Weak equivalence and non-classifiability of measure preserving actions

ROBIN D. TUCKER-DROB

Ergodic Theory and Dynamical Systems / Volume 35 / Issue 01 / February 2015, pp 293 - 336
DOI: 10.1017/etds.2013.40, Published online: 13 August 2013

Link to this article: http://journals.cambridge.org/abstract_S0143385713000400

How to cite this article:

Request Permissions : Click here
Weak equivalence and non-classifiability of measure preserving actions

ROBIN D. TUCKER-DROB

Department of Mathematics, California Institute of Technology,
Pasadena, CA 91125, USA
(e-mail: rtuckerd@caltech.edu)

(Received 6 April 2012 and accepted in revised form 24 April 2013)

Abstract. Abért and Weiss have shown that the Bernoulli shift s_Γ of a countably infinite group Γ is weakly contained in any free measure preserving action a of Γ. Proving a conjecture of Ioana, we establish a strong version of this result by showing that $s_\Gamma \times a$ is weakly equivalent to a. Using random Bernoulli shifts introduced by Abért, Glasner, and Virag, we generalize this to non-free actions, replacing s_Γ with a random Bernoulli shift associated to an invariant random subgroup, and replacing the product action with a relatively independent joining. The result for free actions is used along with the theory of Borel reducibility and Hjorth’s theory of turbulence to show that, on the weak equivalence class of a free measure preserving action, the equivalence relations of isomorphism, weak isomorphism, and unitary equivalence are not classifiable by countable structures. This in particular shows that there are no free weakly rigid actions, that is, actions whose weak equivalence class and isomorphism class coincide, answering negatively a question of Abért and Elek. We also answer a question of Kechris regarding two ergodic theoretic properties of residually finite groups. A countably infinite residually finite group Γ is said to have property EMD* if the action p_Γ of Γ on its profinite completion weakly contains all ergodic measure preserving actions of Γ, and Γ is said to have property MD if $\iota \times p_\Gamma$ weakly contains all measure preserving actions of Γ, where ι denotes the identity action on a standard non-atomic probability space. Kechris has shown that EMD* implies MD and asked if the two properties are actually equivalent. We provide a positive answer to this question by studying the relationship between convexity and weak containment in the space of measure preserving actions.

Contents

1 Introduction 294
2 Preliminaries and notation 299
 2.1 Measure algebras and standard probability spaces 299
 2.2 Measure preserving actions 299
 2.3 The space of measure preserving actions 300
By a measure preserving action of a countable group Γ we mean a triple $(\Gamma, a, (X, \mu))$, which we write as $\Gamma \rtimes a (X, \mu)$, where (X, μ) is a standard probability space (that is, a standard Borel space equipped with a Borel probability measure) and $a : \Gamma \times X \to X$ is a Borel action of Γ on X that preserves the Borel probability measure μ. In what follows all measures are probability measures unless explicitly stated otherwise and we will write a and b to denote the measure preserving actions $\Gamma \rtimes a (X, \mu)$ and $\Gamma \rtimes b (Y, \nu)$ respectively when the group Γ and the underlying probability spaces (X, μ) and (Y, ν) are understood. Given measure preserving actions $a = \Gamma \rtimes a (X, \mu)$ and $b = \Gamma \rtimes b (Y, \nu)$, we say that a is weakly contained in b, and write $a \prec b$, if for every finite partition A_0, \ldots, A_{k-1} of X into Borel sets, every finite subset $F \subseteq \Gamma$, and every $\epsilon > 0$, there exists a Borel partition B_0, \ldots, B_{k-1} of Y such that

$$|\mu(\gamma^a A_i \cap A_j) - \nu(\gamma^b B_i \cap B_j)| < \epsilon$$

for all $\gamma \in F$ and $0 \leq i, j < k$. We write $a \sim b$ if both $a \prec b$ and $b \prec a$, in which case a and b are said to be weakly equivalent. The notion of weak containment of measure preserving actions was introduced by Kechris [Ke10] as an ergodic theoretic analogue of weak containment for unitary representations.
Weak containment of unitary representations may be defined as follows (see [BdIHV08, Appendix F]). Let π and ρ be unitary representations of Γ on the Hilbert spaces \mathcal{H}_π and \mathcal{H}_ρ respectively. Then π is weakly contained in ρ, written $\pi < \rho$, if for every unit vector ξ in \mathcal{H}_π, every finite subset $F \subseteq \Gamma$, and every $\epsilon > 0$, there exists a finite collection $\eta_0, \ldots, \eta_{k-1}$ of unit vectors in \mathcal{H}_ρ and non-negative real numbers $\alpha_0, \ldots, \alpha_{k-1}$ with $\sum_{i=0}^{k-1} \alpha_i = 1$ such that

$$\pi(\chi)\xi - \sum_{i=0}^{k-1} \alpha_i \langle \rho(\chi)\eta_i, \eta_i \rangle \prec \epsilon$$

for all $\chi \in F$. Each unit vector $\xi \in H_\pi$ gives rise to a normalized positive definite function on Γ defined by $\gamma \mapsto \langle \pi(\gamma)\xi, \xi \rangle$. We call such a function a normalized positive definite function realized in π and we may rephrase the definition of $\pi < \rho$ accordingly as: every normalized positive definite function realized in π is a pointwise limit of convex sums of normalized positive definite functions realized in ρ.

A similar rephrasing also applies to weak containment of measure preserving actions, as pointed out by Abért and Weiss in [AW13]. If we view a finite Borel partition A_0, \ldots, A_{k-1} of X as a Borel function $\phi : X \to k = \{0, 1, \ldots, k-1\}$ (where we view k as a discrete space) then, given a measure preserving action $a = \Gamma \curvearrowright (X, \mu)$, each partition $\phi : X \to k$ gives rise to a shift-invariant Borel probability measure $(\Phi^{\phi,a})_s \mu$ on k^Γ, where

$$\Phi^{\phi,a}(x)(\gamma) = \phi((\gamma^{-1})^a \cdot x).$$

The map $\Phi^{\phi,a}$ is equivariant between the action a and the shift action s on k^Γ given by $(\gamma^s \cdot f)(\delta) = f(\gamma^{-1} \delta)$, and one may show that the measures $(\Phi^{\phi,a})_s \mu$, as ϕ ranges over all Borel partitions of X into k-pieces, are precisely those shift-invariant Borel measures λ such that $\Gamma \curvearrowright (k^\Gamma, \lambda)$ is a factor of a. In this language a being weakly contained in b means that for every natural number k, each shift-invariant measure on k^Γ that is a factor of a is a weak* limit of shift-invariant measures that are factors of b.

