Stockton et al.

Vol. 19, No. 12/December 2002/J. Opt. Soc. Am. B 3019

Programmable logic devices in experimental
quantum optics

John Stockton, Michael Armen, and Hideo Mabuchi

Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125

Received April 3, 2002; revised manuscript received June 24, 2002

We discuss the unique capabilities of programmable logic devices (PLDs) for experimental quantum optics and

describe basic procedures of design and implementation.
metrology and feedback control of quantum dynamical systems.

Examples of advanced applications include optical
As a tutorial illustration of the PLD imple-

mentation process, a field-programmable gate array controller is used to stabilize the output of a Fabry-Perot

cavity. © 2002 Optical Society of America

OCIS codes: 120.0120, 120.2230, 120.5050, 270.0270.

1. INTRODUCTION

Controllers are pervasive in experimental physics. Ser-
vos typically play a role behind the scenes, stabilizing en-
vironmental conditions (e.g., temperature, frequency and
amplitude of driving lasers) for the physical system of pri-
mary interest (e.g., quantum dots and trapped atoms or
molecules). But the system of interest can itself be the
explicit object of sophisticated control strategies. An in-
creasing number of experimental quantum systems are
being developed to the point at which coherent dynamics
occur at time scales longer than the response time of
available detectors and actuators.'™ This separation of
time scales opens the door for real time feedback control
to be applied in quantum mechanical scenarios.

New theoretical and experimental tools will be required
to achieve quantum control objectives. Concerted efforts
are currently being made to extend classical control
theory to quantum problems in which measurement back-
action cannot be ignored.*® Given the inherent nonlin-
earity of conditional quantum dynamics, optimal control
laws cannot be practically implemented with analog cir-
cuits, necessitating fast digital control. Even for linear
systems, programmable logic may be superior to analog
methods when a precisely shaped transfer function is de-
sired. For these reasons, one expects that programmable
logic devices (PLDs) with high processing speed and low
latency will prove to be invaluable as quantum and clas-
sical controllers.

PLDs are already a standard tool in industry and some
areas of science, but they have yet to attain widespread
use in fields such as quantum optics and quantum infor-
mation science. Our aim in this paper will be to convey a
base level of knowledge required to use these devices in
representative experimental setups. First we promote
the use of programmable logic with some potential appli-
cations. We then describe the details of practical imple-
mentation, from determining the required hardware
specifications to completing the design flow. Finally we
demonstrate this process with a familiar example of clas-
sical control by using a field-programmable gate array
(FPGA) to stabilize the output of a Fabry—Perot cavity.

0740-3224/2002/123019-09$15.00

2. APPLICATIONS

The field of control theory has evolved tremendously since
its inception. The generality of the formalism has led to
a sophisticated set of rules and procedures applicable to
control tasks in widely separated fields of science.®®
While we believe that complex control-theory-based strat-
egies will play a major role in the broad quantum arena,
here we wish to simplify the setting and justify the use of
PLDs in terms of basic control objectives and physical
constraints.

All control problems focus on a plant or a system that is
the object of control. A typical plant has a set of input
variables that can be driven and a set of output variables
that can be measured. Plants can range in complexity
from linear to nonlinear and from classical to necessarily
quantum mechanical. Whatever the plant dynamics, all
control goals can be quantified in terms of a metric which
may involve both the input and output variables. The
goal of the controller is to optimize this metric with an ap-
propriate mapping from output variables to input vari-
ables.

Given infinitely fast and powerful detectors, control-
lers, and actuators, most control tasks are trivial. Prac-
tically, however, all components have limited bandwidth,
and above certain frequencies any real controller will be
effectively turned off. The relatively difficult part of de-
signing most controllers is dealing with this physical re-
ality. For example, most classical linear controllers must
be designed with an appropriate phase response such that
the system is not accidentally driven into unstable oscil-
lations as the response magnitude necessarily descends
below unity.”

The ideal controller should be fast enough to avoid be-
ing the rate-limiting step in any particular control loop.
The outstanding feature of PLDs is that they can imple-
ment complex nonlinear logic at a high bandwidth and a
low latency. Here latency refers to the delay between the
time that a signal is received as input and the time that a
calculation based on it becomes available as output. This
reaction time is of little consequence in many data pro-
cessing applications, but is critical in control loops. Es-

© 2002 Optical Society of America

3020 J. Opt. Soc. Am. B/Vol. 19, No. 12/December 2002

sentially, the control bandwidth of any servo is limited by
the inverse of this delay.

In many typical classical control situations PLD con-
trollers are unnecessarily complex, and traditional analog
circuitry would be adequate. For fundamentally
quantum-mechanical experimental systems, the time
scales are usually much smaller and the necessary algo-
rithms much more complicated (such as the estimation of
an operator expectation value). Thus using PLDs to or-
chestrate quantum control seems a natural and necessary
marriage. In addition most types of PLD can be com-
pletely reprogrammed in a matter of minutes, allowing
for a high degree of design flexibility in experimental situ-
ations. We now summarize a few potential classical and
quantum scenarios in which PLDs clearly distinguish
themselves from the alternatives.

A. Precise Linear Servos

In linear control tasks, PLD controllers have a distinct
practical advantage over analog circuitry with regard to
precision and flexibility. For example it is a well-known
control problem to stabilize a plant over one of its reso-
nances. An appropriate controller should precisely com-
pensate for the measured center frequency and quality
factor of the resonance. When creating an analog servo
the designer must work with discrete components (resis-
tors, capacitors, etc.) whose impedances have a non-
negligible error range. However a PLD transfer function
can be specified digitally, making it much easier to match
the system dynamics closely.

