NuSTAR Detection Of A Cyclotron Line In The Supergiant Fast X-ray Transient IGR J17544–2619

Varun Bhalerao1*, Patrizia Romano2, John Tomsick3, Lorenzo Natalucci4, David M. Smith5, Eric Bellm6, Steven E. Boggs3, Deepto Chakrabarty7, Finn E. Christensen8, William W. Craig3,9, Felix Fuerst6, Charles J. Hailey10, Fiona A. Harrison6, Roman A. Krivonos3, Ting-Ni Lu6,11, Kristin Madsen6, Daniel Stern12, George Younes13, and William Zhang14

1Inter University Center for Astronomy and Astrophysics, P. O. Bag 4, Ganeshkhind, Pune 411007, India
2INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo, Italy
3Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA
4Istituto Nazionale di Astrofisica, INAF-IAPS, via del Fosso del Cavaliere, 00133 Roma, Italy;
5Physics Department and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064 USA
6Cahill Center for Astronomy and Astrophysics, Caltech, Pasadena, CA 91125
7Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139, USA
8DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby, Denmark
9Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
10Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA
11Institute of Astronomy, National Tsing Hua University, Taiwan
12Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
13USRA, NSSTC, 320 Sparkman Drive, 35801, Huntsville, AL, USA
14NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Accepted —. Received —; in original form —

ABSTRACT

We present NuSTAR spectral and timing studies of the Supergiant Fast X-ray Transient (SFXT) IGR J17544–2619. The spectrum is well-described by a ~ 1 keV blackbody and a hard continuum component, as expected from an accreting X-ray pulsar. We detect a cyclotron line at 17 keV, confirming that the compact object in IGR J17544–2619 is indeed a neutron star. This is the first measurement of the magnetic field in a SFXT. The inferred magnetic field strength, \(B = (1.45 \pm 0.03) \times 10^{12} \ G \cdot (1 + z) \) is typical of neutron stars in X-ray binaries, and rules out a magnetar nature for the compact object. We do not find any significant pulsations in the source on time scales of 1–2000 s.

Key words: binaries: individual (IGR J17544–2619) – X-rays: binaries.

1 INTRODUCTION

High mass X-ray binaries (HMXBs) are stellar systems composed of a compact object (either a neutron star or a black hole) and an early-type non-degenerate massive star primary. These systems are traditionally divided in two sub-classes (e.g. Reig 2011, and references therein), depending on the nature of the primary that acts as a mass donor, and the mass-transfer and accretion mechanisms onto the compact object. While the Be/X-ray binaries (BeXBs) have main sequence Be star primaries, and are only observed as transient sources showing bright outbursts lasting a few days, the OB supergiant binaries (SGXBs) are persistent systems with an evolved OB supergiant primary.

Among the ~ 250 HMXBs known to populate our Galaxy and the Magellanic Clouds (Liu et al. 2005, 2006) a relatively small class termed Supergiant Fast X-ray Transients was recently recognized that shares properties with both BeXBs and SGXBs, the supergiant fast X-ray transients (SFXTs, Smith et al. 2004; in’t Zand 2005; Sguera et al. 2005; Negueruela et al. 2006). SFXTs are associated with OB supergiant stars but, unlike SGXBs, show the most dramatic manifestation of their activity as bright outbursts during which they experience an increase in X-ray luminosity by up to a factor of \(10^5 \), reaching peak luminosities of \(10^{36}–10^{37} \) erg s\(^{-1} \). These bright outbursts last a few hours in the hard X-ray (Sguera et al. 2005; Negueruela et al. 2006) and, although the outbursts

* Email: varunb@iucaa.ernet.in (VB)
can last up to a few days in the soft X-ray (e.g. Romano et al. 2007, 2013), they are still significantly shorter than those of typical BeXBs. The hard X-ray spectra, qualitatively similar to those of HMXBs that host accreting neutron stars (NS), are generally modelled with often heavily absorbed power laws with a high energy cut-off. Therefore, it is tempting to assume that all SFXTs host a neutron star, even if pulse periods have only been measured for only a few systems. Currently the SFXT class consists of 14 objects (see Romano et al. 2014, and references therein) and as many candidates (transients showing an SFXT behaviour but still lacking optical identification with an OB supergiant companion).

