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The CLOUD chamber 44	

The CLOUD chamber is a 3m-diameter stainless-steel cylinder of 26.1 m3 volume. 45	

Pure air, free of condensable vapors, is obtained from the evaporation of cryogenic 46	

liquid nitrogen and liquid oxygen mixed at a ratio of 79:21. Water vapor is added 47	

from an ultrapure source to a controlled relative humidity. The chamber can be 48	

irradiated by UV light (250-400 nm) to create hydroxyl (OH) radicals by photolysis of 49	

ozone in the presence of water vapor.41 The chamber can be exposed to a 3.5 GeV/c 50	

secondary pion beam from the CERN Proton Synchrotron, spanning the galactic 51	

cosmic ray intensity range from ground level to the stratosphere. Activating an 52	

electric field of 20 kV/m in the chamber sweeps away all the ions produced by cosmic 53	

rays, on request, and allows to perform experiments also under neutral conditions.  54	

To avoid contamination from plastic materials (especially organic compounds), all 55	

gas pipes are made from stainless steel, and most gas and chamber seals are gold 56	

coated. Despite all these measures traces of contaminants, e.g. small volatile organic 57	

compounds (VOCs)42 and NH3
43, can still be observed. Even though dimethylamine 58	

(DMA) was initially absent in the thoroughly cleaned chamber (heated to 373 K), 59	

traces of DMA were detected once it had been injected, until the next thorough 60	

cleaning was performed (see discussion in the main text).23  61	

The nucleation rates (J1.7, cm-3 s-1) were measured under neutral (Jn), galactic 62	

cosmic rays (Jgcr) and pion beam (Jπ) conditions, corresponding to ion-pair 63	

concentrations of about 0, 400 and 3000 ion pairs cm-3, respectively. 64	

APi-TOF and CI-APi-TOF 65	

The chemical composition of the ions was studied using the Atmospheric Pressure 66	

interface Time-of-Flight mass spectrometer (APi-TOF).18,19,30 The instrument is 67	

divided in two parts. The first part is the atmospheric pressure interface that 68	

efficiently guides ions into the mass spectrometer. It consists of two quadrupoles and 69	

an ion lens system. It is equipped with a critical orifice that provides a sample flow of 70	

0.8 l min-1. The second part is the high transmission efficiency time-of-flight mass 71	

spectrometer that allows retrieval of mass-to-charge ratio of charged clusters smaller 72	

than ~2 nm diameter. 73	

The APi-TOF mass spectrometers, manufactured by Tofwerk AG (Thun, 74	

Switzerland) and Aerodyne Research, Inc. (Billerica, MA, USA), have a resolving 75	

power close to 5000 (full width at half maximum FWHM at m/z >200 ) and a mass 76	
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accuracy better than 10 ppm. The data were analyzed using a Matlab based set of 77	

programs (tofTools) developed at the University of Helsinki.18 When the APi-TOF is 78	

not coupled to an ion source, it measures the composition of airborne charged 79	

clusters. In the CLOUD chamber, ions are formed by galactic cosmic rays (GCR) or 80	

by the pion beam from the Proton Synchrotron. Varying the intensity of the beam thus 81	

changes the ion concentration inside the chamber. We can regard the combination of 82	

the CLOUD chamber and the APi-TOF as an oversized Chemical Ionization Mass 83	

Spectrometer (CIMS) where the CLOUD chamber acts as ion source. However it 84	

should be noted here that an important difference between the CLOUD chamber and a 85	

CIMS ion source is the extremely long ion reaction time and the poorly defined ion 86	

distribution in the chamber. During the experiments described here, two APi-TOF 87	

were operated in parallel: the first one in negative mode (APi-TOF(-)) and the other 88	

one in positive mode (APi-TOF(+)). This allowed the simultaneous characterization 89	

of the negative and positive ions during the nucleation experiments.  90	

In CLOUD the primary positive and negative ions produced in the chamber are 91	

mainly N2
+, O2

+, N+ and O+, and O- and O2
-, respectively.44 These ions undergo rapid 92	

ion-molecule reactions; the positive ions react quickly with water vapor to form 93	

protonated water clusters.44 Then the charge is transferred to trace bases such as 94	

ammonia and amines that are present in the chamber as impurities. On a similar time 95	

scale, the small negative ions react quickly with nitric acid (HNO3) and H2SO4 to 96	

form ions such as (H2O)n(acid)mNO3
- (where acid represents HNO3 and/or H2SO4).

