FLARE-INDUCED SEPARATION LENGTHS IN SUPersonic, TURBulent BOUNDARY LAYERS

by

A. ROSHKO and G. J. THONKE
McDonnell Douglas Astronautics Company
El Segundo, California
FLARE-INDUCED SEPARATION LENGTHS IN
SUPersonic, TURBulent BOUNDARY LAYERS

A. Roshko* and G. J. Thomas†
McDonnell Douglas Astronautics Company
El Segundo, California.

Abstract
Experimental results are presented for the effects of Mach number, Reynolds number, and flare angle on flare-induced separation of a supersonic, turbulent boundary layer. In particular, measurements were obtained for the variation with flare angle, \(\alpha \), of the ratio \(l_f / \delta_o \) of the upstream interaction length to boundary-layer thickness at the beginning of the interaction for Mach numbers \(2 \leq M \leq 4.5 \), boundary-layer thickness Reynolds numbers \(10^5 \leq R_b \leq 10^6 \), and adiabatic wall conditions. The model consisted of a hollow cylinder of 12-in. diameter and 51-in. length. Flares of angle \(\phi \leq \alpha \leq 45^\circ \) were attached to the cylinder at either of two locations, \(x_0 = 11 \) or 28 in., downstream from the sharp leading edge. Measurements consisted of surface-pressure distributions. Profiles for the undisturbed (flare-off) boundary layer were also obtained. By varying the several parameters, upstream interaction lengths as large as \(l_f / \delta_o = 50 \) were observed. It was found that \(l_f / \delta_o \) decreases with increasing Mach number and Reynolds number and, of course, increases with flare angle. It was also found that, for constant \(\alpha \), when \(l_f / \delta_o \) is plotted versus the local undisturbed value for the skin-friction coefficient, \(C_f \), the Mach-number dependence disappears. From this observation, a simple correlation formula was obtained and used to compare results from other investigations, and also to correlate incipient separation data. The present results complement the incipient-separation data obtained previously by us in the next higher decade of Reynolds number and further confirm the trends established there. It was also found that, for large \(\alpha \), the separated region upstream of the flare has free-interaction characteristics similar to those of upstream-facing steps at high Reynolds numbers.

Nomenclature
- \(C_f \) = local skin-friction coefficient
- \(C_f^\alpha \) = value of \(C_f \) at \(l_f / \delta_o = 0 \)
- \(H^* \) = boundary-layer shape parameter
- \(l \) = interaction length, measured upstream from corner
- \(M \) = Mach number
- \(n \) = velocity profile parameter, \(U / U_o = (y / \delta)^n \)
- \(P \) = pressure
- \(\Delta P \) = pressure differential
- \(r \) = radius of cylinder outer surface
- \(R_b \) = Reynolds number based on \(\Delta \cdot \delta, \theta, \) or \(\alpha \)
- \(T \) = temperature
- \(U \) = velocity
- \(x \) = distance downstream from leading edge of cylinder
- \(x_c \) = distance upstream from leading edge to corner
- \(y \) = radial distance from cylinder surface
- \(\phi \) = flare angle, deg
- \(\beta \) = shock-wave angle
- \(\delta \) = boundary-layer thickness
- \(\delta_x \) = boundary-layer displacement thickness
- \(\theta \) = boundary-layer momentum thickness
- \(\mu \) = viscosity coefficient (Sutherland's formula)
- \(\xi \) = wetted distance from compression corner, positive upstream
- \(\rho \) = density
- \(\sigma \) = upstream-influence coefficient for a compression corner
- \(\tau \) = local shear stress
- \(\phi \) = angular coordinate used to specify the circumferential location of a point \((x, r, \phi) \) on the cylinder surface
- \(\psi \) = effective flow turning angle of the free shear layer

Subscripts
- \(c \) = undisturbed conditions at compression corner
- \(D \) = conditions for shock detachment
- \(e \) = free-stream conditions
- \(F \) = denotes overall pressure rise on flare
- \(i \) = conditions for incipient separation
- \(o \) = undisturbed conditions at beginning of interaction
- \(P \) = denotes plateau pressure level for large separated regions
- \(r \) = recovery conditions
- \(s \) = conditions at separation point
- \(t \) = free-stream total conditions
- \(w \) = conditions at the surface

Introduction
The investigations reported in this paper are a natural development from the earlier work of the authors[1] on incipient separation in supersonic, turbulent boundary layers at very high values of Reynolds number. The authors had found trends quite different from those which could be extrapolated from prior results at lower values. Specifically, we found that in the range of Reynolds number \((R_b) \) based on chord length \((x) \) from \(10^5 \) to \(10^6 \), the ramp angle needed to induce separation, \(\alpha_s \), increases with \(R_b \). This is exactly what had been observed at values of \(R_b \) below \(10^4 \) by Kuhn[2] and others. It was natural to ask whether the increased "resistance to separation" at high Reynolds number occurs also for values of ramp angle, \(\alpha \), greater than \(\alpha_s \) that is, for separated flow. Indeed, the few results obtained[1] indicated that the separation length \(l_f \) upstream of the ramp, normalized by the boundary-layer thickness \(\delta \), was ahead of the interaction, decreases with increasing Reynolds number. However, it was not possible in the experimental configuration of Ref. 1 to explore a large range of separation length.

