contain
68.27 per cent of the random cross-correlations, so we refer to
them as the 1o lines, the orange lines contain 95.45 per cent (20)
and the green lines contain 99.73 per cent (3¢).* The coloured
contours provide a quick way to evaluate the significance of the
cross-correlation and are used for this purpose throughout this paper.
In this case, although the amplitudes are relatively high for both the
DCF and LCCEF, the significance is not even 20 indicating only
marginal evidence of a correlation.

4.3 Comparison of the DCF and the LCCF

We use both DCF and LCCF in our tests, to determine quantitatively
which is the best for the problem of detecting significant correla-
tions between two time series. The comparison is made in terms
of detection efficiency of correlations, at a given significance level,
and a maximum time lag error. For the tests, we simulate a time
series with a very fine time resolution and make two copies, one
for each band, in which the only difference is a known time lag and
the different sampling pattern, which is taken from example light
curves from our monitoring programme.

In all the cases, we bin the cross-correlation with Ar = 10d and
model the time series with a PSD o 1/v?, which is also used for
the Monte Carlo evaluation of the significance. We use M = 1000
uncorrelated time series to estimate the distribution of random cross-
correlations and significance, and use these results to estimate the
significance of cross-correlation for 1000 correlated time series.
This enables us to determine the significance of the correlations and
the error in the recovered time lag.

This corresponds to the ideal case of a perfect intrinsic correla-
tion, which is only distorted by the time lag and different sampling
of the two time series. The case is also ideal with respect to the sig-
nificance evaluation, as we perfectly know the model for the light
curves. It is important to keep these points in mind and to realize
that the actual detection efficiencies could be much lower than what
we find through these tests.

4.3.1 Uniform and identical sampling for both time series,
with zero lag and no noise

As a check of the method and to help the reader understand the
results, we first test our ability to detect correlations in a very simple
case. In this case, a time series with a uniform sampling period of
3 d is correlated with a copy of itself without any delay or noise.
An example of the simulated data set along with the results for the
DCF and LCCF is shown in Fig. 15. The same procedure is repeated
for all simulated time series with known time lag and correlation
properties, and the fraction of detected lags at the known lag (£ A7)
with a given significance level is reported as an efficiency in Fig. 16.

In this case, we recover most of the time lags at the right
value and the behaviours of the DCF and LCCF are very simi-
lar. The values of the coefficients of the linear relation for = 0
(equation 13), are very close to the case when the DCF and LCCF
are equal (Fig. 17).

4 In what follows, we refer to them as the 1, 2 and 3o lines or significance
levels.
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Figure 15. Example of simulated data with PSD oc 1/v%, uniform and
identical sampling, zero time lag and no noise. The upper panel shows the
two time series which overlap perfectly in this case. The lower panel has
the results of the DCF and LCCEF for this case. The vertical lines show the
position of the most significant peak with colour corresponding to the method
used. Horizontal colour lines mark the amplitude of the most significant peak
for each method. The most striking difference between the two methods is
the normalization which is not restricted to the [—1, 1] interval in the case
of the DCF.
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Figure 16. Detection efficiency versus significance for both methods for
the case of uniform and identical sampling for both time series, zero lag and
no noise. In this case, close to 95 per cent of the lags are recovered at the
right value and 30 significance.

4.3.2 Data sampling case 1, ‘short data set’: 2 yr of OVRO
and 1 yr of Fermi-LAT

We now study a case with sampling taken from the OVRO 40 m
blazar monitoring programme and Fermi-LAT data set. Again we
add no noise to the simulations and have zero lag between the two
light curves, so the only difference is in the sampling pattern. In
this case, a source was observed for two years with the OVRO
40 m telescope at 15 GHz with a nearly twice per week sampling
(Richards et al. 2011). The gamma-ray data for the same source has
one observation per week and a one year time duration (Abdo et al.
2010).
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Figure 17. Distribution of coefficients of the linear relation between DCF
and LCCF for T = 0d, for the case of uniform and identical sampling for
both time series, zero lag and no noise. Upper panel is the multiplicative
factor, which is very close to 1 in most cases. Lower panel is the additive
constant which is very close to 0. These values make DCF ~ LCCF which
makes the results of both methods very similar as can be seen in Fig. 16.

An example of simulated data with this sampling is shown in
Fig. 18 (upper panel), along with the results for the cross-correlation
(lower panel). In this case, the radio sampling (blue dots) covers a
longer time span than the gamma-ray one (red dots).

Fig. 19 shows that in this case we only recover a fraction of the
time lags at a 3¢ significance. This is because the DCF often finds
the most significant peak at a lag different from zero (Fig. 20).
Moreover some of those spurious lags are of high statistical sig-
nificance. We still get some significant peaks at lags different from
zero for the LCCF, but at a much smaller rate.