22 97	

The negative ions are dominated by compounds with a high gas-phase acidity, 98	

whereas in the positive case the main ions are formed from compounds with a high 99	

proton affinity. For example, under clean conditions (beginning of the campaign) 100	

pyridinium (C5H6N
+) was typically found as the main positive ion and nitrate (NO3

-) 101	

as the negative ion.  102	

Charged clusters can be formed by two different mechanisms. Either a precursor of 103	

the cluster is ionized and forms stable clusters after collision with other compounds 104	

present in the gas phase (ion-induced nucleation, IIN)45, 46 or a neutral cluster receives 105	

a charge by diffusion charging. In the latter case the charge is transferred from 106	

another compound to the cluster after its (neutral) formation, e.g. by a proton transfer 107	

reaction or by clustering with an ion.  108	

As already mentioned, the chemical composition of the ions was determined only 109	

for GCR and pion beam conditions, since the APi-TOF can only measure charged 110	
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clusters. However, recently, the APi-TOF was augmented by adding a chemical 111	

ionization source in front of it.21,47 This instrument is called Chemical Ionization APi-112	

TOF (CI-APi-TOF) mass spectrometer. It is able to detect neutral clusters after 113	

ionization by a chemical reaction.  114	

The reagent ions used in this study for chemical ionization are NO3
–(HNO3)0-2.

48 115	

The ionization proceeds either via a proton transfer reaction (i.e., de-protonation of 116	

H2SO4 to HSO4
-) or by cluster formation between the neutral compounds and the 117	

nitrate ions (Scheme S1):  118	

 119	

Scheme S1. Reaction between the primary ion and the clusters in the CI unit. 120	

 121	

 122	

With this method, it was possible to identify for the first time in CLOUD the neutral 123	

clusters that were participating in the nucleation process. 124	

It is important to note that the chemical composition of the clusters can change 125	

when they enter the APi-TOF or even before when they get ionized in the CI-region. 126	

At the moment, evaporation and fragmentation of clusters inside the APi-TOF mass 127	

spectrometer is not well characterized. For example, it is well known that clusters 128	

contain water in the atmosphere, however all the clusters that have been identified in 129	

these experiments do not. Water binds only weakly to the clusters in most cases, with 130	

evaporation rates of 105-106 s-1.16 Thus, the only reason to have it in clusters is the 131	

high collision frequency of water with the cluster due to the extremely high 132	

concentration of water in the atmosphere. When the cluster enters the APi-TOF the 133	

collision rate with water drops substantially and the water is lost from the clusters. 134	

Evaporation of sulfuric acid or bases might also occur as was inferred from a 135	

comparison of measured and modeled molecular cluster distributions.32 For more 136	

details see the supplement information of Almeida et al. (2013) [ref. 16]. 137	

As already mentioned, under the condition of no collisional heating in the MS-inlet 138	

we expect water to evaporate but not the base molecules. However, if there is enough 139	

collisional heating, this may also happen and there is evidence that this happens for 140	

small clusters as observed from some measurements with the ion-mobility-141	
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spectrometer-TOF-MS (IMS-TOF). However, our data base is still too small to draw 142	

firm conclusions and therefore these results will be subject of future papers.  143	

 144	

Figure S1. 2D plot of drift time vs mass-to-charge ratio of sulfuric acid-DMA 145	
clusters measured during the run 1047.01 with the IMS-TOF. The negative clusters 146	
containing 3, 4 and 5 molecules of sulfuric acid are the ones with the best signal-to-147	
noise ratio in both dimensions. Sulfuric acid-DMA clusters are highlighted by open 148	
black circles.  149	

 150	

Results as presented in Figure S1 show the drift time and their mass spectrum of the 151	

clusters that are present in the CLOUD chamber during a nucleation experiment 152	

involving sulfuric acid and DMA (Run 1047.01). The strongest signals arise from 153	

small ions (black dots bottom left). These ions show that there are a lot of compounds 154	

with the same drift time but different mass, indicative of fragmentation inside the 155	

