Cell-specific proteomic analysis in Caenorhabditis elegans

Kai P. Yuet, Meenakshi K. Doma, John T. Ngo, Michael J. Sweredoski, Robert L. J. Graham, Annie Moradian, Sonja Hess, Erin M. Schuman, Paul W. Sternberg, and David A. Tirrell

Divisions of *Chemistry and Chemical Engineering* and *Biology and Biological Engineering*, *Howard Hughes Medical Institute*, and *Proteome Exploration Laboratory*, Beckman Institute, California Institute of Technology, Pasadena, CA 91125; and *Max Planck Institute for Brain Research*, D-60528 Frankfurt am Main, Germany

Edited by Carolyn R. Bertozzi, University of California, Berkeley, CA, and approved January 22, 2015 (received for review November 10, 2014)

Proteomic analysis of rare cells in heterogeneous environments presents difficult challenges. Systematic methods are needed to enrich, identify, and quantify proteins expressed in specific cells in complex biological systems including multicellular plants and animals. Here, we have engineered a Caenorhabditis elegans phenylalanyl-tRNA synthetase capable of tagging proteins with the reactive noncanonical amino acid p-azido-1-phenylalanine. We achieved spatiotemporal selectivity in the labeling of C. elegans proteins by controlling expression of the mutant synthetase using cell-selective (body wall muscles, intestinal epithelial cells, neurons, and pharyngeal muscle) or state-selective (heat-shock) promoters in several transgenic lines. Tagged proteins are distinguished from the rest of the protein pool through bioorthogonal conjugation of the azide side chain to probes that permit visualization and isolation of labeled proteins. By coupling our methodology with stable-isotope labeling of amino acids in cell culture (SILAC), we successfully profiled proteins expressed in pharyngeal muscle cells, and in the process, identified proteins not previously known to be expressed in these cells. Our results show that tagging proteins with spatiotemporal selectivity can be achieved in C. elegans and illustrate a convenient and effective approach for unbiased discovery of proteins expressed in targeted subsets of cells.

In a complex eukaryote like Caenorhabditis elegans, cell heterogeneity restricts the usefulness of large-scale, mass spectrometry-based proteomic analysis. Enriching for specific cells is challenging, and researchers cannot systematically identify low-abundance proteins expressed in specific cells from whole-organism lysates. Cell-selective bioorthogonal noncanonical amino acid tagging (cell-selective BONCAT) offers a way to overcome these limitations (1, 2). We have previously engineered a family of mutant Escherichia coli methionyl-tRNA synthetases (MetRSs) capable of appending the azide-bearing 1-methionine (Met) analog 1-azidonorleucine (Anl) to its cognate tRNA in competition with Met (3, 4). Because Anl is a poor substrate for any of the natural aminoacyl-tRNA synthetases, it is excluded from proteins made in wild-type cells but is incorporated readily into proteins made in cells that express an appropriately engineered MetRS. Controlling expression of mutant MetRSs by expression only in specific cells restricts Anl labeling to proteins produced in those cells. Tagged proteins can be distinguished from the rest of the protein pool through bioorthogonal conjugation of the azide side chain to alkynyl or cyclooctynyl probes that permit facile detection, isolation, and visualization of labeled proteins. This strategy has been used to selectively enrich microbial proteins from mixtures of bacterial and mammalian cells. For example, Ngo et al. (5) found that proteins made in an E. coli strain outfitted with a mutant MetRS could be labeled with Anl in coculture with murine alveolar macrophages, which were not labeled. Using similar approaches, Grammel et al. (6) identified virulence factors from Salmonella typhimurium that were expressed in the course of infection of murine macrophages, and Mahdavi et al. (7) profiled Yersinia enterocolitica proteins that were injected into HeLa cells. In a complementary approach, Chin and coworkers (8) recently reengineered orthogonal Methanosarcina barkeri and Methanosarcina mazei pyrrolysyl-tRNA synthetase/tRNA pairs for codon-selective incorporation of a cyclopropane lysine derivative into proteins made in E. coli, Drosophila melanogaster ovaries, and HEK293 cells; however, this technique requires the expression of both exogenous aminoacyl-tRNA synthetases and tRNAs. Here, we configure cell-selective BONCAT for cell-specific proteomic analysis in the nematode C. elegans (Fig. 1A). We first demonstrate that restricted expression of a mutant C. elegans phenylalanyl-tRNA synthetase (CePheRS) can label proteins with p-azido-1-phenylalanine (Azf; Fig. 1B) with spatiotemporal selectivity in the live worm. We then show that cell-selective BONCAT combined with stable-isotope labeling of amino acids in cell culture (SILAC) provides a convenient and effective approach for unbiased discovery of proteins uniquely expressed in a subset of cells.