To understand how we can get small values of the DCF at zero
lag while still having large values of the LCCF, we can take a look
at the distributions of the coefficients of the linear relation (equa-
tion 13), shown in Fig. 21. The multiplicative coefficient should be
one in the ideal case, but instead it has a broad distribution (upper
panel). The additive coefficient should be zero in the ideal case, but
it also has a broad distribution (lower panel). This can effectively re-
duce the value of the correlation coefficient or make its distribution
broader, either way reducing its discriminating power. This effect
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Figure 19. Detection efficiency versus significance for both methods for the
case of the ‘short data set’. In this case, the efficiencies differ significantly
between both methods, with the LCCF being the more efficient.

is seen in Fig. 22, which shows the distribution of cross-correlation
coefficients at T = 0d. In the figure, the distribution of random
cross-correlations is represented with a dotted line and the one for
correlated data with a solid line. The upper panel is for the DCF
and the lower panel for the LCCF. The vertical green line repre-
sents the 3¢ significance threshold amplitude for cross-correlation
coefficients. The fraction of cross-correlations for correlated data
(solid line) that is to the right of the green line is approximately
equal to the detection efficiency.” It can be seen that this fraction
is much larger for the LCCEF, as a result of increased scatter in the

> The equality is only approximate because a peak with larger significance
might have appeared in a lag different than r = 0. These cases are not
excluded from the histogram.
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Figure 20. Distribution of most significant peaks in the correlation for both
methods for the case of the ‘short data set’. Upper panels show the lag and
significance of the most significant peak for both methods. The lower panel
is a histogram for the distribution of lags for the most significant peak.

distribution of the DCF when compared to the LCCF of correlated
data, for the reasons presented earlier.

4.3.3 Data sampling case 2, ‘long data set’: 4 yr of OVRO
and 3 yr of Fermi-LAT

We make the same comparison using a data set with radio light
curves of 4 yr time duration sampled about twice a week, and
gamma-ray light curves with a 3 yr time duration and weekly sam-
pling. We again consider the case with no noise and zero lag be-
tween the two light curves, so the only difference is in the sampling
pattern. An example of a simulated data set with this sampling is
shown in Fig. 23 (upper panel), along with the results for the cross-
correlation (lower panel). Comparison of the results of this section
with the shorter data set test (Section 4.3.2) can give us an idea of
the variation of the relative power to detect correlations in different
data sets.

As in the case of the ‘short data set’, we find that the efficiency of
detection strongly depends on the method used. Fig. 24 shows that
the LCCF recovers the right time lag at high significance for all the
cases, while the DCF does so in only about 15 per cent of the cases.
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Figure 21. Distribution of coefficients of the linear relation between DCF
and LCCF for T = 0d, for the case of the ‘short data set’. Upper panel is
the multiplicative factor, which has a very broad distribution, different from
1 in most cases. Lower panel is the additive constant which also has a very
broad distribution, different from the ideal case of 0. These values show the
DCEF to be different from the LCCF and have a role in producing spurious
highly significant peaks in the correlation.

An examination of Fig. 25 shows that the DCF produces spurious
correlation peaks with a wide distribution. As in the case of the
‘short data set’, some of those spurious peaks have high statistical
significance.

A comparison of Figs 19 and 24 shows that the performance of
both methods improves as expected when using longer time series.
However, as can be seen from Fig. 25, the DCF produces a large
fraction of spurious statistically significant correlation peaks, while
the LCCF recovers a significant correlation at T = 0 in all cases.

Fig. 26 shows the distribution of the coefficients for the linear
relation between the DCF and LCCF (equation 13). We again see
that they significantly differ from the ideal case of a stationary time
series. This provides an explanation for the difference between these
two estimators of the correlation. As for the case of the ‘short data
set’, we also look at the distribution of cross-correlation coefficients
for the uncorrelated and correlated data sets at T = 0 (Fig. 27). We
again see the broad distribution of correlation coefficients for the
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Figure 22. Distribution of the cross-correlation coefficient for both methods
at T = 0d, for the case of the ‘short data set’. Upper panel is for the DCF
and lower panel for the LCCF. Both panels show the distribution of random
cross-correlations with a dotted line and for correlated data with a solid line.
Points with cross-correlation coefficient to the right of the vertical green line
have a significance of at least 3o.
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Figure 23. Example of simulated data for the ‘long data set’. Upper panel
shows the two time series, which have some small differences produced by
the different sampling at each waveband. Lower panel has the results of the
DCF and LCCF for this case. The vertical lines show the position of the
most significant peak. In this example, the LCCF recovers the right time lag,
but the DCF finds an spurious time lag.