Figure 1 shows the near-compensation of a harmonic-
oscillator (HO) resonance with a PLD antiharmonic-
oscillator (AHO) transfer function. (Actually both trans-
fer functions in the graph are implemented with a PLD by
techniques described later.) Ideally the HO transfer
function will be transformed into an integrator transfer
function (with a constant —90° of phase) when multiplied
by the AHO compensator. The deviation from a perfect
integrator is due to a slight error in the assumed damp-
ing. Refinements to the AHO design could remove this
slight departure from the ideal.

PLDs will obviously not replace most linear servos in
the typical laboratory, but the ability to optimize the sta-

¥ R
T wof Wf |
[} wl |
s o onAHO
= ol ’\ .
E ol !
2 2l M

: T e
~ sof — ﬁ i
-@'ﬂ ol_HO ; —
g -50f P, I
s o W
a

150 ¢

200 ’

10 108]

Frequency (Hz)

Fig. 1. Antiharmonic-oscillator (AHO) transfer function is de-
signed such that its product with the harmonic-oscillator (HO)
transfer function equals that of an integrator with a constant
—90° phase.

Stockton et al.

bility of critical systems is a considerable resource. In
Section 4 we will, for the purposes of demonstration, de-
scribe the use of a PLD controller to perform optimally a
critical linear control task of major importance in the op-
tics community: stabilizing a Fabry—Perot cavity.

B. Optimal Measurement

In quantum feedback scenarios, either the measurement
operators or the system Hamiltonian can be modulated in
real time according to the information gained from a con-
tinuous measurement record. Consider the case in
which only the measurement operators are adjusted.
The goal of the entire measurement may be to determine
most accurately the initial state of the system. Other
situations may call for the measurement of only a single
state parameter when all other state variables are either
assumed or neglected. The authors have recently devel-
oped a system of this type for which the goal was to opti-
mally measure the phase of a single pulse of light.'® We
constrain ourselves to measuring pulses that are not only
long enough that their phase is well-defined, but long
enough to allow us to feed back the measurement signal
multiple times before the pulse has been completely de-
stroyed by the detectors.

Wiseman and Killip have determined near-optimal
measurement schemes for such a system based on quan-
tum trajectory theory.® In short they consider the signal
to be measured in an adaptive homodyne setup in which
the pulse is mixed with a strong local oscillator whose
phase @ is continuously adjusted (within the duration of
each pulse) according to the measured homodyne current
1. To first order, the object of the algorithm is to lock to
the side of the interference fringe; thus ® is adjusted until
I is zero.

Despite this simplistic description, the general optimal
algorithm (f:I = &) is a highly nonlinear function
based on estimation of state. It has been shown that the
estimated state at any time is a function, remarkably, of
only two parameters and the initial conditions. In terms
of a scaled time v these parameters are

A, ful(u)exp[ifb(u)]du, (1)
0

v
B, —f exp[2iP(u)]du. (2)
0
The phase of the local oscillator is usually taken to be
O(v) = :z)(v) + m/2 where &)(v) is the phase estimate to
be used during the course of feedback. If one were to
stop the feedback at any time, the best phase estimate
would be ¢¢(v) = arg(C,) where C, = A,v + B,AY.
However for subtle reasons <A{)C(v) should not be used as
the estimate during the course of the feedback.

One simple algorithm uses (Ab(v) = arg(4,). With this
choice the algorithm simply reduces to a gain-scheduled
integrator of the form

Add(v) = I(v)/\o, (3)

where v is the time since the beginning of the pulse and
the vY? factor represents the effective gain. Currently
this algorithm is being implemented with an FPGA that

Stockton et al.

creates the v'/2 gain factor with a lookup table represen-
tation of the function as described in Subsection 3.B.1.

More sophisticated algorithms (with optimal perfor-
mance for certain squeezed states) have been proposed
that use feedback of the form

B(v) = arg(CL WAL, 4)

where €(v) is also a function of A, and B, . In this case
the algorithm is sufficiently complex that any analog
implementation would be extremely difficult to design.

In any case the nonlinear, low-latency behavior of PLDs
suggest that they are a suitable tool for this task. Given
that the form of a desired algorithm may change fre-
quently with the introduction of realistic experimental
complications, the rapid prototyping allowed by a PLD is
also extremely convenient.

C. Feedback Control

When the goal is control rather than optimal measure-
ment, a nontrivial Hamiltonian of the system will be con-
trolled by the measurement record. Consider the case of
an atom drifting through the light field of a small Fabry—
Perot cavity. As has been demonstrated, the position of
the atom may be imprinted onto the output light of the
cavity.> This information can potentially be mapped
back onto the intensity and phase of the input laser with
the goal of trapping the atom in the cavity for extended
periods of time.!!

Optimal control of the atom’s position will require a
complex predictor—corrector structure in the feedback
loop at microsecond time scales. If the associated calcu-
lations can be sufficiently reduced, a PLD with effective
clocking speeds above ~10 MHz will be able to perform
this task. Of course the effectiveness of the control algo-
rithm will depend on the assumed dynamics of the system
from which it is derived. If the system needs to be de-
scribed quantum-mechanically, we should institute a con-
ditional quantum state estimator. If a classical descrip-
tion is sufficient, we can use a less complicated algorithm.
The performance of different controllers will be a strong
indicator of the validity of our descriptions. The ability
to quickly redesign the PLD will be particularly advanta-
geous when exploring this boundary.