Significance

The emergence of mass spectrometry-based proteomics has revolutionized the study of proteins and their abundances, functions, interactions, and modifications. However, it is difficult to monitor dynamic changes in protein synthesis in a specific cell type within its native environment. Here we describe a method that enables the metabolic labeling, purification, and analysis of proteins in specific cell types and during defined periods in live animals. Using Caenorhabditis elegans, we show that labeling can be restricted to body wall muscles, intestinal epithelial cells, neurons, pharyngeal muscle, and cells that respond to heat shock. By coupling our methodology with isotopic labeling, we successfully identify proteins—including proteins with previously unknown expression patterns—expressed in targeted subsets of cells.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data deposition: The vectors generated in this study have been deposited in the Addgene database, www.addgene.org (Addgene nos. 62598 and 62599).

1Present address: Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039.

2Present address: Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, United Kingdom.

To whom correspondence should be addressed. Email: tirrell@caltech.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421567112/-/DCSupplemental.
Results and Discussion

Engineering a C. elegans PheRS Capable of Activating Azf. We focused on the heterotetrameric CePheRS because we could not prepare healthy transgenic C. elegans strains that express mutant E. coli MetRSs. Furthermore, we found that C. elegans variants of the mutant E. coli MetRSs that we had used to activate Anl in our previous experiments showed no activity toward Anl (SI Appendix, Table S1). CePheRS catalyzes esterification of L-phenylalanine (Phe; Fig. 1B) to its cognate tRNA (CetRNAPhe) to form phenylalanyl-tRNA. A conserved “gatekeeper” threonine (Thr412 [the first methionine in the alpha subunit of CePheRS, isoform A, exon 3 is designated as residue 1 (“Met1”)]) of C. elegans numbering: Fig. 2A and SI Appendix, Fig. S1) in the alpha subunit has been proposed to play a key role in determining substrate specificity in both prokaryotic and eukaryotic PheRSs (9, 10). Therefore, we hypothesized that mutating this residue to smaller residues should enable CePheRS to activate and charge the larger azide-bearing Phe analog Azf to CetRNAPhe. To screen for such an enzyme, we cultured KY14 [pKPY93/pKPY1XX], a phenylalanine-auxotrophic strain of E. coli that expresses mutant forms of CePheRS, in M9 minimal medium supplemented with different concentrations of Phe and Azf (Fig. 2B). To assess CePheRS activity toward Azf, we detected Azf-labeled proteins by conjugation to dibenzocyclooctyne-functionalized tetramethylrhodamine (TAMRA-DBCO; Fig. 1B) and subsequent SDS/PAGE–in-gel fluorescence scanning. Although
several mutants (Thr412Ser, Thr412Ala, Thr412Gly) showed evidence of labeling with Azf, only the Thr412Gly mutant (Thr412Gly-CePheRS) displayed robust labeling in cells treated with equimolar amounts of Phe and Azf (Fig. 2C). We confirmed by in vitro ATP-PPi exchange assays that Thr412Gly-CePheRS is highly selective toward Azf: it activates Azf more than 20-fold faster than its canonical substrate Phe (SI Appendix, Table S2).

Thus, Azf labeling does not require depletion of Phe from an animal’s diet, making cell-selective labeling feasible in live worms. Although Thr412Gly-CePheRS also activates tryptophan threefold faster than Phe, MALDI-TOF mass spectrometry measurements of tryptic GFP peptides did not detect misincorporation of tryptophan or any other canonical amino acid when GFP was expressed in media supplemented with either Phe or Azf (SI Appendix, Fig. S2). Collectively, these results suggest that Thr412Gly-CePheRS selectively activates Azf with catalytic efficiency similar to that observed in the activation of Phe by wild-type CePheRS. Introducing the Thr412Gly mutation into PheRSs of other eukaryotic cells including human also permits Azf activation (SI Appendix, Fig. S3). From these observations, we conclude that Thr412Gly-CePheRS is the best aminoacyl-tRNA synthetase candidate for cell-selective labeling in C. elegans. Although we generated transgenic C. elegans by DNA injection into the syncytial germ line in this work, inducible or cell-selective genome editing technologies could be used to quickly and efficiently generate transgenic animals because a single mutation in CePheRS is sufficient for Azf activity (11).