More precisely, given a compact Polish space K we equip K^Γ with the product topology, and we let $M_s(K^\Gamma)$ denote the convex set of shift-invariant Borel probability measures on k^Γ equipped with the weak* topology so that it is also a compact Polish space. We define

$$E(a, K) = \{(\Phi^{\phi,a})_s \mu : \phi : X \to K \text{ is Borel} \} \subseteq M_s(K^\Gamma).$$

Then the Abért–Weiss characterization of weak containment of measure preserving actions may be stated as follows: $a < b$ if and only if $E(a, K) \subseteq E(b, K)$ for every finite K if and only if $E(a, K) \subseteq E(b, K)$ for every compact Polish space K.

From this point of view one difference between the two notions of weak containment is apparent. While weak containment of representations allows for normalized positive definite functions realized in π to be approximated by convex sums of normalized positive definite functions realized in ρ, weak containment of measure preserving actions asks that shift invariant factors of a be approximated by a single shift invariant factor of b at a time. It is natural to ask for a characterization of the situation in which shift invariant factors of a are approximated by convex sums of shift invariant factors of b. When
this is the case we say that \(a \) is stably weakly contained in \(b \) and we write \(a \prec_s b \). The relationship between weak containment and stable weak containment of measure preserving actions is analogous to the relationship between weak containment in the sense of Zimmer (see [BdlHV08, Remark F.1.2(ix)] and [Ke10, Appendix H (B)]) and weak containment of unitary representations. Our first theorem is a characterization of this stable version of weak containment of measure preserving actions.

In what follows \((X, \mu)\) and \((Y, \nu)\) and \((Z, \eta)\) always denote standard probability spaces. We let \(t_\eta : \Gamma \times Z \to Z \) denote the trivial (identity) action of \(\Gamma \) on \((Z, \eta)\), writing \(t_\eta \) for the corresponding triple \(\Gamma \curlyeqeq^t \eta \) \((Z, \eta)\), and we write \(t \) and \(t \) for \(t_\eta \) and \(t_\eta \) respectively when \(\eta \) is non-atomic. We show the following result in §3.

Theorem 1.1. Let \(b = \Gamma \curlyeqeq^b (Y, \nu) \) be a measure preserving action of \(\Gamma \). Then \(\overline{E(t \times b, K)} = \overline{E(b, K)} \) for every compact Polish space \(K \). In particular, for any \(a = \Gamma \curlyeqeq^a (X, \mu) \) we have that \(a \prec_t b \) if and only if \(E(a, K) \subseteq \overline{E(b, K)} \) for every compact Polish space \(K \).

When \(a \) is ergodic, so that \(E(a, K) \) is contained in the extreme points of \(M_s(K^\Gamma) \), we show that Theorem 1.1 implies the following direct analogue of the fact (see [BdlHV08, F.1.4]) that if \(\pi \) and \(\rho \) are representations of \(\Gamma \), \(\pi \) is irreducible, and \(\pi \) is weakly contained in \(\rho \), then every normalized positive definite function realized in \(\pi \) is actually a pointwise limit of normalized positive definite functions realized in \(\rho \).

Theorem 1.2. Let \(a = \Gamma \curlyeqeq^a (X, \mu) \) and \(b = \Gamma \curlyeqeq^b (X, \mu) \) be measure preserving actions of \(\Gamma \) and suppose that \(a \) is ergodic. If \(a \prec_t b \) then \(a \prec b \).

In Theorem 3.12 we show more generally that if \(a \) is an ergodic measure preserving action that is weakly contained in \(d \), then \(a \) is weakly contained in almost every ergodic component of \(d \). This may be seen as a weak containment analogue of the fact that if \(a \) is a factor of \(d \), then \(a \) is a factor of almost every ergodic component of \(d \) (see Proposition 3.9 below).

One consequence of Theorem 1.2 is that every non-amenable group has a free, non-ergodic weak equivalence class, and this in fact characterizes non-amenability (Corollary 4.2 below). Recall that an ergodic measure preserving action \(a \) is strongly ergodic if and only if it does not weakly contain the identity action \(t \).

Theorem 1.3. If \(b \) is a measure preserving action of \(\Gamma \) that is strongly ergodic then \(t \times b \) is not weakly equivalent to any ergodic action. In particular, if \(\Gamma \) is a non-amenable group and \(s_\Gamma = \Gamma \curlyeqeq^{s_\Gamma} ([0, 1]^\Gamma, \lambda^\Gamma) \) is the Bernoulli shift action of \(\Gamma \), then \(t \times s_\Gamma \) is a free action of \(\Gamma \) that is not weakly equivalent to any ergodic action.

If \(B \) is a class of measure preserving actions of a countable group \(\Gamma \) and \(a \in B \), then \(a \) is called universal for \(B \) if \(b \prec a \) for every \(b \in B \). When \(a \) is universal for the class of all measure preserving actions of \(\Gamma \) then \(a \) is simply called universal. In §4 we study the universality properties EMD, EMD*, and MD of residually finite groups introduced by Kechris [Ke12] (MD was also independently studied by Bowen [Bo03], but with different terminology), and defined as follows. A countably infinite group \(\Gamma \) is said to have property EMD if the measure preserving action \(p_\Gamma \) of \(\Gamma \) on its profinite completion is universal.
Γ is said to have property EMD* if \(p_\Gamma \) is universal for the class of all ergodic measure preserving actions of Γ. Γ is said to have property MD if \(t \times p_\Gamma \) is universal.