APi-TOF. However this plot also shows that bigger clusters are less prone to 156	

fragmentation since there are no other smaller clusters with the same drift time.  157	

Quantum chemical calculations show that the clusters with an excess of sulfuric 158	

acid or bases (>2) are much less stable than the clusters we observed here mostly. 159	

Therefore, it is likely  that these cases do not need to be considered as important.  160	

 161	

When we compare the cluster time evolution the three different mass spectrometers 162	

do not consider water. These instruments have the same identical issue regarding the 163	

impossibility of measuring water in the clusters. However for the purpose of this 164	

comparison it is not crucial to see the water molecules in the clusters. 165	

 166	
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The second source of possible cluster fragmentation could be in the chemical 167	

ionization unit. This kind of fragmentation has already been observed during CLOUD 168	

experiments and it was discussed in a previous study.16 The main reason of this 169	

fragmentation is that the stabilization of the clusters occurs via proton-transfers or –170	

hydrogen bridges, and ionization adds/removes one of those. Quantum chemical 171	

calculations show that the clusters will always loose bases when they get charged 172	

negatively and they will loose sulfuric acid when they are charged positively.31 As the 173	

clustering process is driven by acid base chemistry, the key is that for neutral clusters 174	

the optimum acid:base ratio is different to the one for positive or negative clusters 175	

(mainly because ions are acids or bases and there is some competition with sulfuric 176	

acid or ammonia/DMA). Just note that sulfuric acid, once it is deprotonated is a base 177	

and therefore if the cluster is small the DMA in excess will “leave” the cluster. 178	

Excluding evaporation inside the mass spectrometer, the APiTOF measures the 179	

composition of the ions as they occur in the atmosphere or in the CLOUD chamber. 180	

Therefore, this loss of acids or bases due to ionization is not a measurement artifact, 181	

but the representation of what happens in the atmosphere when the ions are formed. It 182	

is an issue for the measurements of the neutral clusters by CI-APiTOF. Here, 183	

chemical ionization of the neutral clusters may change the composition. This is 184	

certainly true for small clusters while it is expected to be less severe for larger 185	

clusters. Moreover, the neutral clusters will have a certain acid:base ratio and clusters 186	

with an excess of base or acid will not be stable, only clusters with the optimum 187	

acid:base ratio and maybe +/- 2 acids or bases will be stable and persist much longer. 188	

Looking at quantum chemical results published in Almeida et al. (2013) extended data 189	

Figure 4 (reproduced as Fig. S2 below) [ref 16], the clusters with the highest 190	

concentration fall more or less into the diagonal. For example in the case of clusters 191	

with one DMA molecule only those with 1 and 2 sulfuric acid molecules have 192	

significant concentrations, the concentration of clusters with 3 SA is rather low, and 193	

the one with 4 SA clusters is below 0.01 cm-3. So there is no need to consider the loss 194	

of more than 1-2 SA or ammonia/DMA "excess" molecules, because the clusters with 195	

more than that will not be stable and probably will have very short lifetimes and their  196	

concentration will be extremely low if they are formed at all. 197	
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 198	

Figure S2. Theoretical concentrations of negative, positive and neutral clusters 199	
during DMA ternary nucleation. Modelled steady-state concentrations (mDMA versus 200	
nSA) at 4.0106 cm-3 [H2SO4], 10 pptv DMA, 4 ion pairs cm-3 s-1 and 278 K. a, 201	
negative clusters. b, positive clusters. c, neutral clusters. A sticking probability of 0.5 202	
is assumed for all neutral–neutral collisions and 1.0 for all charged–neutral 203	
collisions. The numbers below the center of each circle show log10C, where C (cm-3) 204	
is the cluster concentration (the threshold is 0.01 cm-3). The circle areas within each 205	
panel are proportional to C (with the exception of the DMA monomer in c). 206	
(Reproduced from Almeida et al., Nature, 2013)16  207	

 208	
Moreover, Fig. S2 also shows that the most favorable acid:base ratios are different 209	

for neutral, positive and negative clusters. The most abundant neutral clusters fall in 210	

the diagonal, the negative clusters are below the diagonal (less bases) and the positive 211	

ones above the diagonal (less acids). 212	

 213	
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