Characterizing Azf Labeling in C. elegans

To evaluate the performance of Thr412Gly-CePheRS in C. elegans, we first generated transgenic C. elegans lines that express both the mutant alpha subunit and GFP under control of the hsp-16.2 promoter (Fig. 2D). hsp-16.2 encodes a 16-kDa protein that is induced in multiple tissues in response to heat shock and other stresses (12). Upon heat shock, we expected that the mutant alpha subunit would be expressed and form a hybrid heterotetramer with the endogenous beta subunit to produce fully active Thr412Gly-CePheRS. In our initial feeding experiments, we did not detect strong Azf labeling in transgenic animals when Azf was added exogenously to either liquid culture or solid agar plates. However, we found that these lines could be labeled by replacing their normal food source (e.g., E. coli OP50) with bacteria whose proteins contain the noncanonical amino acid of choice in a fashion analogous to isotopic labeling (13–15). Upon heat shock, we expected that the mutant alpha subunit would be expressed and form a hybrid heterotetramer with the endogenous beta subunit to produce fully active Thr412Gly-CePheRS. In our initial feeding experiments, we did not detect strong Azf labeling in transgenic animals when Azf was added exogenously to either liquid culture or solid agar plates. However, we found that these lines could be labeled by replacing their normal food source (e.g., E. coli OP50) with bacteria whose proteins contain the noncanonical amino acid of choice in a fashion analogous to isotopic labeling (13–15). Upon heat shock, we expected that the mutant alpha subunit would be expressed and form a hybrid heterotetramer with the endogenous beta subunit to produce fully active Thr412Gly-CePheRS.

In the absence of azetidine 2-oxide (AZ), Thr412Gly-CePheRS is not detectable. However, when AZ is added, the enzyme is activated by Azf, and the resulting hybrid heterotetramer is catalytically active (11, 16). This activation is achieved by the formation of a hybrid heterotetramer consisting of the catalytically active mutant alpha subunit and the native beta subunit. The native beta subunit is responsible for the specificity of the synthetase, while the mutant alpha subunit is responsible for the catalytic activity. The hybrid heterotetramer is thus catalytically active and can incorporate Azf into proteins.

Identifying Pharyngeal Muscle-Specific Proteins

We next investigated whether proteins isolated from worms with cell-specific Thr412Gly-CePheRS fit characteristics of the targeted cell type. We were particularly interested in the C. elegans pharynx, a widely used model to study organ formation during embryogenesis (20). The pharynx is a tube-like muscular pump that concentrates, grinds, and transports bacteria from the mouth to the intestine and comprises 68 cells: 9 epithelial, 4 gland, 9 marginal, 20 muscle, 20 neuronal, and 6 valve cells. We aimed to identify proteins expressed in pharyngeal muscle cells of myo-2::Thr412Gly-CePheRS worms by using a combined cell-selective BONCAT and SILAC approach. We first triped labeled food by culturing KY33[pKPY514], a arginine-, lysine-, and phenylalanine-auxotrophic strain of E. coli, in M9 minimal medium supplemented with “heavy” arginine (13C6,15N12H14O2), heavy lysine (13C6,2H215N12H14O2), and Azf. We next fed these bacteria to fourth larval stage worms grown on M9 medium supplemented with “light” OP50. According to our model of the cell-selective BONCAT method, all newly synthesized proteins in the animal should contain both heavy arginine and heavy lysine, but only newly synthesized proteins made in pharyngeal muscle cells—the cells that express Thr412Gly-CePheRS—should contain Azf. This model gives rise to four classes of proteins:

1. Light preexisting proteins synthesized in pharyngeal muscle cells before the shift in food source.
2. Light preexisting proteins synthesized in nontargeted cell types.
3. Heavy newly synthesized proteins labeled with Azf in pharyngeal muscle cells after the shift in food source.
4. Heavy newly synthesized proteins made in nontargeted cell types.