*Consultant; also Professor of Aeronautics, California Institute of Technology, Fellow AIAA.
†Senior Engineer/Scientist, Aerophysics Laboratory, Member AIAA.

Copyright: American Institute of Aeronautics and Astronautics, Inc., 1975. All rights reserved.
Recently, Smith and Boydston(3) measured the upstream interaction length, \(l_0 \), in the range \(R_e = 10^7 \) to \(10^8 \) and found that \(l_0 / h_0 \) decreases with increasing values of the boundary-layer thickness Reynolds number, \(R_e \). However, this increased resistance to separation did not occur in the case of incipient separation, for which they found \(l_0 \) to be insensitive to Reynolds number. On the other hand, Law(4) working in the same range of Reynolds number and at the same Mach number \((M_e > 3) \) as Smith and Boydston, found that with increasing Reynolds number \(l_0 / h_0 \) decreases and \(u_0 \) increases. Also, his data for incipient separation fall on a curve that is a continuation of the results reported in Ref. 1 for the next higher decade of Reynolds number.

Earlier, a semi-empirical method by Kessler and Page (5) had predicted that separation length would decrease with increasing Reynolds number. Their calculations were based on an adaptation of Kors's method. Another calculation, by Hunter and Reeves, (6) using the Lees-Reeves integral method, predicted the same influence of Reynolds number.

Earlier still, the problem of the extent of separation in a turbulent supersonic boundary layer had attracted the attention of many investigators, and various correlations were attempted, but with little success. A difficulty has been the lack of systematic data collection. In a survey of over 100 papers and reports giving experimental results, we found it difficult to sort out trends. The great bulk of the data was in a range of Reynolds number, \(R_e \), from about \(10^5 \) to \(10^7 \), or even narrower, by the characteristics of the typical small or medium-sized supersonic wind tunnels in which research of this kind was ordinarily conducted. In this range, the flows were transitional more often than not, or had hardly recovered from the effects of transition or tripping, so that the establishment of accurate trends in purely laminar or purely turbulent flows proved difficult. This difficulty was compounded by the facts that any one investigation was usually conducted over a rather limited range (if any) of Mach number and Reynolds number, and different investigators used different ramp angles, usually with little variation. It was therefore difficult, even with interpolation and extrapolation, to put together a broad picture.

In designing the experiments described here, the aim was to take advantage of the high Reynolds-number capability offered by a large wind tunnel so that separation lengths could be varied systematically over a wide range as possible of the relevant parameters, namely the ramp angle \(\alpha \), Mach number \((M_e) \), and Reynolds number \((R_e) \). It would have been desirable to continue with the experimental arrangement of Ref. 1, where wall boundary-layer thicknesses ranged from 3 to 6 in., but model blockage and shock-wave-induced interference effects would have appreciably diminished the range of \(\alpha \) and \(h_0 / R \), for which valid data could be obtained. Further study indicated that the desired goals could best be achieved by using a 1-ft-diameter hollow cylinder to which flares of various angles could be attached. Experimental conditions would cover a range of Reynolds number, \(R_e \), \(10^6 \) to \(10^7 \) — i.e., one decade lower than that of Ref. 1. With a sharp leading edge, supersonic flow through the inlet, and boundary-layer thicknesses small compared to the cylinder radius \((R / r \approx 0.07) \), the boundary layer and adjacent flow field would be similar to those for a flat plate. However, for large separation regions ahead of the larger flares, an effect of the axisymmetric parameter \(x_c / r \) could be expected.

Advantages of using a large, hollow, axisymmetric model were many.Chief among these were that end effects were eliminated; natural transition occurred well ahead of the flare; supersonic flow through the inlet eliminated both nose effects and interference caused by bow-wave reflections from the tunnel sidewalls; and low-cost configuration changes could easily be effected for (later) studies on the effects of nose shape, transition (including artificial trips), and yaw angle.

Experimental Arrangement and Procedure

Wind Tunnel

The experiment was set up in the 4- by 4-ft Trisonic Wind Tunnel (7) located at the McDonnell Douglas Aerospace Laboratory in El Segundo, California. This is a blowdown-to-atmosphere wind tunnel that can provide run times from 10 to 100 sec, depending on conditions.