Each of these properties imply that Γ is residually finite and it is clear that EMD implies both EMD* and MD. Kechris shows that EMD* implies MD and asks [Ke12, Question 4.11] whether the converse is true. We provide a positive answer to this question.

Theorem 1.4. The properties MD and EMD* are equivalent.

This implies (Corollary 4.7 below) that the properties EMD and MD are equivalent for all groups without property (T). We also show in Theorem 4.8 that the free product of groups with property MD has EMD and we give two reformulations of the problem of whether EMD and MD are equivalent in general (Theorem 4.10 below).

In §5 we discuss the structure of weak equivalence with respect to invariant random subgroups. A countable group Γ acts on the compact space \(\text{Sub}(\Gamma) \subseteq 2^\Gamma \) of all of its subgroups by conjugation. Following [AVG12], a conjugation-invariant Borel probability measure on \(\text{Sub}(\Gamma) \) will be called an invariant random subgroup (IRS) of Γ. We let IRS(Γ) denote the set of all invariant random subgroups of Γ. If \(a = \Gamma \rtimes (Y, \nu) \) is a measure preserving action of Γ then the stabilizer map \(y \mapsto \text{stab}_a(y) \in \text{Sub}(\Gamma) \) is equivariant so that the measure \((\text{stab}_a)_*\nu \) is an IRS of Γ which we call the type of \(a \), and denote type(\(a \)).

It is shown in [AE11] that the type of a measure preserving action is an invariant of weak equivalence (we give a proof of this in Theorem 5.2 below).

In §5.2 we use the framework laid out in §3 to study the compact metric topology introduced by Abért and Elek [AE11] on the set \(A_{\sim}(\Gamma, X, \mu) \) of weak equivalence classes of measure preserving actions of Γ. We show that the map \(A_{\sim}(\Gamma, X, \mu) \to \text{IRS}(\Gamma) \) sending each weak equivalence class to its type in IRS(Γ) is continuous when IRS(Γ) is equipped with the weak* topology.

In §5.3 we detail a construction, described in [AVG12], whereby, given a probability space \((Z, \eta) \), one canonically associates to each \(\theta \in \text{IRS}(\Gamma) \) a measure preserving action \(s_{\theta, \eta} \) of Γ such that type(\(s_{\theta, \eta} \)) = \(\theta \) when \(\eta \) is non-atomic. We call \(s_{\theta, \eta} \) the \(\theta \)-random Bernoulli shift of Γ over \((Z, \eta) \). When \(a \) is free then type(\(a \)) is the point mass \(\delta_{\langle e \rangle} \) on the trivial subgroup \(\langle e \rangle \) of Γ and \(s_{\delta_{\langle e \rangle}, \eta} \) is the usual Bernoulli shift action of Γ on \((Z^\Gamma, \eta^\Gamma) \).

After establishing some properties of random Bernoulli shifts we show the following in §5.5.

Theorem 1.5. Let \(a = \Gamma \rtimes (Y, \nu) \) be a non-atomic measure preserving action of type \(\theta \), and let \(s_{\theta, \eta} \) be the \(\theta \)-random Bernoulli shift over \((Z, \eta) \). Then the relatively independent joining of \(s_{\theta, \eta} \) and \(a \) over their common factor Γ \(\rtimes (\text{Sub}(\Gamma), \theta) \) is weakly equivalent to \(a \).

In particular, \(s_{\theta, \eta} \) is weakly contained in every non-atomic action of type \(\theta \).

When \(a \) is free, the relatively independent joining of \(s_{\delta_{\langle e \rangle}, \eta} \) and \(a \) is simply the product of the Bernoulli shift with \(a \) and Theorem 1.5 proves a conjecture of Ioana, becoming the following strengthening of [AW13, Theorem 1].

Corollary 1.6. Let \(s_{\Gamma} = \Gamma \rtimes \lambda^\Gamma \) be the Bernoulli shift action of Γ, where \(\lambda \) denotes Lebesgue measure on \([0, 1] \). Let \(a = \Gamma \rtimes (X, \mu) \) be a free measure preserving action of Γ on a non-atomic standard probability space \((X, \mu)\). Then \(s_{\Gamma} \times a \) is weakly equivalent to \(a \).
Several invariants of measure preserving actions such as groupoid cost \cite{AW13} (\cite{Ke10} for the case of free actions) and independence number \cite{CK13} are known to be monotonic with respective weak containment (see also \cite{AE11,CKT-D13} for other examples). A consequence of Theorem 1.5 is that, for a finitely generated group \(\Gamma \), among all non-atomic measure preserving actions of type \(\theta \), the groupoid cost attains its maximum and the independence number attains its minimum on \(s_{\theta, \lambda} \). Likewise, Corollary 1.6 implies that for any free measure preserving action \(a \) of \(\Gamma \), both \(a \) and \(s_{\Gamma} \times a \) have the same independence number, and the orbit equivalence relation associated to \(a \) and \(s_{\Gamma} \times a \) have the same cost.

In §6 we address the question of how many isomorphism classes of actions are contained in a given weak equivalence class. We answer a question of Abért and Elek \cite[Question 6.1]{AE11}, showing that the weak equivalence class of any free action always contains non-isomorphic actions. Our arguments show that there are in fact continuum many isomorphism classes of actions in any free weak equivalence class, and from the perspective of Borel reducibility we can strengthen this even further. Let \(A(\Gamma, X, \mu) \) denote the Polish space of measure preserving actions of \(\Gamma \) on \((X, \mu) \) and let \(a, b \in A(\Gamma, X, \mu) \). Then \(a \) and \(b \) are called weakly isomorphic, written \(a \cong^w b \), if both \(a \subseteq b \) and \(b \subseteq a \). We call \(a \) and \(b \) unitarily equivalent, written \(a \cong^U b \), if the corresponding Koopman representations \(\kappa_0^a \) and \(\kappa_0^b \) are unitarily equivalent. We let \(\cong \) denote isomorphism of actions. Then \(a \cong b \Rightarrow a \cong^w b \Rightarrow a \cong^U b \). We now have the following theorem.