Labeling Spatially Defined Protein Subpopulations

Collectively, these results suggest that Thr412Gly-CePheRS is a promising tool for the identification of cell-specific proteins in C. elegans.
We identified and quantified 2,270 proteins across triplicate paired (enriched and unenriched) experiments (Fig. 3D and SI Appendix, Figs. S12 and 13 and Table S3). Of the quantified proteins, 1,607 (71%) had (H/L)\textsubscript{U}/(H/L)\textsubscript{U} values greater than one, which indicates that the purification method successfully enriched newly synthesized, cell-specific proteins. Among the enriched proteins were 782 proteins that have expression patterns reported in the literature according to WormBase WS244 (21); of these proteins, 409 are known to be expressed in the pharynx (SI Appendix, Table S4). We expected that proteins expressed in pharyngeal muscle cells would be overrepresented among proteins with high (H/L)\textsubscript{U}/(H/L)\textsubscript{U} values and, indeed, found that of the top 12 proteins quantified, two [TN-4 (22), a tropinin I protein and TNC-2 (23), a tropinin C protein] are expressed exclusively in pharyngeal muscle cells. Two proteins [SHL-1 (24), a voltage-gated potassium channel and NCX-2 (25), a sodium-calium exchanger] are expressed in many muscle cells including pharyngeal muscle cells. A fifth protein F59F4.1 (26) is an acyl-CoA oxidase that is also expressed in the pharynx. Also, three well-known pharyngeal muscle-specific myosin heavy chains were among the top 3% of most highly enriched proteins: MYO-1 (top 1.0%, 22/2,270), MYO-2 (top 1.3%, 29/2,270), and MYO-5 (top 2.6%, 58/2,270). Although the right tail of the (H/L)\textsubscript{U}/(H/L)\textsubscript{U} distribution contains relatively few members, they represent pharynx-specific proteins of the 1,100 proteins in our dataset with known expression patterns, 7 of the 18 that are thought to be expressed exclusively in the pharynx have (H/L)\textsubscript{U}/(H/L)\textsubscript{U} values greater than two (P = 1.25 \times 10^{-8}; Fisher’s exact test).

When we examined a test set of 34 proteins whose genes are highly expressed in body wall muscle, intestinal epithelia, and neuronal cells (27), we found only three in our dataset (SI Appendix, Table S5). Two of the three are also expressed in the pharynx (28, 29). Although the absence of a protein from a proteomic dataset cannot be taken as evidence that the protein is absent from the sample, this result is consistent with the hypothesis that the method described here provides an effective means of enriching pharyngeal proteins.

Three of the remaining seven “top-12” proteins in our dataset (C53C9.2, K03E5.2, and CPN-4) share similarity with Calponin-1 (30), a human protein implicated in the regulation of smooth muscle contraction, but their expression patterns have not been reported. To determine whether they are expressed in pharyngeal muscle cells, we generated transgenic C. elegans lines that express GFP under control of each of the respective 5’ regulatory regions. We detected strong GFP fluorescence exclusively in pharyngeal muscle cells in C53C9.2::gfp, K03E5.2::gfp and cpn-4::gfp animals (Fig. 3E). Calponin-1 has a single calponin homology (CH) and multiple calponin family repeat (CFR) domains. Notably, like its muscle-specific paralog CPN-3, CPN-4 has a CH domain, but no CFRs (SI Appendix, Fig. S14). In contrast, C53C9.2 and K03E5.2 have multiple CFRs but no CH domains. Only four C. elegans proteins contain multiple CFRs: C53C9.2, K03E5.2, T25F10.6, and UNC-87 (31), a protein required to maintain structure of myofilaments in muscle cells. T25F10.6 (top 5.5%, 121/2,270) and UNC-87 (top 7.5%, 170/2,270) were also among the top 10% of most highly enriched proteins. Although the characterization of new pharyngeal proteins was beyond the scope of this work, their placement among highly enriched proteins, localization, and similarity to other musclespecific proteins suggest that C53C9.2, K03E5.2, and CPN-4 are excellent candidates for regulating aspects of pharyngeal muscle biology. Together, these results demonstrate that the approach described here can be used to identify proteins (including proteins with previously unknown expression patterns) that are expressed in targeted subsets of cells. We note that in a cell-selective BONCAT experiment, proteins are labeled only after the shift in food source. Although long labeling times can be used to profile the majority of proteins in specific cells, short
labeling times can be used to capture rapid changes in protein expression in those cells.