For the experiment, the flexible walls forming the two-dimensional nozzle of the tunnel were set to provide test-section Mach numbers from 2.0 to 4.5. Unit Reynolds number was varied from 0.5 to 2 million per inch at each Mach number by adjusting total pressure. Depending upon Mach number, total temperatures were in the range from 520 to 630°R to prevent air liquefaction and to provide nearly adiabatic wall conditions for the model. During a run, total temperature decreased slightly (no more than 10° over the total run interval, and less than 5° during a data measurement interval).

Model

The basic part of the model, the hollow cylinder, was a steel tube with an outside diameter of 11.04 in. and a wall thickness of 0.34 in. The 51-in. length was comprised of a 5-in. nose inlet section followed by a 46-in. instrumented section. The outer surface of the tube was machined and polished to a 32-μin. finish. The inlet section was chamfered internally at an angle of 4° and honed to provide a sharp leading edge. Compression corners were formed on the outer surface of the cylinder by attaching to it two flare halves, separated by splitter plates, as shown in Fig. 1.

The economies that can be realized by using two flare angles per run are obvious. The feasibility of using this arrangement had been studied in some previous, unpublished work

\[l_0 \] is nearly equal to the distance from the corner to the beginning of the surface-pressure rise (see Fig. 5). It is always slightly larger than \(f_s \), and it is more conveniently and consistently determined. Qualitatively, it is not important in distinguishing between \(f_0 \) and \(f_s \), in general discussion.
(related to that in Ref. 9) on an axisymmetric, downstream-facing step, where it was found that splitter plates had practically no effect on the extent of the separated region, even when the circumferential distance between the plates was as small as 45° (compared to 180° in the present case).

In the present experiments, we provided for data comparisons with a full flare at one angle (\(\alpha = 25^\circ \)). Flares were made of aluminum and paired according to the following values for \(\alpha \): 9-13, 19-20, 22-25, 25-25 (with and without splitter plates), 27-35, and 30-40°. Slant length ranged from 4.6 in. (\(\alpha = 13^\circ \)) to 5.9 in. (\(\alpha = 40^\circ \)). Flare pairs could be positioned at two locations on the cylinder, \(x_c = 14 \) or 28 in. measured downstream from the leading edge of the cylinder to the leading edge of each flare. Corresponding values of the axisymmetric parameter, \(x_c/r_i \), are 2.33 and 4.66, respectively. A dowel-pin/bearing-block arrangement prevented flare movement with respect to the cylinder. Flare-to-cylinder contact surfaces were sealed at the base of each flare and along the splitter plates to prevent air leakage from the corner region. Splitter-plate leading edges had a 5° half-angle and were positioned 12 in. ahead of the compression corner for the \(\alpha = 30-40^\circ \) pair and 4 in. ahead of the corner for all other \(\alpha \).

The aft section of the cylinder surface was instrumented with 146 orifices (0.03-in. diameter) for sensing surface pressure and a thermocouple for sensing surface temperature. Orifices were arranged in staggered arrays about the iceward \((\phi = 0^\circ) \) and windward \((\phi = 180^\circ) \) rays on the cylinder surface between \(12 \leq x \leq 28 \) in., and were more densely distributed near \(x = 14 \) in. and 28 in. Instrumented flares \((\alpha = 25^\circ) \) had 16 orifices spaced over a 3-in. length measured along the surface downstream from the flare leading edge.

Instrumentation

Sixteen miniature, strain-gauge-type, absolute-pressure transducers having rated capacities of 5 psia or 10 psia were used in conjunction with pressure switches to sense model surface pressures. During one cycle of the pressure switches, each transducer sensed 11 model pressures, three precisely known monitor pressures, and two reference pressures (\(P_{ref} \geq 50 \mu \text{Hg} \)). Each switch was cycled three times during each run, and data were recorded during each cycle in order to evaluate capillary lag effects, if any. Schlieren photographs were taken during each run to assist in evaluation of test results.

A traversing probe was used to obtain boundary-layer pitot-pressure profiles. The probe tip was formed by flattening and honing a piece of 0.04-in. outside diameter by 0.005-in. wall steel tube to provide a 0.005-in. tip height, 0.002-in. slit height, and a 0.05-in. slit width. The drive unit consisted of a gear train driven by an electric motor. It was housed on the outer surface of the cylinder diametrically opposite the probe. The probe was linked to the drive unit by a thin, diamond-shaped blade that passed through the cylinder walls and duct. Fully retracted, the probe tip lay below the cylinder surface in a specially constructed open recess. Pitot pressure was sensed with a 30-psid transducer located in the drive-unit housing. Probe movement was sensed with an infinite-resolution film potentiometer. All factors being considered, it is estimated that uncertainty in probe position, \(y \), was less than \(\pm 0.002 \) in.