Theorem 1.7. Let \(a = \Gamma \actson (X, \mu) \) be a free action of a countably infinite group \(\Gamma \) and let \([a] = \{ b \in A(\Gamma, X, \mu) : b \sim a \} \) be the weak equivalence class of \(a \). Then isomorphism on \([a]\) does not admit classification by countable structures. The same holds for both weak isomorphism and unitary equivalence on \([a]\).

Any two free actions of an infinite amenable group are weakly equivalent (\cite[see also Remark 4.1 and Theorem 1.8 below]{FW04}), so for amenable \(\Gamma \) Theorem 1.7 follows from \cite{FW04, Hj97} and \cite[Theorems 13.7, 13.8, and 13.9]{Ke10} (see also \cite[4.4]{KLP10}), while for non-amenable \(\Gamma \) there are continuum many weak equivalence classes of free actions (see Remark 4.3 below), and Theorem 1.7 is therefore a refinement of the existing results. The proof of Theorem 1.7 uses the methods of \cite[Theorem 13.7]{Ke10} and \cite{KLP10}. We fix an infinite dimensional separable Hilbert space \(\mathcal{H} \), and denote by \(\text{Rep}_\lambda(\Gamma, \mathcal{H}) \) the Polish space of unitary representations of \(\Gamma \) on \(\mathcal{H} \) that are weakly contained in the left regular representation \(\lambda_\Gamma \) of \(\Gamma \). The conjugacy action of the unitary group \(\mathcal{U}(\mathcal{H}) \) on \(\text{Rep}_\lambda(\Gamma, \mathcal{H}) \) is generically turbulent by \cite[3.3]{KLP10}, so Theorem 1.7 will follow by showing that unitary conjugacy on \(\text{Rep}_\lambda(\Gamma, \mathcal{H}) \) is not generically \(\cong |[a]| \)-ergodic (and that the same holds for \(\cong^w \) and \(\cong^U \) in place of \(\cong \)). For this we find a continuous homomorphism \(\psi \) from unitary conjugacy on \(\text{Rep}_\lambda(\Gamma, \mathcal{H}) \) to isomorphism on \([a]\) with the property that the inverse image of each \(\cong^U \)-class is meager. The main new ingredient that is needed in the proof of Theorem 1.7 is Corollary 1.6, which shows that the homomorphism \(\psi \) we define takes values in \([a]\).

In §7 we show that when \(\Gamma \) is amenable, type\((a)\) completely determines the stable weak equivalence class (Definition B.1) of a measure preserving action \(a \) of \(\Gamma \).
THEOREM 1.8. Let \(a \) and \(b \) be two measure preserving actions of an amenable group \(\Gamma \).

1. Then \(\text{type}(a) = \text{type}(b) \) if and only if \(a \sim_s b \).

2. Suppose that \(\text{type}(a) = \text{type}(b) \) concentrates on the infinite index subgroups of \(\Gamma \). Then \(a \sim b \).

Combining this with the results of §5.2 (see Remark 5.8) shows that when \(\Gamma \) is amenable, the type map \([a]_s \mapsto \text{type}(a)\), from the compact space \(A_\sim (\Gamma, Y, \nu) \) of all stable weak equivalence classes of measure preserving actions of \(\Gamma \), to the space \(\text{IRS}(\Gamma) \), is a homeomorphism.

We end with two appendices, one on ultraproducts of measure preserving actions, and one on stable weak containment.

Remark 1.9. After sending Gábor Elek a preliminary version of this paper, I was informed by him that he has independently obtained a version of Theorem 1.8. See [El12].

2. Preliminaries and notation

\(\Gamma \) will always denote a countable group, and \(e \) will always denote the identity element of \(\Gamma \).

2.1. Measure algebras and standard probability spaces. All measures will be probability measures unless explicitly stated otherwise. A standard probability space is a probability measure space \((X, \mu) = (X, B(X), \mu)\), where \(X \) is a standard Borel space and \(\mu \) is a probability measure on the \(\sigma \)-algebra \(B(X) \) of Borel subsets of \(X \). In what follows, \((X, \mu), (Y, \nu), \) and \((Z, \eta)\) will always denote standard probability spaces. Though we mainly focus on standard probability spaces we will make use of non-standard probability spaces arising as ultraproducts of standard probability spaces. We will write \((W, \rho)\) for a probability space that may or may not be standard.

The measure algebra \(\text{MALG}_\rho \) of a probability space \((W, \rho)\) is the \(\sigma \)-algebra of \(\rho \)-measurable sets modulo the \(\sigma \)-ideal of null sets, equipped with the measure \(\rho \). We also equip \(\text{MALG}_\rho \) with the metric \(d_\rho(A, B) = \rho(A \Delta B) \). We will sometimes abuse notation and identify a measurable set \(A \subseteq W \) with its equivalence class in \(\text{MALG}_\rho \) when there is no danger of confusion.

2.2. Measure preserving actions. Let \(\Gamma \) be a countable group. A measure preserving action of \(\Gamma \) is a triple \((\Gamma, a, (X, \mu))\), which we write as \(\Gamma \bowtie a (X, \mu) \), where \((X, \mu)\) is a standard probability space and \(a : \Gamma \times X \to X \) is a Borel action of \(\Gamma \) on \(X \) that preserves the probability measure \(\mu \). A measure preserving action \(\Gamma \bowtie a (X, \mu) \) will often also be denoted by a boldface letter such as \(a \) or \(\mu \) depending on whether we want to emphasize the underlying action or the underlying probability measure. When \(\gamma \in \Gamma \) and \(x \in X \) we write \(\gamma^a \cdot x \) or \(\gamma^\mu x \) for \(a(\gamma, x) \). In what follows, \(a, b, c \) and \(d \) will always denote measure preserving actions of \(\Gamma \).