Hamiltonian feedback can also be used to manipulate
the internal states of atomic and molecular systems. Nu-
merous groups have become interested in shaping femto-
second laser pulses to drive transitions which may be in-
accessible using traditional means.'?> This includes the
ability to synthesize rare molecular compounds. For ex-
ample by iteratively reading the fluorescence spectrum of
the system and intelligently moving in the parameter
space of the pulse shape, one attempts to land at a shape
conducive to creating the desired state or compound.

This procedure can happen in two regimes, learning
control or feedback control. For learning control we con-
sider using a new sample for every pulse, whereas for
feedback control we consider using the same sample on
every pulse. In the latter case the algorithm assumes
that the sample has a long enough dephasing time
(memory) that a significant degree of coherence is re-

Vol. 19, No. 12/December 2002/J. Opt. Soc. Am. B 3021

tained between pulses. For either case, a PLD-based
controller may have significant advantages over alterna-
tive controller architectures.

D. Decision and Control for Quantum-Information
Processing

In a generic quantum-computing architecture, there exist
classical logic steps which involve performing a coherent
quantum operation conditioned on the result of a mea-
surement. For example quantum error-correcting codes
can combat decoherence by mapping measured errors to
appropriate correction operators.”® In an experiment,
this measurement-operation procedure should be per-
formed much faster than the dephasing rate of the sys-
tem. If the operations can be performed quickly upon
command, PLDs will be able to orchestrate these codes in
a reliable and reconfigurable fashion with minimal delay.

Even for nonconditional algorithms PLDs can stream-
line the implementation of complex instruction sets. In
particular, groups working on ion-trap computing have
developed means of performing entanglement
algorithms,! but with an extensive overhead of macro-
scopic equipment that requires detailed manual adjust-
ment whenever the algorithm is changed. Without push-
ing its computational limits, a PLD can be made to
streamline such logic networks. By using software-
defined algorithms, the users eliminate the time and risk
of error associated with manual realignment of network
components. Commercial magnetic resonance systems
use PLDs for similar reasons.

As quantum-computing architectures grow to the point
where conditional and nonconditional algorithms must be
integrated in a way that is fast and flexible, program-
mable logic will be able to handle the task in a convenient
manner. The success of any PLD controller will depend on
its dynamic range and effective bandwidth. Next we dis-
cuss in more practical terms what levels of system perfor-
mance can be reasonably expected from currently avail-
able PLDs.

3. DESIGN

A. Hardware

Once it is determined that a control algorithm needs to be
implemented digitally, a designer is confronted with a
wide array of possible controllers and corresponding acro-
nyms. In addition to PLDs the options include conven-
tional microprocessor systems, digital signal processors
(DSPs) and application-specific integrated circuits
(ASICs). Of course the choice of controller is highly de-
pendent on the algorithm being implemented, because
each device has its own trade-offs. Microprocessor sys-
tems are general enough to allow for a simple means of
programming complex algorithms. However, these sys-
tems rely on a single-bus architecture which forms a sig-
nificant bottleneck in signal processing applications.
Overall throughput may be high but a large delay limits
typical controllers to slow applications with kilohertz-
scale bandwidths. In addition unreliable operating sys-
tems may present undesirable interrupt signals during
critical stages of processing.

3022 J. Opt. Soc. Am. B/Vol. 19, No. 12/December 2002

DSPs are specialized microprocessor systems with a
multiple-bus design that are optimized for signal process-
ing applications. Because of their parallel architecture
DSPs can attain low-latency performance, but require a
significant degree of sophisticated design expertise.
ASICs are like PLDs in that the user designs them from
the gate level, but ASICs are irreversibly hardwired for a
single application. While PLDs generally have fewer re-
sources available than ASICs, they offer an efficient par-
allel computation structure along with reprogrammabil-
ity and a relatively simple design process.*

The market for PLDs is currently dominated by two
companies: Xilinx Inc., and Altera Corporation. Devices
from both companies have had extensive product develop-
ment in industry, thus a substantial support network is
available to designers. In choosing between PLD compa-
nies, several factors beyond the chip performance need to
be considered, including the quality of the associated soft-
ware environments. To obtain the maximum control
bandwidth, we chose to work with an FPGA from Xilinx.

The logic structure of a Xilinx FPGA is designed to
handle arbitrary algorithm architectures. The FPGA
consists mostly of a grid with thousands of configurable
logic blocks with programmable interconnections. Each
configurable logic block contains a few small lookup tables
which can serve as simple logic elements (AND, OR, etc.)
when programmed. Also interspersed in this grid are
blocks of RAM that can be programmed as user-defined
functions with a large domain and range. Since each
logic element needs to be triggered to operate, the distri-
bution of a uniform clock signal with constant frequency
and phase is a considerable design issue. Thus FPGA ar-
chitectures commonly have digital clock managers or
delay-locked loops that de-skew the clock signal across
the device.

The performance of FPGA architectures has been in-
creasing impressively in recent years. To give an indica-
tion of their current level of performance, we quote some
of the characteristics of one of the top-of-the-line devices
available on the market today. The Xilinx Virtex II can
contain up to ten million system gates and have an inter-
nal clock frequency (f¢) of up to 420 MHz. The input—
output speed can be above 840 megabauds per second
which roughly matches the maximum speed of the best
analog-to-digital converter (ADC) (100 million samples
per second for a 12-bit sample Analog Devices, Inc.,
AD9432). This same FPGA has up to 192 Select RAM™
blocks of 18 kilobits each. Because strong demand from
industry drives the development of FPGA technology,
these performance specifications will likely improve sig-
nificantly in the near future.