Analog outputs from all pressure transducers, thermocouples, and the probe position indicator were digitized and recorded on magnetic tape with a computer-controlled, 32-channel, high-speed data-acquisition system.
The model was supported in the tunnel as shown in Fig. 1 with the leading edge upstream of the tunnel Schlieren window. During the experiment, the centerline of the cylinder was held coincident with the tunnel test-section centerline. Comparisons made between surface-pressure distributions at $\theta = 0^\circ$ and 180° confirm that the model was aligned parallel to the tunnel flow.

Pilot-pressure surveys of the boundary layer plus measured surface-pressure distributions indicate that the strength of the wave emanating from the model leading edge was negligibly small for all free-stream test conditions. This and other measurements indicate that the flow through the cylinder inlet was always supersonic.

The flare experiments were run at nominal Mach numbers of 2, 2.5, 3, 3.3, 3.5, 3.7, 4, and 4.5, and at tunnel unit Reynolds numbers of 0.5, 1.0, 1.5, and 2.0 million per inch. Thus, an eightfold change in length Reynolds number, R_e, was possible. Wall-temperature to recovery-temperature ratio for the model were in the range 0.95 $\leq T_w/T_e \leq$ 1.05. During a run, Mach number, Reynolds number, and flare angle were constant. For each run, data were recorded, reduced to engineering units, and plotted "on line." On-line examination of the data was useful for selecting conditions for later runs.

Data repeatability and model alignment were evaluated for $M = 2.5, 2.8, 3, 3.3, 3.5, 3.7, 4$, and 4.5, and at tunnel unit Reynolds numbers of 0.5, 1.0, 1.5, and 2.0 million per inch. Thus, an eightfold change in length Reynolds number, R_e, was possible. Wall-temperature to recovery-temperature ratio for the model were in the range 0.95 $\leq T_w/T_e \leq$ 1.05. During a run, Mach number, Reynolds number, and flare angle were constant. For each run, data were recorded, reduced to engineering units, and plotted "on line." On-line examination of the data was useful for selecting conditions for later runs.

Splitter-plate effects were evaluated at $M = 2.5$ ($\theta/\delta_0 = 4$) by comparing results obtained at $x_c = 28$ in. For each value of M, comparisons were made between results obtained during a run for individual flare halves, and second between data from repeat runs. These comparisons show that data repeatability was excellent and further confirm that the model was aligned parallel to the tunnel flow.

Data repeatability and model alignment were evaluated for $M = 2.5, 2.8, 3, 3.3, 3.5, 3.7, 4$, and 4.5, and at tunnel unit Reynolds numbers of 0.5, 1.0, 1.5, and 2.0 million per inch. Thus, an eightfold change in length Reynolds number, R_e, was possible. Wall-temperature to recovery-temperature ratio for the model were in the range 0.95 $\leq T_w/T_e \leq$ 1.05. During a run, Mach number, Reynolds number, and flare angle were constant. For each run, data were recorded, reduced to engineering units, and plotted "on line." On-line examination of the data was useful for selecting conditions for later runs.

Pilot-pressure profiles for the undisturbed (flares-off) boundary layer on the cylinder were obtained at $x = 14$ and 28 in. for the ranges of Mach number and Reynolds number covered in this study, namely, $2 \leq M \leq 4.5$ and $7 \times 10^5 \leq R_e \leq 60 \times 10^5$. At these locations, representative values of the boundary-layer thickness were $\delta = 0.195$ and 0.355 in., corresponding to values of the boundary-layer-thickness to cylinder-radius ratio, $\delta/r = 0.03$ and 0.06.

Boundary-layer trip devices were not employed. According to data presented by Pate and Schueler, (6) the position of natural transition on the cylinder was estimated to be from 2 to 8 in. from the leading edge, depending on M and R_e.

The experimental results consisted principally of the various parameters describing the undisturbed boundary layer on the cylinder, Schlieren photographs of the interaction region, and surface-pressure distributions.