The physical mechanisms causing the bright SFXT outbursts are still uncertain. In the last decade several models have been proposed that can be divided in two main groups, related to either the properties of the wind from the supergiant companion (in’t Zand 2005; Walter & Zurita Heras 2007; Negueruela et al. 2008; Sguera et al. 2006; Walter & Zurita Heras 2007; Kuulkers et al. 2003) during a 2-hr flare that reached an 18–25 keV flux of 6×10^{-10} erg cm$^{-2}$ s$^{-1}$ (160 mCrab). This source was later observed in very bright states, lasting up to 10 hours, with 20–40 keV fluxes up to 6×10^{-10} erg cm$^{-2}$ s$^{-1}$ (400 mCrab; Grebenev et al. 2003, 2004; Sguera et al. 2006; Walter & Zurita Heras 2007; Koulkets et al. 2007). Some flares were also found in archival BeppoSAX data (in’t Zand et al. 2004). Several outbursts were also observed by Swift (Krimm et al. 2007; Sguera et al. 2006; Walter & Zurita Heras 2007; Farinelli et al. 2012) and Suzaku, which caught a large luminosity swing observed on time scales as short as 926 days in terms of transitions across the magnetic and/or centrifugal barriers. In this scenario, SFXTs with large dynamic range and $P_{\text{spin}} \geq 1000$ s must have magnetar-like fields ($B \geq 10^{14}$ G).

In this paper, we present the first firm detection of a cyclotron line in the spectrum of an SFXT and hence the first direct measurement of its magnetic field.

2 OBSERVATIONS AND ANALYSIS

IGR J17544–2619 was observed by NuSTAR on 2013 June 18–19, and near-simultaneously by Swift (Table 1). These observations were planned near orbital phase 0 (Smith 2014) to maximize a chance of detecting a flare.

NuSTAR data were extracted and reduced with nustardas v1.2.0 (14 June 2013), and Heasoft 6.14. We extracted events from a 40" radius circular region centred on the source. Background was extracted from a large source–free region on the same detector. Appropriate response matrices and ancillary response files for this observation were generated using numkrmf and numkarf respectively. We used NuSTAR responses from CALDB version 20130509. NuSTAR consists of two co-aligned telescopes, each with a focal plane module (FPMA and FPMB). In FPMB, the source position was strongly contaminated by stray light of nearby bright sources during OBSID 30002003002. IGR J17544–2619 showed flaring activity during this observation (Section 4).

The Swift/XRT data were processed with standard procedures (xrtpipeline v0.12.8), filtering and screening criteria using FTOOLS (v6.15.1). Source events were accumulated within a circular region with an outer radius of 20 pixels (1 pixel ~ 2.36). Background events were accumulated from an annular source-free region centred on IGR J17544–2619 (inner/outer radii of 70/100 pixels). For our spectral analysis, ancillary response files were generated with xrtmkarf to account for different extraction regions, vignetting, and PSF corrections. We used the latest XRT spectral redistribution matrices in CALDB (20140120).

Data were analysed in Xspec (v12.8.1). We used Swift/XRT data from 0.3–10 keV and NuSTAR data in the energy range 3–50 keV. Data were grouped to have at least 20 source+background photons per bin, and χ^2 statistics were used for fitting. We used atomic cross sections from Wilms et al. (1996) and elemental abundances from Wilms et al. (2000).

3 TIMING

Figure 1 shows the background-subtracted lightcurves with 50 s bins for both FPMs for the entire observation. OBSID 30002003002 shows strong flaring activity from IGR J17544–2619, with a bright flare that is about ten times stronger than the average flux level (Section 4). The source is less variable in OBSID 30002003003, with a dynamic range of just a factor of two. The average absorbed source flux in this OBSID is $(1.11 \pm 0.01) \times 10^{-11}$ erg

<table>
<thead>
<tr>
<th>Table 1. Observations of IGR J17544–2619</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBSID</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>30002003002</td>
</tr>
<tr>
<td>30002003003</td>
</tr>
</tbody>
</table>

© X RAS, MNRAS 000, 1–8
cm$^{-2}$ s$^{-1}$ in the 3–10 keV band, consistent with the average unabsorbed source flux of 10^{-11} erg cm$^{-2}$ s$^{-1}$ measured by Swift/XRT in the 2–10 keV band (Romano et al. 2011). The total absorbed flux observed by NuSTAR is $(3.53 \pm 0.05) \times 10^{-11}$ erg cm$^{-2}$ s$^{-1}$ in the 3–50 keV band.