DCF of correlated data sets, while a much narrower distribution
for the LCCF, demonstrating the better discriminating power of the
LCCFE.

4.3.4 Additional tests

Additional tests were performed introducing various time lags for
the time series and measuring the efficiency of detection for the
DCF and LCCEFE. They all show the same qualitative information
and are thus not included here. In all cases, the LCCF outperforms
the DCF and the efficiency of detection improves when using a
longer time duration data set. These results demonstrate that the
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Figure 24. Detection efficiency versus significance for both methods, for
the case of the ‘long data set’. In this case, the efficiencies differ significantly
between both methods, with the LCCF being the more efficient.
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Figure 26. Distribution of coefficients of the linear relation between DCF
and LCCF for 7 = 0d, for the case of the ‘long data set’. Upper panel is the
multiplicative factor, which has a very broad distribution, different from 1
in most cases. Lower panel is the additive constant which also has a very
broad distribution, different from the ideal case of 0. These values show the
DCEF to be different from the LCCF and have a role in producing spurious
highly significant peaks in the correlation.

LCCEF is the more efficient method for recovering time lags with
high significance.

4.4 Further considerations

In this section, we describe some additional issues that should be
considered when estimating the significance of cross-correlations
using the Monte Carlo test we have devised, or similar methods.
The error on the significance estimate has been mostly ignored in
the literature, while the dependence of the significance estimate on
the model light curves — when not fully appreciated — can lead to
significance tests that are not consistent with the basic statistical
properties of blazar light curves.

Another effect not considered here has recently been raised by
Emmanoulopoulos, McHardy & Papadakis (2013). In their paper,
they propose a method to simulate light curves that reproduces not
only the PSD, but also the power density function of the flux mea-
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Figure 27. Distribution of the cross-correlation coefficient for both methods
at T = 0d, for the case of the ‘long data set’. Both panels show the distribution
of random cross-correlations with dotted line and the one for correlated data
with solid line. Points with cross-correlation coefficient to the right of the
vertical green line have a significance of at least 3o-. Upper panel is for the
DCF and lower panel for the LCCE.

surements. This method is an improvement on Timmer & Koenig
(1995), which produces Gaussian-distributed fluxes and can pro-
vide a better approximation to light curves that have non-Gaussian
probability density functions. For our data, this can be the case for
gamma-ray light curves but it is not of much concern for the radio
light curves.

4.4.1 The dependence of the significance estimate
on the model light curves

Asillustrated in Fig. 13, the distribution of random cross-correlation
coefficients will depend on the model used for the simulated light
curves. In order to better appreciate that dependence, we have esti-
mated the significance of the cross-correlation for an example using
simulated data with the sampling pattern from our monitoring pro-
gramme (same as Fig. 14). We have used 10 000 simulated light
curves with PSD oc 1/v# for 8 = 0, 1 and 2. Fig. 28 presents the
results in the form introduced in Fig. 14. As in Fig. 13, we ob-
serve an increase in the amplitude of the random cross-correlation
when steeper PSDs are used in the simulations. This manifests as
increased scatter in the distribution of random cross-correlations
and a lower significance estimate for the cross-correlations. The
dependence of the results on the particular model of the light curves
illustrates the importance of a proper characterization of the light-
curves variability, a subject we discussed in Section 3.

4.4.2 Error on the significance estimate and minimum number
of simulations

It is expected that the precision of the significance estimates will
increase as the number of simulated light-curve pairs increases. In
order to get an estimate on the expected error in our significance
estimate, due to the finite number of simulations, we have divided
a full simulation with 100 000 simulated light-curve pairs into in-
dependent subsets, and provide independent estimates for each of
them. The idea is to observe the scatter when a small number of
simulations is used and compare its variation as more simulations
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Figure 28. Example of cross-correlation significance results for simulated
data using the typical sampling from our monitoring programme (same light
curves as Fig. 14). We use B = 0O (upper panel), 8 = 1 (central panel) and
B = 2 (lower panel). The black dots represent the LCCF for the data, while
the colour contours the distribution of random cross-correlations obtained
by the Monte Carlo simulation with red for 1o, orange for 20 and green
for 30. The increased amplitude of random cross-correlations is evident for
steeper PSDs.
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Figure 29. Example of scatter in the significance estimate for independent
subsets of the full simulation using different numbers of light-curve pairs.
The horizontal axis shows the number of simulations used to get each
estimate and the vertical the significance. Black dots represent each of the
independent subsets of the full simulation. The empty circles and error bars
represent the mean and standard deviation for subsets of a given number of
simulations. The horizontal segmented line corresponds to the results using
the whole simulation. As expected, the scatter of the estimates obtained
using smaller number of simulations is larger.

are included. The original simulation is divided in two halves which
are subsequently divided into two. The process is repeated until the
number of simulations in each subset is small enough that results
have a very large scatter, and do not give us reliable significance
estimates. For all sources, we find that the results of a test with
smaller number of simulations is less precise than the one using all
the simulations. In all cases, the average gives the result of the com-
plete simulation, an expected result since together they encode the
same information. As expected, the scatter is much smaller when
a large number of simulations is used. An example is presented
in Fig. 29, which clearly shows the reduction in the scatter as the
number of simulated light-curve pairs is increased. With less than
1000 simulations the scatter is of a few percentage points, and gets
to about 0.4 per cent for more than 10 000 simulations.