We will also make use of actions of \(\Gamma \) on non-standard probability spaces. When \((W, \rho)\) is a probability space and \(o : \Gamma \times W \to W \) is a measurable action of \(\Gamma \) on \(W \) that preserves \(\rho \), we will still use the notations \(o = \Gamma \bowtie o (W, \rho), \gamma^o, \) etc., from above, though we reserve the phrase ‘measure preserving action’ for the case when the underlying probability space is standard.
2.3. The space of measure preserving actions. We let $A(\Gamma, X, \mu)$ denote the set of all measure preserving actions of Γ on (X, μ) modulo almost everywhere equality. That is, two measure preserving actions a and b of Γ on (X, μ) are equivalent if $\mu(\{x \in X : \gamma^a x \neq \gamma^b x \}) = 0$ for all $\gamma \in \Gamma$. Though elements of $A(\Gamma, X, \mu)$ are equivalence classes of measure preserving actions we will abuse notation and confuse elements of $A(\Gamma, X, \mu)$ with their Borel representatives, making sure our statements and definitions are independent of the choice of representative when it is not obvious. We equip $A(\Gamma, X, \mu)$ with the weak topology, which is a Polish topology generated by the maps $a \mapsto \gamma^a A \in \text{MALG}_\mu$, with A ranging over MALG_μ and γ ranging over elements of Γ.

Notation. For $a \in A(\Gamma, X, \mu)$ and $b \in A(\Gamma, Y, \nu)$ we let $a \subseteq b$ denote that a is a factor of b and we let $a \cong b$ denote that a and b are isomorphic. We let $t_\eta \in A(\Gamma, Z, \eta)$ denote the trivial (identity) system $\Gamma \curvearrowright^t (Z, \eta)$, and we write t for t_η when η is non-atomic. We call $\Gamma \curvearrowright^a (X, \mu)$ non-atomic if the probability space (X, μ) is non-atomic. If $T : X \rightarrow X$ then we let $\text{supp}(T) = \{x \in X : T(x) \neq x\}$. For a $A \subseteq X$ we denote the restriction of μ to A given by $(\mu|A)(B) = \mu(B \cap A)$ and we denote by μ_A the conditional probability measure $\mu_A(B) = \mu(B \cap A)/\mu(A)$, where we use the convention that $\mu_A \equiv 0$ when $A \subseteq X$ is null.

Convention. We will regularly neglect null sets when there is no danger of confusion.

3. Proofs of Theorems 1.1 and 1.2

3.1. Weak containment and shift-invariant factors. Let K be a compact Polish space and equip K^Γ with the product topology so that it is also a compact Polish space. Then Γ acts continuously on K^Γ by the shift action s, given by $(\delta^s f)(\gamma) = f(\delta^{-1}\gamma)$ for $\delta, \gamma \in \Gamma$, $f \in K^\Gamma$. Let (W, ρ) be a probability space and let $\sigma = \Gamma \curvearrowright^a (W, \rho)$ be a measurable action of Γ on W that preserves ρ. For each measurable function $\phi : W \rightarrow K$ we define $\Phi^\phi,\sigma : W \rightarrow K^\Gamma$ by $\Phi^\phi,\sigma(w)(\gamma) = \phi((\gamma^{-1})^a \cdot w)$, and we let

$$E(\sigma, K) = \{(\Phi^\phi,\sigma)_{\#}\rho : \phi : W \rightarrow K \text{ is } \rho\text{-measurable}\}.$$

Each map Φ^ϕ,σ is a factor map from σ to $\Gamma \curvearrowright^a (K^\Gamma, (\Phi^{\phi,\sigma})_{\#}\mu)$ since

$$\Phi^\phi,\sigma(\delta^\sigma \cdot w)(\gamma) = \phi((\gamma^{-1})^a \cdot \delta^\sigma \cdot w) = \phi((\delta^{-1}\gamma)^{-1} \cdot \delta^\sigma \cdot \phi^a(w))(\gamma).$$

Conversely, given any measurable factor map $\psi : \Gamma \curvearrowright^a (W, \rho) \rightarrow \Gamma \curvearrowright^s (K^\Gamma, \pi_*\mu)$ the map $\phi(w) = \psi(w)(e)$ is also measurable, and for almost all $w \in W$ and all $\gamma \in \Gamma$ we have

$$\Phi^\phi,\sigma(w)(\gamma^{-1}) = \phi(\gamma^a \cdot w) = \psi(\gamma^a \cdot w)(e) = (\gamma^s \cdot \psi(w))(e) = \psi(w)(\gamma^{-1})$$

so that $\psi_{\#}\rho = (\Phi^\phi,\sigma)_{\#}\rho$. It follows that $E(\sigma, K)$ is the set of all shift-invariant Borel probability measures on K^Γ that are factors of σ. We let $M_s(K^\Gamma)$ denote the convex set of all shift-invariant Borel probability measures on K^Γ. Equipped with the weak* topology, this is a compact metrizable subset of $C(K^\Gamma)^*$.

Definition 3.1. If $E \subseteq M_s(K^\Gamma)$ we let $\text{co}E$ denote the convex hull of E and we let $\overline{\text{co}}E$ denote the closed convex hull of E. We write $\text{ex}(E)$ for the set of extreme points of a convex set $E \subseteq M_s(K^\Gamma)$.

LEMMA 3.2. Suppose that $\phi_n : W \to K$, $n \in \mathbb{N}$, is a sequence of measurable functions that converge in measure to the measurable function $\phi : W \to K$. Then $(\Phi^{\phi_n,\rho})_s \rho \to (\Phi^{\phi,\rho})_s \rho$ in $M_s(K^\Gamma)$.