We searched the NuSTAR data for any pulsations in IGR J17544–2619. No strong peaks are seen in the power spectra. An epoch folding search does not yield any strong periodicity either. In particular, we do not detect the claimed 71.49 \pm 0.02 s pulsation (Drave et al. 2012). Further, we computed a power spectrum and renormalized it relative to the local mean power in order to search for statistically significant periodic signals. We found periodic signals at about 1455 s and 1940 s, which are integer fractions of the orbital period. The instrumental origin was confirmed when we extracted photons from background regions far from the source, and found peaks at the same periods. We conclude that IGR J17544–2619 does not show any strong pulsations in the range of 1 s to about 2000 s, consistent with Drave et al. (2014).

4 FLARE

IGR J17544–2619 is known for strong flaring behaviour. NuSTAR detected a flare during OBSID 30002003002, starting approximately at MJD 56462.161 and spanning about 220 seconds (Figure 1, middle panel). It was followed by a smaller flare about 400 s later. The spectrum of the first flare is relatively flat from 3–10 keV and falls off at higher energies. We calculate the model-independent flux for the source and the flare using NuSTAR response files. The average absorbed flux in the flare is $(3.1 \pm 0.1) \times 10^{-10}$ erg cm$^{-2}$ s$^{-1}$ (9 mCrab) in the 3–50 keV range, about an order of magnitude higher than the average flux of $(3.54 \pm 0.05) \times 10^{-11}$ erg cm$^{-2}$ s$^{-1}$ (1 mCrab) measured in OBSID 30002003003. This is consistent with typical flares observed near periastron from this source (Romano et al. 2011). The source becomes softer during the flare (Figure 2). The average absorbed flux of the second flare is $(1.5 \pm 0.1) \times 10^{-10}$ erg cm$^{-2}$ s$^{-1}$.

Broadband (\sim0.2–60 keV) flare spectra ($\sim 10^{-9}$ erg cm$^{-2}$ s$^{-1}$) are typically modelled as an absorbed cut-off power-law or an absorbed power-law with an exponential cut-off. For example, Rampy et al. (2009) fit the Suzaku XIS+PIN data on the 2008 March 31 outburst with an absorbed power-law with an exponential cut-off with $\Gamma = 0.9$, and $E_{\text{cut}} = 10.5$ keV; Romano et al. (2011) adopt an absorbed power-law with a high energy cut-off for the Swift BAT+XRT data on the 2009 June 6 outburst and find $\Gamma = 0.6$, $E_{\text{cut}} = 3.3$ keV, and $E_{\text{cut}} = 8.1$ keV. However, our flare data are not fit well by a simple absorbed blackbody or absorbed cut-off power-law model, which give $\chi^2 = 1.76$ and 1.4 with 47 and 46 degrees of freedom respectively. The simplest model for the flare spectrum is an unabsorbed power-law with two breaks (bkn2pow) at 8.9 and 11.1 keV. For this model, we get $\chi^2 = 0.93$ with 44 degrees of freedom.

5 SPECTRUM

For spectral modelling, we only use data from OBSID 30002003003, where the source is in a steady state. We used NuSTAR data extracted with a 40″ extraction region, grouped to make bins of at least 20 photons and Swift/XRT data from both Swift observations. The spectrum can be fit by a two-component model consisting of a ~ 1 keV blackbody and a harder, non-thermal component (Figure 3). This non-thermal component can be interpreted as a Comptonized spectrum with seed photons from the blackbody – indeed, a non-thermal Comptonization model (nthcomp) with $\Gamma = 1.2$ and $kT_e = 5.7$ keV gives a reasonable fit (Table 2). Alternately, this component is also fit well by the empirical cut-off power-law model with $\Gamma = -1.1$ and $E_{\text{cut}} = 6.7$ keV.
Figure 3. Joint fit to NuSTAR and Swift/XRT data with bbodyrad + nthcomp as the continuum model. Blue, red and green symbols denote data from NuSTAR FPMA, NuSTAR FPMB and Swift/XRT, respectively. For plotting NuSTAR data have been re-binned to a minimum SNR 10 in each bin—actual fitting was done with smaller bins with at least 20 photons each for both: NuSTAR and Swift/XRT. We allow a scaling factor between NuSTAR FPMA, FPMB and Swift/XRT fluxes. Panel a shows the best-fit with the continuum and a single cyclotron line (no harmonics). The ratio data to the model (Panel b) is relatively flat, as expected for a well-fit model. Panel c shows the same model with the cyclotron line deleted (but without refitting). The ratio of data to the model (panel d) clearly show the cyclotron line.
Table 2. Spectral fits for IGR J17544–2619 with continuum model I (bbodyrad + nthcomp)