Boundary-Layer Parameters

Boundary-layer Mach-number profiles were computed from the measured pitot-pressure values, not corrected for probe displacement effects, with wall pressure assumed to be constant through the layer. Velocity and density profiles were calculated assuming the temperature profile to be given by

$$T/T_e = T_w/T_e + (T_r/T_e - T_w/T_e) \left(\frac{U}{U_e} \right) - (T_r/T_e - 1) \left(\frac{U}{U_e} \right)^2$$

(1)

By making the following substitutions in Eq. (1),

$$\frac{U}{U_e} = \frac{M}{M_e} \left(\frac{T}{T_e} \right)^{1/2}$$

$$T_w/T_e = \left(\frac{T}{T_e} \right) \left(1 + 0.2M_e^2 \right)$$

$$T_r/T_e = 1 + 0.178M_e^2$$

one arrives at a quadratic equation solvable for $(T/T_e)^{1/2}$ in terms of T_w/T_e, T_r/T_e, M_e, and M_e. The outer portion of the velocity profile was assumed to be represented by a $1/n$-type power law, and n was taken to be equal to the slope of the best straight-line fit to logarithmic values of y and U/U_e for $y > 0.03$ in. Values for n ranged from 2.1 to 2.5 at $x_c = 14$ in. and 2.4 to 2.5 at $x_c = 28$ in.

Because the velocity ratio, U/U_e, asymptotically approaches a value of 1.0 for values of $y < \delta$, the determination of precise values for δ is difficult and somewhat arbitrary. We chose for δ the value of y at $U/U_e = 0.995$. The curves of Fig. 2 represent the smoothed values of δ obtained for the undisturbed boundary layer at $x_c = 14$ and 28 in. for the range of Mach number and (unit) Reynolds number shown. Data scatter about each curve is less than 3%.

The momentum deficit thickness was determined by graphically integrating the expression

$$ \theta = \int_0^\infty \left(\frac{\rho U}{\rho C_{\mu}} \right) \frac{U}{U_e} [1 - \left(\frac{U}{U_e} \right)] dy $$

4
Values obtained for \(\theta_c \) are plotted in Fig. 3. To scale the thickness parameters to values of \(\delta \) other than \(\delta_c = 14 \) and 28 in., use was made of the following equations:

\[
\frac{\delta}{\delta_c} = 0.1215 \frac{R_x}{x}^{-1/8}
\]

(2)

\[
\theta_c / \delta_c = 0.0125 e^{- M/5} \frac{R_x}{x}^{-1/8}
\]

(3)

The scaling procedure consists of entering Figs. 2 and 3 with given values of \(R_x \) and \(M_e \) to obtain \(\delta_c \) and \(\theta_c \). Values for \(\delta_0 \) and \(\theta_0 \) at the beginning of the interaction, i.e., at \(x_0 = x_c - l_0 \), were calculated from Eqs. (2) and (3):

\[
(\delta_0 / \delta_c) = (\theta_0 / \theta_c) = (x_0 / x_c)^{-7/8}
\]

All values for the local skin-friction coefficient, \(C_f \), used in this paper were obtained from the equations of Hopkins [10] based on the method (II) of Van Driest, into which were put measured or estimated values for \(M_e \), \(T_b \), and \(R_b \) plus the adiabatic wall condition, \(T_w / T_e = 1 \). Sutherland's formula for viscosity was also used. We note that values of \(C_f \) computed from Eq. (3) and \(C_f = 2d \theta /dx \) are within 10% of the values computed from the equations of Ref. 10.

![Fig 2 Boundary-layer thickness at \(x_c = 14 \) and 28 in.](image1)

![Fig 3 Momentum thickness at \(x_c = 14 \) and 28 in.](image2)

Flow Visualization

Figure 4 is a Schlieren photograph obtained during the study for \(x_c = 14 \) in., at \(M_e = 2.98 \). Clearly visible for the upper \(\alpha = 40^\circ \) flare are the separation shock emanating from the beginning of the interaction region, the outer edge of the free shear layer, the flow reattachment region, and the interaction between the separation and reattachment shocks. The weak waves emanating from the cylinder surface upstream of the interaction run along Mach lines having their origins at the cylinder leading edge and the parting line between the two sections of the cylinder. The weak disturbances observed as waves emanating from the tunnel walls are due to the leading edge of a newly applied coat of paint on the test-section walls.

The wave angle, \(\beta_p \), for the separation shocks observed for both the \(\alpha = 30^\circ \) and \(40^\circ \) flares is \(\beta_p = 30^\circ \), a result consistent with the free-interaction concept. The outer edge of the shear layer makes a \(17^\circ \) angle with the cylinder. The measured plateau pressure was \(P_p/P_e = 2.57 \), which corresponds to a two-dimensional inviscid turn of the flow through \(\psi_b = 13.6^\circ \). The \(3.4^\circ \) difference between \(\psi_b \) and the outer edge of the layer is in agreement with the values of \(3.0 \) and \(3.5^\circ \) found for the free shear layer ahead of forward-facing steps by Behrens [11] and Zukoski [12] respectively.