Proof. ϕ_n converges to ϕ in measure if and only if for every subsequence $\{n_i\}$ there is a further subsequence $\{m_i\}$ such that $\phi_{m_i} \to \phi$ almost surely. If $\phi_{m_i} \to \phi$ almost surely then for all $\gamma \in \Gamma$, $\Phi^{\phi_{m_i},\rho}(w)(\gamma) \to \Phi^{\phi,\rho}(w)(\gamma)$ almost surely, and so $\Phi^{\phi_{m_i},\rho}(w) \to \Phi^{\phi,\rho}(w)$ almost surely. It follows that $\Phi^{\phi_n,\rho} \to \Phi^{\phi,\rho}$ in measure. Since convergence in measure implies convergence in distribution it follows that $(\Phi^{\phi_n,\rho})_s \rho \to (\Phi^{\phi,\rho})_s \rho$ in $M_s(K^\Gamma)$. \qed

Remark 3.3. We may form the space $L(W, \rho, K)$ of all measurable maps $\phi : W \to K$, where we identify two such maps if they agree ρ-almost everywhere. If $d \leq 1$ is a compatible metric for K then we equip $L(W, \rho, K)$ with the metric $d(\phi, \psi) = \int_W d(\phi(w), \psi(w)) \, d\rho(w)$, and then $\phi_n \to \phi$ in this topology if and only if ϕ_n converges to ϕ in measure. Then Lemma 3.2 says that for each measure preserving action $\Gamma \acts W (\rho)$, the map $\phi \mapsto (\Phi^{\phi,\rho})_s \rho$ from $L(W, \rho, K)$ to $M_s(K^\Gamma)$ is continuous. The metric d is complete, and d is separable when (W, ρ) is standard. We note for later use that the set of all $\phi \in L(W, \rho, K)$ with finite range is dense in $L(W, \rho, K)$ (this follows from d being separable). Proofs of these facts may be found in [Ke10, §19] and [Mo76] (these references assume that the space (W, ρ) is standard, but this assumption is not used to prove the facts mentioned here).

We will find the following generalization of weak containment useful.

Definition 3.4. Let A and B be two sets of measure preserving actions of Γ. We say that A is weakly contained in B, written $A \prec B$, if for every $\Gamma \acts (X, \mu) = a \in A$, for any Borel partition A_0, \ldots, A_{k-1} of X, $F \subseteq \Gamma$ finite, and $\epsilon > 0$, there exist $\Gamma \acts (Y, \nu) = b \in B$ and a Borel partition B_0, \ldots, B_{k-1} of Y such that

$$|\mu(y^a A_i \cap A_j) - \nu(y^b B_i \cap B_j)| < \epsilon$$

for all $i, j < k$ and $\gamma \in F$.

This is a generalization of weak containment in the sense that when $A = \{a\}$ and $B = \{b\}$ are both singletons, $A \prec B$ if and only if $a < b$ in the original sense defined in the introduction. We write $a \prec B$ for $\{a\} \prec B$, and $A \prec B$ for $A \prec \{b\}$. If both $A \prec B$ and $B \prec A$ then we put $A \sim B$. It is clear that \prec is a reflexive and transitive relation on sets of actions. The arguments in [Ke10, Proposition 10.1] show the following proposition.

PROPOSITION 3.5. Let A and B be sets of non-atomic measure preserving actions of Γ. Then $A \prec B$ if and only if for every $\Gamma \acts (X, \mu) = a \in A$, there exists a sequence $a_n \in A(\Gamma, X, \mu), n \in \mathbb{N}$, converging to a such that each a_n is isomorphic to some $b_n \in B$. In particular, $a \prec B$ if and only if $a \in [d \in A(\Gamma, X, \mu) : \exists b \in B \, d \cong b]$.

We also have the corresponding generalization of [AW13, Lemma 8].

PROPOSITION 3.6. Let A and B be sets of measure preserving actions of Γ. Then the following are equivalent.
(1) \(\mathcal{A} \) is weakly contained in \(\mathcal{B} \).

(2) \(\bigcup_{d \in \mathcal{A}} E(d, K) \subseteq \bigcup_{b \in \mathcal{B}} E(b, K) \) for every finite \(K \).

(3) \(\bigcup_{d \in \mathcal{A}} E(d, K) \subseteq \bigcup_{b \in \mathcal{B}} E(b, K) \) for every compact Polish space \(K \).

(4) \(\bigcup_{d \in \mathcal{A}} E(d, 2^{|F|}) \subseteq \bigcup_{b \in \mathcal{B}} E(b, 2^{|F|}) \).

\textbf{Proof.} It suffices to show this for the case where \(\mathcal{A} = \{d\} \) is a singleton. We let \((X, \mu) \) be the space of \(d \). For each \(\gamma \in \Gamma \) let \(\pi_{\gamma} : K^\Gamma \to K \) denote the projection map \(\pi_{\gamma}(f) = f(\gamma) \). For each \(\gamma \in \Gamma \), \(J \subseteq \Gamma \) and \(\sigma \in k^J \) let \(\gamma \cdot \sigma \in k^{\gamma \cdot J} \) be given by \((\gamma \cdot \sigma)(\delta) = (\gamma(\delta) - 1) \delta \) for each \(\delta \in \gamma \cdot J \).

We begin with the implication (1) \(\Rightarrow \) (2). It suffices to show (2) for the case \(K = k = \{0, 1, \ldots, k - 1\} \) for some \(k \in \mathbb{N} \). Fix a Borel function \(\phi : X \to k \), let \(\lambda = (\Phi \circ \phi) \circ \mu \), and let \(A_i = \phi^{-1}(i) \) for \(i < k \). We will show that \(\lambda \in \bigcup_{b \in \mathcal{B}} E(b, K) \).

Fix an exhaustive sequence \(e \in F_0 \subseteq F_1 \subseteq \cdots \) of finite subsets of \(\Gamma \). For each finite \(F \subseteq \Gamma \) and function \(\tau : F \to k \) let \(A_\tau = \bigcap_{\gamma \in F} \gamma^d A_\gamma \). As \(d \in \mathcal{B} \) we may find for each \(n \in \mathbb{N} \) a measure preserving action \(b_n = \gamma \cap b_n (y_n, v_n) \) in \(\mathcal{B} \) along with Borel partitions \(\{B^n_\tau \}_{\tau \in k^F} \) of \(Y_n \) such that

\[|\mu(\gamma^d A_{\tau_1} \cap A_{\tau_2}) - v_n(\gamma^b A^n_{\tau_1} \cap A^n_{\tau_2})| < \epsilon_n \quad (3.1) \]

for all \(\gamma \in F_n, \tau_1, \tau_2 \in k^F \), and where \(\epsilon_n \) is small depending on \(n, k, \) and \(|F_n| \). Define \(\psi_n : Y_n \to k \) by \(\psi_n(\gamma) = i \) if \(\gamma \in B^n_i \) for some \(\tau \in k^F \) with \(\tau(e) = i \) and let \(\lambda_n = (\Phi \circ \psi_n) \circ \mu \).