<table>
<thead>
<tr>
<th>Model component name</th>
<th>No line</th>
<th>Single line</th>
<th>Model + harmonic</th>
<th>Two lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{H} (10^{22} cm^{-2})</td>
<td>1.7 ± 0.3</td>
<td>1.52 ± 0.23</td>
<td>1.43 ± 0.28</td>
<td>1.45 ± 0.28</td>
</tr>
<tr>
<td>kT (keV)</td>
<td>0.95 ± 0.04</td>
<td>1.04 ± 0.02</td>
<td>1.07 ± 0.03</td>
<td>1.06 ± 0.03</td>
</tr>
<tr>
<td>norm</td>
<td>1.06 ± 0.17</td>
<td>0.92 ± 0.10</td>
<td>0.83 ± 0.08</td>
<td>0.85 ± 0.08</td>
</tr>
<tr>
<td>Γ</td>
<td>1.21 ± 0.05</td>
<td>1.00 ± 0.08</td>
<td>1.00 ± 0.08</td>
<td>1.00 ± 0.08</td>
</tr>
<tr>
<td>kT_ν (keV)</td>
<td>5.66 ± 0.24</td>
<td>5.04 ± 0.08</td>
<td>6.4 ± 0.2</td>
<td>5.8 ± 0.2</td>
</tr>
<tr>
<td>norm (10^{-6})</td>
<td>94 ± 23</td>
<td>4.0 ± 0.2</td>
<td>3.1 ± 0.5</td>
<td>3.4 ± 0.5</td>
</tr>
<tr>
<td>X-norm constant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPMB</td>
<td>1.12 ± 0.02</td>
<td>1.12 ± 0.02</td>
<td>1.12 ± 0.02</td>
<td>1.12 ± 0.02</td>
</tr>
<tr>
<td>Swift/XRT</td>
<td>1.33 ± 0.09</td>
<td>1.34 ± 0.09</td>
<td>1.35 ± 0.09</td>
<td>1.35 ± 0.09</td>
</tr>
</tbody>
</table>

Cyclotron lines

Energy (keV)	16.9 ± 0.3	16.9 ± 0.3	17.0 ± 0.3	
Width (keV)	1.6 ± 0.6	3.5 ± 0.8	3.0 ± 0.8	
Depth (keV)	0.40 ± 0.07	0.56 ± 0.14	0.53 ± 0.14	
Energy (keV)		(33.8) b	32.9 ± 1.3	

Line 2

| Width (keV) | 9.8 ± 5.0 | 6.6 ± 6.6 | |
| Depth (keV) | 1.2 ± 1.4 | 0.9 ± 0.4 | |

Degrees of freedom

503

χ^2

515.9

Δχ^2

0.0

We allow relative scaling of NuSTAR FPMA, FPMB and Swift/XRT data. The best fit values for the cross-normalization (X-norm) constants are included in the table.

*aIn fits including the cyclotron lines, Γ gets pegged at its lower limit of 1.0. Hence we give only one--sided error bars on this parameter.

*bEnergy of the harmonic is defined as two times the energy of the fundamental, and is not a free parameter.