In summary, by using cell-specific promoters to drive expression of an engineered CePheRS, we demonstrated that cell-selective BONCAT coupled with SILAC can be used to identify proteins with spatiotemporal selectivity in living C. elegans. For future experiments, we suggest several avenues for improvement. First, we incubated worm lysates with Diazo Biotin-DBCO and isolated Azf-labeled proteins by streptavidin affinity chromatography. Because streptavidin affinity chromatography requires mild washing conditions to preserve streptavidin’s bioactivity, enrichment quality might be affected by background proteins due to insufficient washing. Alternatively, Azf-labeled proteins can be selectively captured on commercially available alkynyl- or cyclooctynyl-functionalized resins that allow for highly stringent washing conditions to remove nonspecifically bound proteins. Second, we processed samples by SDS/PAGE and in-gel proteolytic digestion before LC-MS/MS analysis, but this approach can introduce contaminants and is time-consuming and laborious. Because chemical tagging of Azf-labeled proteins occurs immediately after animal lysis, our strategy is compatible with new advances in analytical proteomic workflows such as in StageTip-based filter-aided sample preparation (FASP) (32).

Third, in the LC-MS/MS analysis, we normalized H/L ratios of enriched proteins to total unenriched proteins derived from the same worm sample. Because the H/L ratio variability depends on different intrinsic rates of protein synthesis in different cells, we advise investigators to additionally normalize H/L ratios of enriched proteins from one cell type to total proteins derived from mixed-stage worms or enriched proteins from another cell type for a more comprehensive analysis of cell-specific proteins.

Finally, our methodology should prove useful in multiple contexts. For example, one could easily build cell-specific proteomic atlases because (i) a catalog of cell-specific transcriptional regulators is readily available and (ii) the creation of transgenic organisms is both rapid and routine. In addition, using regulatory elements to drive interactional patterns of expression, one could restrict labeling to cells that express both elements and, thus, enhance spatiotemporal selectivity with either a FLP recombinase-based (33) or protein reconstitution-based (34) approach. Furthermore, this technique could be used to study protein–protein interactions in a cell-specific manner because aryl azides like Azf are activated upon UV light irradiation to form covalent adducts with proteins in close proximity (35). In principle, the methodology described here could be applied to other organisms in which efficient delivery of noncanonical amino acids is feasible, alleviating the need for cell sorting or laser capture techniques to isolate protein from specific cells in intact organisms.

Materials and Methods

Full details regarding experimental procedures can be found in SI Appendix, SI Materials and Methods.

Labeling in C. elegans. C. elegans strains previously maintained in S medium supplemented with 25 mg/mL E. coli OP50 at 20 °C with agitation were pelleted by centrifugation at 1,000 × g for 5 min at room temperature, washed three times with S medium and resuspended in S medium supplemented with 25 mg/mL E. coli KY14[pKP514] or KY33[pKP514]. Following labeling, worms were harvested by centrifugation at 1,000 × g for 5 min at room temperature and cleaned by sucrose flotation. Bacterial material was cleared by washing worms with S medium over a period of 30 min. Worms were pelleted by centrifugation at 1,000 × g for 5 min at room temperature and frozen in liquid nitrogen.

Labeling in E. coli. To prepare KY14[pKP514] or KY33[pKP514], overnight cultures were diluted into freshly prepared M9 medium and agitated at 37 °C until reaching an OD_{600} of 0.5. Cells were pelleted by centrifugation at 5,000 × g for 15 min at 4 °C, washed three times with ice-cold 0.9% (wt/vol) sodium chloride, and resuspended in freshly prepared M9 minimal medium (without Phe) supplemented with 20 μM Azf. After another 30 min of agitation at 37 °C expression of Thy251GY-E EphRS was induced by the addition of 1 M IPTG. After 4 h of agitation at 37 °C, cells were harvested by centrifugation at 5,000 × g for 15 min at 4 °C and resuspended in freshly prepared M9 minimal medium (without Phe) supplemented with 2.0 mM Azf at a concentration of 250 mg of wet cell mass/mL medium and stored at 4 °C.

ACKNOWLEDGMENTS. We thank past and present members of the P.W.S. and D.A.T. laboratories for fruitful discussions and suggestions, and Roxana Eggleston-Rangel and Geoffrey T. Smith (Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology) for technical assistance. This work was supported by National Institutes of Health (NIH) Grant R01 GM062523. K.P. was supported in part by the National Science Foundation graduate fellowship. P.W.S. is an Investigator of the Howard Hughes Medical Institute, which supported this work. The Proteome Exploration Laboratory is supported by Gordon and Betty Moore Foundation Grant GBMF775, the Beckman Institute, and NIH Grant 15100R020594-01A1.