To show that \(\lambda_n \to \lambda \) it suffices to show that \(\lambda_n(A) \to \lambda(A) \) for every basic clopen set \(A \subseteq k^\Gamma \) of the form \(A = \bigcap_{\gamma \in F} \psi^{-1}(i(\gamma)) \), where \(e \in F \subseteq \Gamma \) is finite and \(i_\gamma < k \) for each \(\gamma \in F \). Let \(v \in k^F \) be the function \(v(\gamma) = i_\gamma \).

For \(i < k \) let \(B^n_\tau = \bigcup\{B^n_\tau : \tau \in k^F \) and \((v(e) = i) \). Let \(n_0 \) be so large that \(F^2 \subseteq F_{n_0} \) and for all \(n > n_0 \) and each \(\sigma \in k^J \), \(J \subseteq F_n \), let \(B^n_\sigma = \bigcup\{B^n_\tau : \tau \in k^F \) and \((v(e) = \sigma) \} \) and let \(B^n_\gamma = \bigcup\{B^n_\tau : \tau \in k^F \) and \((v(e) = \gamma) \). Then \(B^n_\gamma = \bigcup\{B^n_\tau : \tau \in k^F \) and \((v(e) = \gamma) \} \). For \(\sigma \in k^F \) and \(\gamma \in F \) we have

\[|v_n(\gamma^b A^n_\sigma \cap A^n_{\gamma \cdot \sigma}) - \mu(\gamma^d A_\sigma \cap A_{\gamma \cdot \sigma})| \leq \sum_{\tau \in k^F} \sum_{\gamma \cdot \sigma \subseteq \tau} |v_n(\gamma^b A^n_\tau \cap A^n_{\tau \cdot \sigma}) - \mu(\gamma^d A_\tau \cap A_{\tau \cdot \sigma})| \leq \epsilon_n k^{2|F_n|}. \]

Similarly,

\[|v_n(B^n_\sigma) - \mu(A_\sigma)| < \epsilon_n k^{2|F_n|} \quad \text{and} \quad |v_n(B^n_{\gamma \cdot \sigma}) - \mu(A_{\gamma \cdot \sigma})| < \epsilon_n k^{2|F_n|}. \]

Since \(\gamma^d A_\sigma = A_{\gamma \cdot \sigma} \) we obtain from this the estimate

\[d_{\nu_n}(B^n_\sigma, B^n_{\gamma \cdot \sigma}) = v_n(B^n_\sigma) + v_n(B^n_{\gamma \cdot \sigma}) - 2v_n(\gamma^b B^n_\sigma \cap B^n_{\gamma \cdot \sigma}) < 3\epsilon_n k^{2|F_n|}. \quad (3.2) \]

Since \(\{B^n_\tau \}_{\tau \in k^F} \) is a partition of \(Y_n \) and \(F^2 \subseteq F_n \) we have the set identities

\[B^n_u = \bigcup_{\tau \in k^F} B^n_\tau = \bigcup_{\gamma \in F} \bigcup_{\sigma \in k^F} B^n_\sigma = \bigcup_{\gamma \in F} \bigcup_{\sigma \in k^F} B^n_{\gamma \cdot \sigma}. \]

By (3.2) the \(d_{\nu_n} \) distance of this is no more than \(3|F|\epsilon_n k^{3|F_n|} \) from the set

\[\bigcup_{\gamma \in F} \bigcup_{\sigma \in k^F} \gamma^b B^n_\sigma = \bigcup_{\gamma \in F} \gamma^b B^n_{u(\gamma)} = B^n_u. \]
Thus
\[
|\lambda_n(A) - \lambda(A)| = |\nu_n(\tilde{B}_n^a) - \mu(A_v)| \leq 3|F|\epsilon_nk^{3|F_n|} + |\nu_n(B_n^a) - \mu(A_v)| < 3|F|\epsilon_nk^{3|F_n|} + \epsilon_nk^{2|F_n|} \to 0
\]
by our choice of \(\epsilon_n\).

For the implication (2) \(\Rightarrow\) (3), let \(K\) be a compact Polish space. It follows from Lemma 3.2 and Remark 3.3 that the set \(E_f(d, K)\) of all measures \(\lambda \in E(d, K)\) coming from Borel \(\phi : X \to K\) with finite range is dense in \(E(d, K)\). By (2) we then have
\[
E_f(d, K) \subseteq \bigcup_{b \in B} E_f(b, K) \subseteq \bigcup_{b \in B} E(b, K),
\]
and (3) now follows.

The implication (3) \(\Rightarrow\) (4) is trivial.

For the implication (4) \(\Rightarrow\) (1), given a Borel partition \(A_0, \ldots, A_{m-1}\) of \(X, F \subseteq \Gamma\) finite, and \(\epsilon > 0\), let \(k_0, \ldots, k_{m-1} \in 2^n\) be distinct and define the function \(\phi : X \to 2^n\) by \(\phi(x) = i\) if \(x \in A_i\). Then \(\lambda = (\Phi_{\phi, d})_{\mu} \in E(d, 2^n)\) so by (4) there exists a sequence \(\Gamma \cap b_n \{Y_n, \nu_n\} = b_n \in B\), along with \(\phi_n : Y_n \to 2^n\), such that \(\lambda_n \to \lambda\), where \(\lambda_n = (\Phi_{\phi_n, b_n})_{\nu_n}\). Let \(C_0, \ldots, C_{m-1}\) be disjoint clopen subsets of \(2^n\) with \(k_i \in C_i\), and for each \(n \in \mathbb{N}\) let \(B_n^i = \phi_n^{-1}(C_i)\). Then for all \(\gamma \in F\) we have
\[
|\mu(\gamma^d A_i \cap A_j) - \nu_n(\gamma^b B_n^i \cap B_n^j)| = |\lambda(\pi^x_{\gamma}^{-1}(C_i) \cap \pi^x_{\gamma}^{-1}(C_j)) - \lambda_n(\pi^x_{\gamma}^{-1}(C_i) \cap \pi^x_{\gamma}^{-1}(C_j))| \to 0,
\]
so for large enough \(n\) this quantity is smaller than \(\epsilon\).