Of course these devices must be coupled to a board, in-
troducing some practical issues. The system used in the
cavity lock described in Section 4 is a GVA-290 board
(G.V. & Associates) with two Xilinx Virtex-E XCV1000E
FPGA chips. Signals enter and exit the board through
four input and four output SMA (subminiature version A)
connectors. The signals are digitized by an ADC (Analog
AD9432) at the input and converted back to analog by a
digital-to-analog converter (DAC) (Analog AD9762) at the
output. Each ADC is located on a detachable daughter
board, allowing for converter upgrades and the addition of

Stockton et al.

customized components and filters. Both the ADCs and
DACs have 12-bit resolution and are driven at the clock
speed of 100 MHz. A crystal oscillator provides the clock
signal to the FPGA, which distributes a synchronized sig-
nal internally with delay-locked loops and also outputs
the driving signal for the ADC and DAC at a controlled
phase. Unlike standard models, the board was ordered
with dc-coupled inputs, allowing us to have broadband
control to dc. Boards often come with antialiasing analog
filters, but these were not included here because of the
substantial group delay a high-order filter can impose on
the signal. The cost of this particular board including de-
vices is approximately $10,000, but it should be stressed
that functional systems could be assembled at far less
cost. Xilinx also offers a special academic program
through which university researchers can obtain the nec-
essary software environment and a limited range of hard-
ware products.

We can now discuss the latency and throughput of our
controller in more detail. The latency is defined as the
amount of time for an algorithm to process a single
sample. The throughput is defined as the number of
samples (or bits) per second of output from the device.
For example consider a system of N components in series,
each with the same sampling rate f = 1/7. Also assume
the system is pipelined, meaning that a new sample is
loaded every 7seconds and samples are registered (values
held) between components. In this case the latency is
N7, while the throughput is . If this were a controller,
the bandwidth of control would be limited to the inverse
of the latency (1/N 7), not the throughput.

One of the principal advantages of FPGA technology is
that the delay can be quite small. Consider the case in
which the FPGA of the GVA-290 board is programmed to
pass a signal through without any manipulation. Figure
2 shows the transfer function and delay of this configura-
tion. The ADC, FPGA, and DAC are all clocked at 100
MHz and each one takes a certain number of cycles (10
ns/cycle) to perform its function. The ADC imposes a de-
lay of ten cycles, the buffers of the FPGA impose a delay
of four cycles, and the DAC delays the signal only about
one cycle. Adding all this, together with a small delay
from other components, we find that below the Nyquist

10

0
10}
20t
30l
40}
S50}
60 b

Magnitude (dB)

200

150 F 9

100 ¢

Delay (ns)

sof]

. . .)4

10° 10° 107 108
Frequency (Hz)

Fig. 2. Amplitude response and delay of the entire GV-290

board (ADC—FPGA—DAC). Note that the delay below the Ny-

quist frequency (fo/2 = 50 MHz) is ~160 ns. The phase re-

sponse in the constant delay region is linear with slope propor-
tional to the delay.

Stockton et al.

frequency (f-/2 = 50 MHz) the signal passes through at
unity gain with a constant overall delay of ~160 ns.
Thus the maximum control bandwidth for this device is
~6 MHz. Bandwidths in the tens of MHz may be antici-
pated with newer versions. If the FPGA algorithm is
simple enough that the ADC dominates the delay, it may
be desirable to use flash ADCs that have less latency at
the expense of a larger power consumption and smaller
number of output bits.

If the FPGA performs a complex calculation that re-
quires multiple logical steps in series, the delay is in-
creased by an integral number of cycles and the effective
bandwidth suffers. A typical example is that of the finite
impulse response (FIR) filter mentioned in Subsection
3.B.2 where, for B input bits, the sampling rate becomes
fc/By. For any general algorithm care should be taken
to minimize the number of serial elements before imple-
mentation. If possible, calculations should be performed
in parallel and lookup tables should be used to evaluate
complicated functions.

B. Software

The design process for a particular algorithm has been
largely automated with implementation-software envi-
ronments such as Foundation™ ISE (integrated software
environment, Xilinx). Once the design is entered
through one of the options described below, the program
steps through a series of compilation tasks before down-
loading onto the device. In order, the design is analyzed
for syntactic errors, synthesized into a generic circuit, and
implemented into an optimal bit stream appropriate to
the particular device and board. The bit stream is then
downloaded onto the device to achieve a stand-alone real-
ization of the desired algorithm. Simulation programs
are available at intermediate stages for debugging pur-
poses. The latest version of Foundation ISE (4.1) com-
piles up to 100,000 gates/min. For reasonable designs an
entire design flow can be expected to take ~ ten minutes.
This allows for a rapid prototyping cycle, which is one of
the most desirable features of this technology.

Numerous algorithm entry options are available. Us-
ing a library of primitive components, one can create a
schematic of the desired circuit. Abstract finite state ma-
chine diagrams can also be interpreted. The third option
is a text-based design written in either Verilog or VHDL
[VHSIC (very high speed integrated circuit) hardware de-
sign language].