The process described above could in principle be used to ob-
tain an error estimate, but instead we compute a more conventional
bootstrap estimate of the standard error, following the procedure
described below (this is applied in Max-Moerbeck et al. 2014). For
the time lag of interests, we have N values of the random cross-
correlations obtained from the N simulated light curves. From these
N random cross-correlations, 1000 bootstrap samples are obtained,
each one giving a different significance estimate. The sample stan-
dard deviation of these bootstrap replications is used as the error in
the significance estimate. An example of the distribution of boot-
strapped estimates is shown in Fig. 30. We think this error estimate
is a required step of any Monte Carlo estimate of the significance,
and we recommend the adoption of this or equivalent procedures —
an issue that has surprisingly been up to now ignored by all authors.

5 SUMMARY

We presented a description of a Monte Carlo method to estimate the
significance of cross-correlations between two unevenly sampled
time series. We demonstrated the dependence of the significance
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estimates on the model of the light curves, and presented a method
based on Uttley et al. (2002), which allows us to determine the
best fit for a simple power-law PSD model for a light curve. An
improved way of dealing with the effects of red-noise leakage is
implemented. This method uses interpolation and windowing with
a Hanning window, and provides the ability to fit steep PSDs like
those found in our data sets. We demonstrated that windowing is
essential to obtain an upper limit on the value of the PSD power-law
index. An upper limit is required for meaningful cross-correlation
significance estimates, which depend on the model used for the
light curves. The method used for error estimation of the best fit
was modified for one which decouples the goodness-of-fit estimate
from the estimation of confidence intervals, and that can indicate
the presence of biases in the fitting procedure. The method was
evaluated using simulated data sets and found to be accurate with
a typical error in 8 of less than 0.3, for cases in which the signal
power is large compared to observational noise. The performance of
the method is degraded when fitting time series in which the signal
power is comparable to the observational noise. In these cases, the
procedure fails to provide a reliable constraint on the shape of the
PSD, a situation we can consider when analysing our data set by
using the Neyman construction to obtain confidence intervals. We
also checked the repeatability of the best-fitting value when running
the procedure multiple times, and find that it improves when using
a large number of simulated light curves (M). For example, using
the OVRO data set, we find that big improvements are expected
when going from M = 100 to 1000, but any further increase pro-
vides a small improvement, and might not be worth the increased
computational time.

Finally, we described the problem of estimating the cross-
correlation for unevenly sampled time series. We have shown that
high values of the cross-correlation coefficients for red-noise time
series are ubiquitous, and that any method that aims at quanti-
fying the significance of correlation coefficients for light curves
having flare-like features needs to take this into account. We have
described a general Monte Carlo method to estimate the signifi-
cance of cross-correlation coefficients between two wavebands. A
number of tests aimed at measuring the effectiveness of a particu-
lar cross-correlation method have been performed to compare the
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LCCEF and the DCF. Given the absence of a physical model for the
expected correlations, the method cannot be used to give a defini-
tive value of the detection efficiency, but it can be used to compare
different alternatives. The main result is that the LCCF has a much
larger detection efficiency than the DCF when trying to recover a
linear correlation. The DCF has the additional problem of produc-
ing a large fraction of spurious high-significance time correlations,
which could be mistaken as real correlations. This problem is less
important for the LCCF especially when long time series are used.

The origin of the difference, and the lack of discriminating
power for the DCF, seems to originate in the short duration or
non-stationarity of the time series involved. In conclusion, we rec-
ommend the use of the LCCF as a tool to search for correlations.

We also show that the significance of the cross-correlation coef-
ficients is strongly dependent on the power-law slope of the PSD,
which makes characterization of the light curves critical. We in-
vestigate the error on the estimated significance by repeating the
analysis using different numbers of simulations. Especially in cases
where high significances are claimed, we suggest using a bootstrap
estimate of the error on the significance and reporting its value as
part of the analysis results. The results of the application of this
method to a data set combining data from the OVRO monitoring
programme and Fermi-LAT are presented in Max-Moerbeck et al.
(2014).
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