![Fig 4 Schlieren photograph \((M_e = 2.38, R_x = 5.9 \times 10^6, x_c = 14 \) in, \(\alpha = 40^\circ/30^\circ \)](image3)
The reattachment compression region appears to be about two-thirds of the way up the $\alpha = 40^\circ$ flare surface. It is interesting to note that $\alpha = 40^\circ$ is close to the shock-wave detachment value, $\phi = 41^\circ$ for $M_e = 2.98$, assuming a two-dimensional, inviscid, initial turn of the flow through $\psi_0 = 13.6^\circ$.

The distance from the corner to the point where the separation shock intersects the surface is a measure of the separation length, t_0. Values for t_0 determined from Schlieren photographs are in agreement with, but slightly less than, values of t_0 determined from surface-pressure data (definition of t_0 is discussed below). This observation agrees with the findings of Law(4) and Spaid and Frishett, (13) Measurements from Fig. 4 indicate values of $t_0/x_c = 0.089$ and 0.367 for $\alpha = 30^\circ$ and 40°, respectively; corresponding surface-pressure data indicate a value of $t_0/x_c = 0.094$ for $\alpha = 30^\circ$. (Since pressure orifices were not located upstream of $x = 12$ in., the beginning of the pressure rise could not be detected for $\alpha = 40^\circ$ at $x_c = 14$ in.) Hereafter we present only measurements of t_0 (from pressure distributions), which could be more accurately determined than measurements of t_0 (from Schlieren photographs).

Pressure Distributions

An example of a measured pressure distribution is shown in Fig. 5. For this case, $\alpha = 25^\circ$, pressure measurements were obtained on the flare surface as well as the cylinder surface upstream of it. Flares of larger angle were not provided with pressure taps. The method of defining the upstream interaction length, t_0, illustrated in Fig. 5, is the one used by Settles and Bogdonoff. (3)

![Fig 5 Definition of interaction length](image)

Interaction Length

The upstream interaction length, t_0, defined as in Fig. 5, was determined for each pressure distribution. The complete set of values over the range of all the parameters is presented in Figs. 8 and 9, in which the interaction lengths have been normalized by x_c, the downstream distance to the flare, and plotted against R_e, the Reynolds number based on x_c. While the trends shown in these basic data plots are interesting, a more significant plot would be based on boundary-layer thickness instead of x_c. It was found, for example, that t_0/Δ ($\Delta = \delta, 6^\circ$, or θ) decreases with increasing R_e, whether Δ be evaluated at x_0 or x_c, for the whole range of flow parameters. This is similar to the trends found by Settles and Bogdonoff (3) and by Law(4) at $M \approx 3$ for $\Delta = \delta$. However, we do not show these plots here because, in searching for...
for possible correlations, we came upon a better way to present the data, one in which the dependence on Mach number disappears.

For reasons which we do not yet understand, when I_0/R_h is plotted against C_{f0}, the data for different values of Mach number (excluding the $M_e = 1.98$ data) fall onto a single curve for each value of σ, as may be seen in Fig. 10. All values of C_{f0} were determined as explained above. The data from the present experiments are in the range $10^5 < R_h < 10^6$, but included on the plots are data in the next higher decade, from our previous study. These also fall onto the correlation.

It is remarkable that the data for values of $\sigma \leq 30^\circ$ (and excluding those for $M_e = 1.98$) fall on a straight line, whose slope we denote by σ. For $\sigma = 35^\circ$, we have taken some liberty in fitting a straight line to part of the correlation (see remarks following Eq. (6), below). A discussion of possible factors contributing to the behavior exhibited by the data obtained for $M_e = 1.98$ and for $\sigma \geq 35^\circ$ is given below. Data for $\sigma = 9^\circ$ and 13° are not included in Fig. 8 and Fig. 10 because only a few data points were obtained, and also because of the difficulty (due to orifice spacing) in obtaining precise values of I_0 from surface-pressure measurements for small σ. However, four data points
obtained for a = 13°, \(x = 28 \text{ in.} \), and \(M_e = 2.98 \) and 3.06, when plotted in the format of Fig. 10, were in agreement with a straight line passing through \(C_{f_0} = 0.00069 \) with slope \(a = 400 \).

Extrapolation to \(\ell_o/\delta_o \rightarrow 0 \) of the straight lines for each \(a \) in Fig. 10 defines a parameter, \(C_{f_0}^2 \) which (formally) is the value of \(C_{f_0} \) below which the upstream interaction length vanishes. A plot of \(C_{f_0}^2 \) against \(a \), shown in Fig. 11, defines a curve to which the equation

\[
C_{f_0}^2 = 10^{-3} (1 - 0.001829a^2)
\]

(4)

provides a good empirical fit. The implication of this curve is that for each \(a \), the interaction length becomes zero at sufficiently high Reynolds number \((C_{f_0} \leq C_{f_0} \). However, for \(a > 29^\circ \), there is always an upstream influence, no matter how high the Reynolds number.