As is common in technology standards, the choice be-
tween Verilog and VHDL has become almost a matter of
religion for everyday practitioners. It is worth pointing
out some of the accepted differences between the lan-
guages. Verilog is generally regarded as being easier to
learn. A large majority of engineers implementing com-
mercial systems use Verilog. Historically VHDL was
meant as a description language before being adopted as
a means of synthesis. As a result, VHDL is a much more
strongly ‘typed’ language. The range of abstraction is
also different between the two languages. Although
there is a considerable overlap, Verilog extends to a lower
level of abstraction while VHDL extends to a slightly
higher level. For noncritical reasons we chose to design
in VHDL, so we will discuss the following designs in those

Vol. 19, No. 12/December 2002/J. Opt. Soc. Am. B 3023

terms. However the discussion is abstract enough that
most concepts apply to both languages.

To first order, VHDL is a text-based description of a
schematic design. The mapping between input and out-
put bus variables consists of a series of abstractly defined
components in which output ports are connected to input
ports with defined signal variables. Each component has
an associated entity and architecture, where an architec-
ture is an instantiation of an entity. For example a com-
ponent with entity ‘op-amp’ (with only input and output
ports defined) could have its functionality determined by
the particular architecture ‘op27.” The internal workings
of a particular architecture can be specified in another
VHDL file with more components that are defined else-
where. In this way the code lends itself nicely to nested
level of detail and organized project design. Also one can
easily swap out components by changing architectures,
but not entities, within the code.

At some point in the hierarchy, primitive components
must be called upon. The Xilinx software offers an ex-
tensive library of such components (AND, OR, etc.) for use
with each particular device. In addition to these basic
primitives one can also create more complicated, but com-
monly used, components with the Xilinx core generator.
These objects (adders, multipliers, filters, DSP elements)
can be customized with user-specified parameters.

Each component loads inputs and returns outputs trig-
gered by an input clock signal. Hence when designing in
VHDL one thinks in terms of circuit diagrams in which,
on every clock cycle, events happen concurrently across
the device. On the other hand in traditional C-like com-
puter languages events progress in a serial manner. At
times serial logic is convenient and in fact VHDL offers a
restricted form of serial logic in a form known as a pro-
cess. These processes are bits of C-like code that execute
when triggered. Inside a process, variables can be ma-
nipulated with functions defined in other VHDL files.
However a signal can be changed only once within a pro-
cess. For this and other reasons, processes are best used
as referees to generate secondary triggering signals and
logic. While processes can perform some level of math,
the very difficult math is best left to the components
which have been streamlined for such purposes.

An appropriate use of a process is to initialize param-
eters and control timing. For example Fig. 3 demon-
strates how the simple adaptive phase algorithm men-
tioned above is implemented. Both the VHDL and an
equivalent schematic are shown. The photocurrent I en-
ters the device and is multiplied by the time-dependent
gain factor G(¢) = 1/\t, which is created by sending the
time signal ¢ through a lookup table (described in Subsec-
tion 3.B.1). The resulting signal d®(¢) = I(¢)/\¢ is then
sent to one port of an adder with the other input port be-
ing wired to the output signal ®(¢). Because the output
is connected to the input with a delay, the adder serves as
an integrator and executes the relation ®(¢) = ®(¢t — 1)
+ dd(¢) at every time step. The process plays an impor-
tant role in this algorithm by initializing the integral
value and creating the time signal. At the beginning of
the pulse (integration), the process initializes ¢ and ® to
zero. At each subsequent clock signal the process incre-
ments ¢ by one and lets the adder integrate the signal.

3024 J. Opt. Soc. Am. B/Vol. 19, No. 12/December 2002

At the end of the pulse, the process waits for the next
pulse then repeats the sequence. Figure 4 shows the al-
gorithm in action. Through the integrator structure, ® is
adjusted until [is locked to zero. The overshoot is a re-
sult of the FPGA delay.

A single measurement using this algorithm is shown in
Fig. 4. Here the pulse is a 50-us slice of a weak cw co-
herent beam. The feedback algorithm is sampling at 100
MHz with a delay of less than 1 us. Because of the delay
and other bandwidth limiting components in the loop, our
effective feedback bandwidth is limited to ~1 MHz.

As will be demonstrated in Section 4, MATLAB® plays
a complementary role in the design process. It can be
used to create the necessary coefficients and memory
blocks used as parameters in the VHDL components. In
particular the control and DSP toolboxes provide relevant
functionality. Also Simulink® is a good tool for simulat-
ing the associated experiments, where delays and other
realistic factors can complicate the dynamics. There are
other software packages that attempt to translate directly
from a Simulink design of an algorithm into equivalent
VHDL, but they are in early stages of development.

Because of their extensive utility, RAM lookup tables
and filter components are worth discussing in greater de-
tail.

1. Lookup Tables

Most FPGA chips come equipped with large blocks of in-
ternal RAM that can be used as generalized functions or
lookup tables (LUT). Given an amount of memory on a
particular block, the user can decide on a certain number
of input and output bits. During operation the RAM
block returns the value held at the address specified by
the input, effectively implementing the desired function.
For example, on the XCV1000E, 160 blocks of 4096
= 212 bits are available for internal use. (As noted
above, the Virtex II devices have much larger 18-kilobit
blocks.) To make one block behave as the function f with
B; input bits, the designer would choose the output to be
B, = 2"7Bi Dits. Possible partitions are (B;,B,)
e [(1,2048), (2,1024), (3,512),..., (8,16),..., (12, D].
Once a partition is chosen, the designer would use MAT-
LAB to define a block of data consisting of 25 values each
of size B, bits and use this block of data as a parameter in
the VHDL LUT component. If the discretization is a
problem, more RAM blocks can be used to represent the
function. If desired the memory of a RAM block can also
be written dynamically during operation. With this abil-
ity, an algorithm could easily adapt itself according to the
signals it receives. Both the read and write operations
(from and to one RAM address) take only a single clock
cycle.