Table 3. Spectral fits for IGR J17544–2619 with continuum model II (bbodyrad + cutoffpl)

<table>
<thead>
<tr>
<th>Model component name</th>
<th>No line</th>
<th>Single line</th>
<th>Model + harmonic</th>
<th>Two lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{H} (10^{22} cm^{-2})</td>
<td>1.6 ± 0.3</td>
<td>1.38 ± 0.26</td>
<td>1.34 ± 0.18</td>
<td>1.4 ± 0.2</td>
</tr>
<tr>
<td>kT (keV)</td>
<td>0.99 ± 0.04</td>
<td>1.097 ± 0.02</td>
<td>1.115 ± 0.03</td>
<td>1.102 ± 0.02</td>
</tr>
<tr>
<td>norm</td>
<td>1.04 ± 0.17</td>
<td>0.78 ± 0.06</td>
<td>0.74 ± 0.08</td>
<td>0.76 ± 0.08</td>
</tr>
<tr>
<td>Γ</td>
<td>-1.1 ± 0.12</td>
<td>-3.0 ± 0.4</td>
<td>-2.8 ± 1.7</td>
<td>-3.0 ± 1.7</td>
</tr>
<tr>
<td>cutoffpl</td>
<td>6.6 ± 0.17</td>
<td>4.04 ± 0.02</td>
<td>4.75 ± 0.03</td>
<td>4.18 ± 0.02</td>
</tr>
<tr>
<td>Energy (keV)</td>
<td>21 ± 13</td>
<td>0.72 ± 0.04</td>
<td>0.54 ± 0.02</td>
<td>0.67 ± 0.02</td>
</tr>
<tr>
<td>norm (10^{-6})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-norm constant</td>
<td>FPMB</td>
<td>1.12 ± 0.02</td>
<td>1.12 ± 0.02</td>
<td>1.12 ± 0.02</td>
</tr>
<tr>
<td>Swift/XRT</td>
<td>1.34 ± 0.09</td>
<td>1.35 ± 0.09</td>
<td>1.35 ± 0.08</td>
<td></td>
</tr>
</tbody>
</table>

Cyclotron lines

Energy (keV)	16.8 ± 0.3	16.8 ± 0.3	16.9 ± 0.3
Width (keV)	2.6 ± 0.3	4.6 ± 0.3	3.1 ± 0.3
Depth (keV)	0.40 ± 0.06	0.72 ± 0.03	0.54 ± 0.04
Energy (keV)		(33.2) b	30.0 ± 1.9

Line 2

| Width (keV) | 7.4 ± 3.5 | 1.3 ± 0.5 |
| Depth (keV) | | 0.7 ± 0.2 |

Degrees of freedom

Quality of fit	503	500	498	497
χ^2	516.0	473.4	467.4	465.3
Δχ^2	0.0	-42.6	-48.6	-50.7

We allow relative scaling of NuSTAR FPMA, FPMB and Swift/XRT data. The best fit values for the cross-normalization (X-norm) constants are included in the table.

*aIn fits including the cyclotron lines, Γ gets pegged at its lower limit of −3.0. Hence we give only one--sided error bars on this parameter.

*bEnergy of the harmonic is defined as two times the energy of the fundamental, and is not a free parameter.

*cThe minimum width of line 2 gets pegged at its lower limit of 1 keV before obtaining Δχ^2 = 1.0, so we do not give a lower limit.
(Table 3). Hereafter we refer to these as continuum models I and II respectively.

We can calculate the size of the emitting area of the blackbody component from its normalization (norm1 in Xspec) and distance to the object: norm = R_{bb}^2/D_{bb}^2. Using a nominal distance of 3.6 kpc to IGR J17544–2619 (Rahoui et al. 2008) and assuming a circular emitting area, the best-fit norm values correspond to a radius $R \approx 0.3$ km. This is consistent with the size of an accretion hotspot on the NS for low accretion rates (Frank et al. 2002).

Regardless of the continuum model, the fits show systematic residuals mimicking absorption features. Good fits can be obtained only on introducing cyclotron absorption features in the model (Figure 3). We tested the presence and significance of these lines with various extraction apertures and binning methods. Further, we also tested the presence of a harmonic in two ways: enabling the harmonic in cyc1abs, and adding an independent line at higher energy. All these tests gave consistent results: the spectral fits are significantly better when a cyclotron line is included in the spectral model. The fits improve further when the cyclotron line harmonic is also added in the fit. Adding an independent higher energy line gives results broadly consistent with the location of a harmonic.