It is not clear what physical significance, if any, to attach to the extrapolation of the curve for \(a < 13^\circ \), particularly the intercept at \(a = 0 \).

The straight-line used to fit portions of the data in Fig. 10 may be represented by the equation

\[
\ell_o/\delta_o = \sigma (C_{f_0} - C_{f_0}^2)
\]

(5)

in which, in addition to the parameter \(C_{f_0}^2 \), there appears the upstream influence coefficient, \(\sigma \) (i.e., the slope of the line). The values of \(\sigma \) are plotted in Fig. 12, along with the empirical equation

\[
\sigma = 10^{-3} (a/18.29)^2.81
\]

(6)

which has been fitted to it. This curve defines for \(a = 35^\circ \) a value of \(\sigma \) which was used \(\text{a posteriori} \) to fit the data in Fig. 10.

Whatever the physical significance of the parameters \(C_{f_0}^2 \) and \(C_{f_0} \) defined in this way, Eq. (5) can be used to define the interaction length as a function of \(a \) and \(C_{f_0} \). Such a plot is given in Fig. 13 for flare angles up to \(30^\circ \) and for values of \(C_{f_0} \leq 0.003 \). Higher values of \(C_{f_0} \) would be in the transition range of Reynolds number for the applicable range of Mach numbers \(2.5 \leq M_e \leq 5 \). In fact, the correlation should be used with caution for \(C_{f_0} > 0.002 \), which was the largest value in the present experiments. Overall the range of data from which Fig. 13 was derived, there is no effect of the axisymmetric parameter.
Incipient Separation

As mentioned in the introduction, there has been some disagreement about the effect of Reynolds number on the value of ramp angle for incipient separation. Indeed, there has been controversy (13, 17) about even the operational definition of incipient separation conditions. Some of the points of difference are illustrated in the traditional plot (Fig. 15) of incipient separation angle, \(\alpha_i \), against Reynolds number, \(R_e \), for adiabatic wall conditions. The largest differences occur at the lower end of the Reynolds-number range \(10^4 \) to \(10^6 \). To what extent these differences are due to the different methods of defining separation or to possible differences in boundary-layer properties connected with tripping, etc., has never been satisfactorily settled. In the next higher decade of Reynolds number, there is general agreement between the results of Law (14) and those of Settles and Bogdonoff (3), but the latter find no dependence on Reynolds number. In the next higher decade, there is only one set of data (14). Apart from the data of Kuehn, the trends in Fig. 15 are for increasing values of \(\alpha_i \) with increasing Reynolds number, i.e., decreasing skin-friction coefficient.

The present experiments were not designed to include detailed measurements of incipient separation. Nevertheless, we hoped to obtain some further data on this question. Our approach to this problem changed considerably after discovery of the Mach-number-independent correlation of Fig. 10. Because the separation point is...
downstream of the beginning of the interaction ($t_0 < t_0$), it is evident that each straight line in Fig. 10 passes through a value of $t_0/\beta_0 = 0$ that corresponds to incipient separation ($\beta_0 = 0$). This value of t_0/β_0 for incipient separation may depend on the parameters of the problem, but an examination of our pressure distributions from the present work and from Ref. 1 suggested that in fact it may be relatively constant. Accordingly, we arbitrarily selected, by trial, the value

$$(L_0/\beta_0)_i = 0.55$$

as a definition of incipient separation independent of Mach number and Reynolds number. In Fig. 10, the intersection of $L_0/\beta_0 = 0.55$ with the straight-line correlation curves defines corresponding values of α and C_f [these may also be evaluated directly using Eq. (5)]. The result is shown in Fig. 16, where the curve so determined is compared with the data (except Kuehn's) from Fig. 15. Additional results from Refs. 13 and 17, based on different criteria for incipient separation, are also shown. The definition of incipient separation based on the liquid-line technique would correspond to $L_0/\beta_0 = 0.05$ in the present approach. It may be remarked that values of α at lower Reynolds numbers that are based on the pressure-hump technique imply values of (L_0/β_0) larger than unity (as large as 3 for some of Kuehn's data), while at higher Reynolds number, the values of (L_0/β_0) obtained from the pressure-hump technique are in agreement with Eq. (7).

Discussion

Possibly the most remarkable feature of the result presented above is the disappearance of the Mach-number dependence (for $M_e \geq 2$) of the interaction length and of the incipient-separation angle when they are plotted against the skin-friction coefficient. Although the correlation was accidentally found by looking for possible correlations with law-of-the-wall parameters, it is not possible to rationalize it in those terms. As we have previously noted, (11) the interaction of a supersonic, turbulent boundary layer with a corner seems rather to be controlled by a wall interaction layer that is considerably thicker than the sublayer and penetrates some distance into the supersonic portion. Similar proposals were made by Rose, et al. (10) and Elfstrom (119).