As mentioned above, these LUT functions play an ex-
tremely important role in speeding the functionality of
nonlinear algorithms. The application may be as simple
as nonlinear gain scheduling of a controller, or as compli-
cated as full quantum-mechanical state estimation with
the LUT performing functions based on assumed system
parameters. In general it is a matter of judgment how to
partition complex algorithms, but any optimal partition
will likely involve the use of LUTSs to perform the difficult
parts of the calculation with minimal time delay.

Stockton et al.

I(t) N

Tl - e KL
G(t) —]
LUT @ I

Time Reset

VHDL Equivalent {the symbot -- precedes comments)

--first component is the look-up tabte
--component format is ‘instance: type’
--port map plugs signals into component ports; _# is label for bit size of bus

lut_num1 : ramblock_core
port map (EN=>vcc_sig, WE=>gnd_sig, RST=>gnd_sig, CLK=>clksys,
ADDR=>time_8,D0=>Gtime_16,DI=>Gtime_16);

multiplier_num1 : multiplier_core
port map (A => i_12, B => Gtime_16, CLK => clksys, P => dphi_28);

--trim signal back down to size
dphi_12 <= dphi_28(27 downto 16);

adder_num1 : adder_core
port map (A => dphi_12, 8 => phi_21_a, Q => phi_21_b, CLK => clksys);

--plug signals together
phi_21_c <= phi_21_b;

--start process on clock change
PROCESS(clksys)
VARIABLE time : integer;
BEGIN
--trigger on rising edge of clock
IF clksys="1" AND clksysEVENT THEN
IF time < tau_experiment THEN
phi_21_a <= phi_21_¢;
phi_12 <= phi_21_c(20 downto 9);
ELSE

--zero signals during dead time
phi_21_a <= "000000000000000000000";
phi_12 <= "000000000000";

END IF;

IF time = tau_experiment+tau_dead THEN
time ;= 0;

END IF;

time := time+1;

--convert variable to signal

time_8 <= int_to_bus(time);

END IF;

END PROCESS;

Fig. 3. FPGA schematic and corresponding code for the adap-
tive phase measurement algorithm. In the schematic the pro-
cess is not represented as a block component because it is coded
in a serial manner.

1

i d(t)

®(rad); | (arb.)

Time (usec)

Fig. 4. ®(¢) and I(¢) trajectories for the phase measurement of
a single pulse of light. The current is locked to zero and the end-
ing point of the phase is a rough estimate of the measured phase.
The true phase measurement is a functional of both traces. The
oscillations are due to the delay in the loop.

2. Filters

PLDs have a clear edge over analog circuitry in nonlinear
processing, but they also have a potential advantage in
implementing precise, generic linear filters and transfer

Stockton et al.

functions. A standard core element offered by Xilinx is
the FIR (finite impulse response) filter. The FIR filter is
defined in discrete time as

N

y(n) = >, au(n — i), (5)

1=0

where y(n) and u(n) are the output and input, respec-
tively, at the discrete time n. With standard MATLAB
functions (firls, remez) one can specify an arbitrary am-
plitude response and get out the corresponding a(i) vec-
tor. The sampling frequency for a FIR element is [z
= fc/By = 1ty where By is the number of bits chosen
to represent u(n). Of course the filter is useless at shap-
ing the response above this frequency. The group delay
of the signal through the filter is approximately 7rN/2.

The range of attenuation is also a concern in the design
of any filter. For an FPGA with By bits entering and
leaving, the dynamic range is 20log(287)dB. For our
board with 12-bit ADC and DAC inputs and outputs, this
corresponds to 70 dB. The designer should also have a
sense of the size of the input and output signals. If the
input signal is too high, the FPGA will rail; if the input is
too low, it will fail to rise above the smallest bit size. To
avoid problems of this kind, broadband gain elements can
be used at the input and output of the FPGA board.

A drawback of the FIR design is that it cannot be used
to control the phase response of its transfer function. On
the other hand, a generic continuous-time linear transfer
function

c(N)sN + ¢(N — D)sV 1 + ...
dN)sY + d(N — 1)sV 1+ ...

+¢(1)

+d(1)’
(6)

where Yo = GoU has phase control built in through the
denominator. To approximate this function on a PLD re-
quires an infinite impulse response (IIR) filter.

One possible IIR design process illustrates this need.
To generate a digital IIR design, first create G(s) using
standard control techniques (Nyquist, linear quadratic
regulator, etc.). Next convert from a continuous to a dis-
crete transfer function

Ge(s) =

a(0) +a(l)z 1 + ...
b(0) + b(L)z L+ ...

+ a(N)z™N

Ge = Gpl2) = T o)z N

(N

with the MATLAB function ¢2d. We have used the defi-
nition Y = GpUp in the discrete time representation.
Apply a z-transform (z ! = unit delay) to create the dis-
crete time difference equation

— FIRa

|— FIRb

Fig. 5. Implementation of an IIR filter. T components trim a
certain number of least-significant bits from the data bus.

Vol. 19, No. 12/December 2002/J. Opt. Soc. Am. B 3025

N N

y(n) = 2 a(u(n - i) - 21 bi)y(n — 1), (8

=0

with the definition 6(0) = 1. Finally implement the dif-
ference equation in hardware as in Fig. 5 with two FIR
blocks and one adder.