In continuum model I, adding a cyclotron line gives $\Delta \chi^2 = 38.7$ for three more degrees of freedom. The best-fit line energy is $E_{cyc} = 16.9 \pm 0.3$ keV (Table 2). For continuum model II, adding a cyclotron line gives $\Delta \chi^2 = 42.6$ for three more degrees of freedom (Table 3). The best-fit line energy, $E_{cyc} = 16.8 \pm 0.3$ keV, agrees with the fit for model I. In both cases, adding a harmonic decreases the χ^2 further. If we introduce a second, independent absorption feature, its best-fit energy agrees with the expected harmonic to within 1-σ for continuum model I. For continuum model II, the best-fit energy of this absorption feature is slightly lower than twice the fundamental. This slight difference in energies is seen in other X-ray binaries as well (Caballero & Wilms 2012).

We checked for the significance of the line depth using three methods for both continuum models. We consider the case with only the fundamental line without any harmonics. We allow the line depth to vary over a wide range, so as to search for cyclotron absorption or emission features. (i) F-test: Based on the improvement in χ^2 by adding the line, we can calculate a false detection probability for the line. For continuum model I, we get $p = 1.7 \times 10^{-8}$ while for continuum model II, $p = 2.3 \times 10^{-9}$. (ii) Non-zero line depth: We considered models with the fundamental line only, and stepped through a grid of values of the line depth and width with the Xspec command steppar, and noted the change in χ^2. For continuum model I, we find that changing the line depth to zero gives a minimum $\Delta \chi^2$ of 52, corresponding to a 7-σ detection. The constraints were even stronger for continuum model II. (iii) Monte-Carlo simulations: Further, we tested the line significance by simulating spectra using the Xspec script simtest. We used the continuum model II, consisting of a blackbody and a cut-off powerlaw as our null hypothesis. We simulated fake spectra from this model and fit them with (a) only continuum, and (b) continuum + cyclotron line. To improve the speed and convergence of the fits, we performed simulations using only the two NuSTAR modules, fixing the column density to the value found when XRT was included. We repeated this test 1000 times and noted the change in χ^2 obtained by adding a cyclotron line of similar width (within the 90% confidence region obtained with the actual data). Since the cyclotron line adds three free parameters, we expect that the histogram of $\Delta \chi^2$ values should follow a χ^2 distribution with three degrees of freedom. This is indeed the case, as seen in Figure 4. The highest $\Delta \chi^2$ obtained in our simulation is 18.7, significantly lower than $\Delta \chi^2 = 41.2$ obtained in real data. We estimate that $10^3 - 10^5$ simulations would be required to get $\Delta \chi^2 > 40$ in one of them. Performing such a large number of simulations is technically infeasible. However, scaling from our 1000 simulations, we obtain a line significance of >5-σ. We repeated this test with continuum model I. The observed $\Delta \chi^2$ for this model is 37.1, but the maximum value we obtain in 1000 simulations is 12, confirming the high significance of the cyclotron line.

We tested the presence of a line at 8.5 keV by adding a model component with half the energy and half the width as the 17 keV line. We do not detect any significant absorption near 8.5 keV, with 3-σ limits on line depth as $D_{8.5}^2 < 0.19$ and $D_{8.5}^{11} < 0.15$ for continuum models I and II, respectively.

6 DISCUSSION

Despite a decade of investigation, the mechanisms responsible for the flaring behaviour of SFXTs are still far from certain. Several, non mutually exclusive, models have been proposed, depending on the donor star wind and/or the accreting neutron star properties. For the ‘clumpy wind’ models (in ‘n’ Zand 2005; Walter & Zurita Heras 2007; Negueruela et al. 2008; Sidoli et al. 2007) the common key parameters are the geometry and inhomogeneity of the stellar wind from the supergiants donor star. For the ‘gating’ models, mechanisms are required to regulate or inhibit accretion (the propeller effect–see Grebenev & Sunyaev 2007; or magnetic gating–see Bozzo et al. 2008). In particular, in the magnetic gating model (Bozzo et al. 2008, and references therein), the large

2 Note that the line depth was allowed to be positive as well as negative, so that the null model (no line) is not a boundary case for the F-test.
masses respectively. This corresponds to a magnetic field strength B is the clotron line. In this latter case, the inferred magnetic field strength B of the neutron star (Bhalerao 2012). This −<term>−B of the fundamental. Further, this latter magnetic field also contra-

It is clear that knowledge of the magnetic field is a powerful discriminator among various models. Until now, however, no measurements of the cyclotron lines were available, hence the magnetic field could only be estimated indirectly from the empirical relationship of Coburn et al. (2002), using the cut-off energy derived from spectral fitting as a proxy for the magnetic field (B). For SFXTs, the typical cut-off energies are at about 10–20 keV, so the estimated magnetic fields range from 2×10^{12} G for XTE J1739.1−302, to about $2-3 \times 10^{12}$ G for IGR J17544−2619 (Sidoli et al. 2009), and $\lesssim 3 \times 10^{12}$ G for AX J1841.0−0536 (Romano et al. 2011).

