Equation (11) should read
\[\frac{p(0)}{T(0)\rho_g C_p} < \frac{u_z}{R3} \]
The relationship after Eq. (11) should read
\[\frac{p(0)}{T(0)\rho_g C_p} = \ldots \]
Equation (15) should read \(\tau_p > > \tau_o \times 10^{-3} \).
The lines in Fig. 1 are now: \(\tau_p = 10^{-6}/p \), \(\tau_p = 3 \times 10^{-3}p \) and \(\tau_p = 9 \times 10^{-3}p \).
Thus, the quasi-steady domain is defined as follows:
for \(p \leq 1.1 \times 10^{-4} \), \(\tau_p > 0.1 \times 10^{-6}/p \)
for \(1.1 \times 10^{-4} \leq p \leq 3 \), \(\tau_p > 9 \times 10^{-3}p \)
for \(p \geq 3 \), \(\tau_p > 3 \times 10^{-3}p \)

Technique for Determining Local Heat-Transfer Coefficients

H. J. Sternfeld and J. Reinkenhof

DFVLR, Lampoldshausen, Germany
[AIAA J., 15, 105-109 (1977)]

Equation (11) should read
\[\alpha = - \sum_{(i)} \sum_{(j)} (a_{ij}x_0^{-i}t^j) \]
\[\sum_{(u)} [b_{u} (\sum_{(i)} \sum_{(j)} a_{ij}x_0^{-i}t^j)] \]
\[\sum_{(k)} \sum_{(j)} a_{kj} t^j - \sum_{(l)} \sum_{(j)} a_{lj} x_0 t^j \]

Equation (12) should read
\[A \alpha (T_0 - T_w) - A_0 \left(\frac{x_f}{x_0} \right)^e \left[- \lambda \frac{\partial T}{\partial x} \right]_{x=x_l} \]
\[= \frac{d \int_{x_0}^{x_f} A_0 \left(\frac{x}{x_0} \right)^e \rho c T dx}{dx} \]

Equation (13) should read
\[\alpha(t) = \frac{A-B}{C} \]
\[\min \{ t_n \} \leq t \leq \max \{ t_n \} \]

Equation (14) should read
\[A = \frac{d}{dr} \int_{x_0}^{x_f} \rho c T x^d dx \]

Acoustic Thermometric Measurements of Propellant Gas Temperature in Guns

E.M. Schmidt, E.J. Gion, and D.D. Shear

U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Md.
[AIAA J., 15, 222-226 (1977)]

In the footnote on page 222, the correct paper number for the paper presented at the AIAA/SAE 12th Propulsion Conference is AIAA Paper 76-643.

Received Feb. 22, 1977.
Index categories: Combustion in Heterogeneous Media; Nozzle and Channel Flow; Reactive Flows.

Structure of Turbulent Shear Flows: A New Look

A. Roshko

California Institute of Technology, Pasadena, Calif.
[AIAA J., 14, 1349-1357 (1976)]

On p. 1355, second column, line 8, reference 31 should be changed to reference 34; on line 49, reference 37 should be 36; and on line 63, reference 38 should be 37. On p. 1356, first column, line 4, references 39, 41 should be 39, 40, and 41; on line 36, length should be length. On p. 1353, second column, line 9, it should read \(y/x = -0.095 \). On p. 1354, first column, line 4, \(1-M \) should read \(UM \). On Fig. 2, second line, \(L/L/\mu_1 \) should read \(U_1/L/\mu_1 \).

Received Jan. 12, 1977.
Index categories: Jets, Wakes, and Viscid-Inviscid Flow Interactions; Boundary Layers and Convective Heat Transfer—Turbulent.