With 6(n > 0) = 0 the filter is just a FIR filter. How-
ever with 6(n > 0) # 0 the output is fed back to itself.
Hence an impulse response will have an infinite effect on
the output. Of course with internal feedback loops, the
system is potentially unstable to noise and rounding er-
rors. For this reason, among others, the Xilinx core gen-
erator does not create flexible IIR modules.

However with careful consideration of the number of
bits required at each stage, a stable IIR filter can be cre-
ated as in Fig. 5. The sampling frequency for this simple
architecture is f¢/2By where By is the number of bits
used to keep track of y(n) internally. The factor of two
results from the delay of both the adder and the FIR ele-
ment. Because of the feedback, the IIR filter can achieve
a given amplitude response with a lower number of coef-
ficients than the FIR filter. This means the filter delays
the signal less. Even though the IIR has fewer coeffi-
cients than an analagous FIR filter, the coefficients of the
IIR filter have to be specified to a greater degree of preci-
sion to achieve the same amplitude response.

4. SPECIFIC EXAMPLE: CAVITY LOCK

We now discuss the use of an FPGA to perform a classical
task necessary for low-noise experiments. High-
precision optical measurements demand laser intensity
noise be minimized as much as possible. In the adaptive
phase experiment mentioned above, the input laser is a
Lightwave Nd:YAG Model 126 (1064 nm) with an inher-
ent broad relaxation-oscillation noise peak at ~500 kHz.
To perform broadband detection and control near 1 MHz,
this intensity noise must be removed from the beam with
a Fabry—Perot cavity. In this section we will detail the
use of an FPGA to control the output of this filtering cav-
ity. We consider this approach to be novel and effective
(albeit expensive). However our main interest is in illus-
trating the use of this device, which is unfamiliar to many
in experimental optics, to perform a task which is very fa-
miliar.

A block diagram of the system is shown in Fig. 6. The
output intensity of the cavity is stabilized using the stan-
dard Pound—Drever—Hall method in which the error sig-
nal, which depends on the laser-cavity difference fre-
quency, is created from a reflected carrier beam with
sidebands. At frequencies below 100 Hz the feedback
loop is dominated by a piezoelectric element (lead zircon-
ate titanate, PZT) which controls the length of the cavity.
At higher frequencies and through the closing point of the
servo, the feedback is from an AOM (acousto-optic modu-
lator) driven by a VCO (voltage-controlled oscillator)
which adjusts the frequency of the input beam.

Given the control architecture of Fig. 6, the design pro-
cess can be made very systematic with the flexibility of
the FPGA. Because the critical behavior of the servo will
be dominated by the VCO-AOM loop, we concentrate on

3026 J. Opt. Soc. Am. B/Vol. 19, No. 12/December 2002

VCO-AOM EOM PZT Cavity

- /;/q:(

FPGA

1

Fig. 6. Feedback architecture for a Fabry—Perot Cavity. The
electro-optic modulator (EOM) puts sidebands on the beam nec-
essary to generate the locking signal. The FPGA algorithm T’
(upper) maps the error signal to the fast VCO—-AOM frequency
shifting combination. The FPGA algorithm 7T'; (lower) maps the
signal to the slow PZT.

the design of T'y; (upper). First the transfer functions of
the elements in the loop are measured. Here we find
that the VCO—AOM combination behaves like a low-pass
filter (T'y) with a corner at 100 kHz. The cavity itself can
be modeled as a low-pass filter (T¢) with a corner at
about 10 kHz (the cavity linewidth). The goal is to de-
sign Ty such that the closed-loop transfer function 7T¢y,
= T Tyl + ToTyTy) is stable.

At this point, we can use the Matlab control toolbox to
design an optimal T';;. One option is to provide the func-
tion lqr with the state space representations of 7y, and
T and an appropriate cost function to create the optimal
Ty. The result simply tells us to make the combination
TcTyTy behave like an integrator (7; = l/s = 1/jw)
such that the controller satisfies the Nyquist criterion
with 90° of phase margin.

There are practical problems with this approach. In
particular the optimal T'y; has unrealistic infinite gain at
very low and very high frequencies. Fortunately we can
approximate the ideal case without compromising the
control characteristics by flattening the response of T’
below 100 Hz (where the PZT arm takes over) and rolling
off the response at 300 kHz, beyond the closing point of
the servo. So instead of making T'y; = T1/T Ty we use
Ty = TipiTepy/TcTy where Tpp; is a low-pass filter
with the corner at 100 Hz and T';p, is a low-pass filter
with the corner at 300 kHz.

To get high gain at frequencies below 100 Hz, we make
T; (lower) behave as a low-pass filter with a corner at
only a few Hz. A better choice would be to implement 7';,
as a high-gain analog integrator, but we use the FPGA to
implement 7'; here for purposes of demonstration.

Next we generate proper IIR coefficients for both paths
by the method described previously, treating 7 and Ty
as the continuous transfer function G,. With a clock fre-
quency of 100 MHz and an internal sample size of By
= 32 bits, the IIR structure has an effective bandwidth of
1.5 MHz (fc/2By), which is adequate to generate the
critical features of the transfer function.

Figures 7 and 8 show the desired and actual transfer
functions of both arms. Each arm fails to match the de-
sired phase and amplitude response in a similar way.
First because of the finite size of the sampling time, the
actual phase response differs from the desired response
as the frequency approaches the effective sampling fre-

Stockton et al.

quency. In fact this mismatch happens below the sam-
pling frequency because of the delay of the IIR filter.
Second at low frequencies, the FPGA gives less gain than
desired. This is because we are dealing with finite pre-
cision coefficients. The price paid for having a large sam-
pling frequency with small delay is that we have less con-
trol over the size of the low-frequency gain. Finally note
that the PZT arm integrator achieves the full 70 dB of ex-
pected range (input and output size is 12 bits).