Detections of cyclotron features in HMXBs are still scarce, with under 20 confirmed detections before NuSTAR (Caballero & Wilms 2012). Among those is the cyclotron line at 33 ± 4 keV reported in the candidate SFXT IGR J16493−4348 (DAi et al. 2011), implying $B = 4 \times 10^{12}$ G. Our NuSTAR spectrum provides the very first measurement of such a feature in a confirmed SFXT, the prototype of the class IGR J17544−2619, at 16.8 ± 0.3 keV. Our data also shows hints of a line harmonic at an energy consistent with twice the fundamental, though slightly lower values are preferred (Tables 2, 3). The observed energy of cyclotron lines depends on the local magnetic field and the gravitational redshift caused by the neutron star:

$$B_{12} = \frac{E_{\text{cycl}}}{11.6 \text{ keV}} \times (1+z)$$

where B_{12} is the magnetic field in units of 10^{12} G. Hence, we conclude that the compact object in IGR J17544−2619 is indeed a neutron star, with magnetic field strength $B = (1.45 \pm 0.03) \times 10^{12}$ G · $(1+z)$. The gravitational redshift factor $(1+z)$ is typically in the range of 1.25–1.4 for neutron stars (Caballero & Wilms 2012), but may be a bit higher for IGR J17544−2619 due to the higher mass of the neutron star (Bhalerao 2012). This B value is consistent with the the $B \lesssim 3 \times 10^{12}$ G constraint from spectral modelling (Sidoli et al. 2009).

An alternate interpretation is that the feature is a proton cyclotron line. In this latter case, the inferred magnetic field strength is $B'_{12} = (m_p/m_e)B_{12}$ where m_p and m_e are proton and electron masses respectively. This corresponds to a magnetic field strength $B' = (2.66 \pm 0.06) \times 10^{15}$ G · $(1+z)$. In such fields, the equivalent width of lines is expected to be very low – just few eV – due to vacuum polarization (Ho & Lai 2003, but also see Tiengo et al. 2013). This contrasts strongly with the measured 2.2 keV equivalent width of the fundamental. Further, this latter magnetic field also contradicts the constraint from Sidoli et al. (2009). As a result, we rule out this possibility that this absorption feature is a proton cyclotron line.

The energy of the cyclotron line, and the inferred magnetic field of IGR J17544−2619 is comparable to typical values measured in other X-ray binaries (Caballero & Wilms 2012). Furthermore, cyclotron line harmonics tend to have energies slightly lower than the corresponding multiple of the fundamental (Caballero & Wilms 2012) – as seen in our data, too.

Thus, the neutron star in IGR J17544−2619 is definitely not a magnetar, implying that one of the key requirements of the magnetic gating model is not met. Such a low value of the magnetic field strength, however is compatible with the quasi-spherical settling accretion models.

Acknowledgements: This work was supported in part under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams as well as the Swift team for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). PR acknowledges contract ASI-INAF I/004/11/0. LN wishes to acknowledge the Italian Space Agency (ASI) for Financial support by ASI/INAF grant I/037/12/0-11/13. VB thanks Dipankar Bhattacharya for helpful discussions.

Facilities: NuSTAR, Swift

REFERENCES

Bhalerao V. B., 2012, PhD thesis, California Institute of Technology
Caballero I., Wilms J., 2012, Memorie della Societa Astronomica Italiana
Frank J., King A., Raine D. J., 2002, Accretion Power in Astrophysics
Greene S. A., lutovinov A. A., Sunyaev R. A., 2003, ATel, 192, 1
Kuulkers E., Onica D. R., Brandt S., Shaw S., Beckmann V., Chenevez J., Courvoisier T. J.-L., Domingo A., Ebisawa K.,

© X RAS, MNRAS 000, 1–8