In fact, Elfstrom incorporated this idea into a method for computing incipient-separation conditions. Increasing Reynolds number, i.e., decreasing C_f, "fills out" the velocity profile and brings the supersonic portion closer to the wall (relative to β), reducing the wall-layer thickness and the related scale of the interaction. It is this effect that controls both the conditions for incipient separation and the interaction length L_0.

When the external Mach number is too low ($M_e < 2$), the Mach number at the edge of the interaction layer is low enough that the interaction becomes a "transonic" one with rather different characteristics from those at higher Mach numbers. We had noted this in the experiments of Ref. 1. For example, at $M_e = 1.95$, the edge of the corner was detached, even for values of ϕ for which the boundary layer had not yet separated. We believe that the fact that the present $M_e = 1.98$ data do not fall on the correlation curves in Fig. 10 may be connected with such "transonic" behavior. In passing, we note that the $M_e = 2$ data from Ref. 1 and from the present experiments consistently fall onto values of "effective $\alpha" above those for the correlation curves in Fig. 10.

To obtain a clearer understanding of these interactions requires a rational understanding of how the thickness of the postulated wall interaction layer is determined. Our own and others' (18), (19) methods for defining it have been ad hoc. Explanations for the Mach-number independence in Fig. 10 and for the linear dependence on C_f await a better understanding of the "wall interaction layer."

As regards the experimental data themselves, we noted in the introduction that until very recently there was very little information available on separation lengths in fully developed turbulent boundary layers. Now that this situation has been somewhat remedied by the work reported in Refs. 3 and 4 and the present paper, it is annoying to find more disagreement than would seem to be warranted. Axisymmetric effects (especially in Ref. 3) may account for some of the differences in interaction lengths at the higher values of α, but they should not be important for incipient separation. The same may be said in regard to side-wall or end effects, which may have played a role in the two-dimensional experiments of Ref. 4 and possibly in our own use of splitter plates. Again, for incipient separation, those effects should not be important.

Fig 16 Conditions for incipient separation, $2.5 \leq M_e \leq 6$ (present correlation)

When the curve defined by Eq. (7) is reinterpreted in terms of the parameters of Fig. 15, it plots as the series of curves shown there. The correlation with most of the data seems to be at least as good as the agreement among the different data. Also shown in Fig. 15 is a measure of the shift in the correlation curves that would occur if the criterion for $(L_0/\beta_0)_i$ varied from 0.5 to 0.6.
There remains the vexing question as to the differences in the incipient separation data reported by different investigators, and even by individual investigators who have applied more than one criterion for defining incipient separation. These differences are most pronounced at the lower values of Reynolds number ($R_e < 10^5$) where, it may be noted, viscous sublayer thicknesses are a few (up to 10) percent of the boundary-layer thickness. The effect of the sublayer on the pressure distribution is then much greater than at higher values of Reynolds number and Mach number. For example, at large R_e, the surface-pressure distribution rises steeply from the beginning of interaction (Fig. 6), while at lower R_e there is more of an upstream "precursor" (e.g., Refs. 2, 13, and 19).

In the most recent contribution to this subject, Appels(21) suggests that separation occurs in two steps. The very first separation, as detected by liquid flow, affects only the sublayer, while larger separation involves more of the boundary layer. He thus defines and measures two values of a_1 based on "small" and "large" involvement. The measured values of the "large" criterion agree very well with our correlation curve for $(a_0/b_0)_h = 0.55$ in Fig. 16, while those from the "small" criterion lie close to the curve for $(a_0/b_0)_h = 0.05$. Appels' experiments were conducted at values of $M_e = 3.46$ and 5.45, and $10^5 \leq R_e \leq 10^6$.

Except for Appels' data for $M_e = 5.45$, the incipient separation data obtained by other investigators (Refs. 19 and 22 to 26) at high Mach numbers ($M > 5$) do not fall onto the correlation in Fig. 16. Even in the Reynolds-number range $10^5 \leq R_e \leq 10^6$, they all show the trend of decreasing a_1 with increasing R_e (decreasing C_f). This trend might be interpreted as being due to a shifting of strong sublayer effects to higher Reynolds numbers because of the higher values of Mach number. Those high-Mach-number data have all been obtained on nonadiabatic walls ($T_w < T_f$), and measures two values of a_1 based on "small" and "large" involvement. The data of Settles and Bogdonoff, however, are not included in our discussion.

References