The closed-loop transfer function behavior for both
arms matches our expectations for noise rejection at low
frequencies. A mismatch at higher frequencies is due to
inadequate modeling of the PZT and other components.
(The PZT, modeled as a simple low-pass filter, behaves
more like a collection of oscillators with different reso-
nances.) Qualitatively the FPGA lock was much more ro-
bust with respect to high-frequency noise than an analog
version of the servo. This was likely due to the precise
match to the plant dynamics near the unity gain point of
the servo achieved by the use of large FIR coefficients.
However the FPGA was unable to retain the lock over
time scales of more than a few hours because of the satu-
rated gain at very low frequencies. This problem could
easily be remedied by using an analog integrator with
more dc gain to replace the FPGA PZT transfer function.
The main advantage of the FPGA is its fast, accurate re-

Magnitude (dB)

o~
g o
Y 604 ++
g -BO_ 4]
-100 "“&. F# 9
10’ 102 103 10* 10°
Frequency (Hz)

Fig. 7. Bode plot of T';, (lower transfer function leading to PZT).
The design is a low-pass filter which dominates control below
~100 Hz.

+ FPGA
—— Design

Magnitude (dB)

thase (deg)

10 10? 103 10* 10°
Frequency (Hz)

Fig. 8. Bode plot of Ty (upper transfer function leading to
VCO-AOM). The peak in phase is designed to stabilize the
plant through the unity gain point.

Stockton et al.

sponse and, aside from the demonstration presented here,
there is no practical reason to use the FPGA for high-gain,
low-frequency applications.

Finally another feature of FPGA control is the possibil-
ity of adding logical automation to this system. Specifi-
cally the FPGA could be programmed, in case the control-
ler loses the lock, to sense this condition, sweep for a
signal, zero in, and reacquire the lock. The abstract logi-
cal nature of VHDL code makes this task simple com-
pared with the procedure needed to create an acquisition
system using standard electronics.

5. SUMMARY

To demonstrate the use of programmable logic technology
in an otherwise familiar setting, we have concentrated on
a linear control application. We have used this example
to convey the issues associated with a digital controller,
including design, latency, and discretization. However
we have only hinted at the more interesting advanced ap-
plications in experimental quantum optics which are sure
to develop more quickly because of this technology.
FPGAs and similar devices are particularly suited to any
physical system where nonlinear mappings are desired
between output and input variables within the natural
dynamical time scale. With these devices and suffi-
ciently protected quantum systems in hand, the field of
coherent quantum control may soon have enough speed to
match the intelligence of its proposed controllers.

ACKNOWLEDGMENTS

dJ. Stockton acknowledges the support of a Hertz Founda-
tion Fellowship and H. Mabuchi acknowledges the sup-
port of an A. P. Sloan Research Fellowship. This work
was supported by the National Science Foundation under
grant PHY-9987541, and by the Office of Naval Research
under Young Investigator Award N00014-00-1-0479.

Vol. 19, No. 12/December 2002/J. Opt. Soc. Am. B 3027

J. Stockton may be reached by e-mail at jks
@caltech.edu.

REFERENCES

1. C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V.
Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano,
D. J. Wineland, and C. Monroe, “Experimental entangle-
ment of four particles,” Nature 404, 256-259 (2000).

2. M. R. Andrews, M.-O. Mewes, N. J. van Druten, D. S. Dur-
fee, D. M. Kurn, and W. Ketterle, “Direct, nondestructive
observation of a Bose condensate,” Science 273, 84-87
(1996).

3. C.dJ.Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H.
J. Kimble, “The atom-cavity microscope: single atoms
bound in orbit by single photons,” Science 287, 1447-1453
(2000).

4. A. C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, and S. M.
Tan, “Quantum feedback control and classical control
theory,” Phys. Rev. A 62, 012105 (2000).

5. H. M. Wiseman and R. B. Killip, “Adaptive single-shot
phase measurements: the full quantum theory,” Phys. Rev.
A 57, 2169-2185 (1998).

6. B. Rahn, A. C. Doherty, and H. Mabuchi, “Exact perfor-
mance of concatenated quantum codes,” Phys. Rev. A 66,
032304 (2002).

7. A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, “Distin-
guishing separable and entangled states,” Phys. Rev. Lett.
88, 187904 (2002).

8. M. E. Cseta and J. C. Doyle, “Reverse engineering of bio-
logical complexity,” Science 295, 1664—1669 (2002).

9. 0. L.R. Jacobs, Introduction to Control Theory (Oxford Uni-
versity, Oxford, UK, 1993).

10. M. A.Armen, J. K. Au, J. K. Stockton, A. C. Doherty, and H.
Mabuchi, “Adaptive homodyne measurement of optical
phase,” Phys. Rev. Lett. 89, 133602 (2002).

11. S. Habib, habib@lanl.gov, K. Jacobs, and H. Mabuchi are
preparing a manuscript to be called “Feedback control of
atomic motion in an optical cavity.”

12. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa,
“Whither the future of controlling quantum phenomena?,”
Science 288, 824-828 (2000).

13. M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University, Cambridge,
UK, 2000).

14. D. Stranneby, Digital Signal Processing: DSP and Appli-
cations (Newnes, Oxford, UK, 2001).