\[\square\]

3.2. Convexity in the space of actions

The convex sum of measure preserving actions is defined as follows (see also [Ke10, §10 (F)]). Let \(N \in \{1, 2, \ldots, \infty = \mathbb{N}\}\) and let \(\alpha = (\alpha_0, \alpha_1, \ldots) \in [0, 1]^N\) be a finite or countably infinite sequence of non-negative real numbers with \(\sum_{i < N} \alpha_i = 1\). Given actions \(b_i = \Gamma \cap b_i \{X_i, \mu_i\}, i < N\), we let \(\sum_{i < N} X_i = \{(i, x) : i < N \text{ and } x \in X_i\}\) and we let \(\tilde{\mu}_i\) be the image measure of \(\mu_i\) under the inclusion map \(X_i \hookrightarrow \sum_{i < N} X_i, x \mapsto (i, x)\). We obtain a measure preserving action \(\sum_{i < N} \alpha_i b_i = \Gamma \cap \sum_{i < N} b_i \{(i, x), \sum_{i < N} \alpha_i \tilde{\mu}_i\}\) defined by \(\gamma \sum_{i < N} b_i \cdot (i, x) = (i, \gamma^b \cdot x)\). If \((X_i, \mu_i)\) for each \(i < N\) then \(\sum_{i < N} X_i, \sum_{i < N} \alpha_i \tilde{\mu}_i = (N \times X, \eta_\alpha \times \mu)\), where \(\eta_\alpha\) is the discrete probability measure on \(N\) given by \(\eta_\alpha([i]) = \alpha_i\). If, furthermore, \(b_i = b\) for each \(i < N\) then \(\sum_{i < N} \alpha_i b_i = t_{\eta_\alpha} \times b\) is simply the product action.

Lemma 3.7. Let \(b \in A(\Gamma, X, \mu)\) and let \(d = t_{\eta_\alpha} \times b = \sum_{i=0}^{n-1} \alpha_i b\). Then \(E(d, K) \subseteq \co E(b, K) \subseteq E(\iota \times b, K)\) for every compact Polish \(K\).

Proof. Given \(\phi : n \times X \to K\), we want to show that \((\Phi_{\phi, d})_{\eta_\alpha \times \mu} \in \co E(b, K)\). Let \(\phi_i : X \to K\) be given by \(\phi_i(x) = \phi(i, x)\). Then \((\Phi_{\phi, d})^{-1}(A) = \bigcup_{i=0}^{n-1} [i] \times (\Phi_{\phi_i, b})^{-1}(A)\) for \(A \subseteq K^\Gamma\) and it follows that \((\Phi_{\phi, d})_{\eta_\alpha \times \mu} = \sum_{i=0}^{n-1} \alpha_i (\Phi_{\phi_i, b})_{\eta_\alpha \times \mu}\), which shows the first inclusion.

http://journals.cambridge.org Downloaded: 29 Jan 2015 IP address: 131.215.70.231
Let the underlying space of \(t \) be \((Z, \eta)\). Given Borel functions \(\phi_0, \ldots, \phi_{n-1} : X \to K \) and \(\alpha_0, \ldots, \alpha_{n-1} \geq 0 \) with \(\sum_{i=0}^{n-1} \alpha_i = 1 \), we want to show that \(\sum_{i=0}^{n-1} \alpha_i(\Phi_{\phi_i, b})_*\mu \in E(t, b, K) \). Let \(C_0, \ldots, C_{n-1} \) be a Borel partition of \(Z \) with \(\eta(C_i) = \alpha_i \) for \(i = 0, \ldots, n - 1 \). Define \(i : Z \to n \) by \(i(z) = i \) if \(z \in C_i \) and let \(\phi : Z \times X \to K \) be the map \(\phi(z, x) = \phi_i(z)(x) \). Then

\[
\Phi(\phi_i \times b)(z, x)(y) = \phi_i(z)(\gamma^b \cdot x) = \phi_i(z)(y^b \cdot x) = \Phi(\phi_i \times b)(x)(y),
\]

and so \((\Phi(\phi_i \times b))^{-1}(A) = \bigcup_{i=0}^{n-1} C_i \times (\Phi(\phi_i, b))^{-1}(A) \) for all \(A \subseteq K^\Gamma \). It now follows that

\[
\sum_{i=0}^{n-1} \alpha_i(\Phi(\phi_i, b))_\mu = (\Phi(\phi_i \times b))_\mu(\eta \times \mu).
\]

Lemma 3.8. Let \(b \in A(\Gamma, X, \mu) \), let \(\alpha(n) = (1/n, \ldots, 1/n) \in [0, 1]^n \), and let

\[
B_1 = \{ t_{\alpha(n)} \times b : n \geq 1 \}, \quad B_2 = \left\{ t_{\alpha} \times b : n \geq 1, \alpha \in [0, 1]^n, \sum_{i=0}^{n-1} \alpha_i = 1 \right\}.
\]

Then \(t \times b \sim B_1 \sim B_2 \).

Proof. \(B_1 \times B_2 \) is trivial. \(B_2 \times t \times b \) is clear (in fact, \(d \subseteq t \times b \) for every \(d \in B_2 \)). It remains to show that \(t \times b \sim B_1 \). Let \((Z, \eta)\) be the underlying non-atomic probability space of \(t \) and let \(\lambda = \eta \times \mu \). Fix a partition \(\mathcal{P} \) of \(Z \times X \), \(F \subseteq \Gamma \) finite and \(\epsilon > 0 \). We may assume without loss of generality that \(\mathcal{P} \) is of the form \(\mathcal{P} = \{ A_i \times B_j : 0 \leq i < n, 0 \leq j < m \} \), where \(\{A_i\}_{i=0}^{n-1} \) is a partition of \(Z \), \(\{B_j\}_{j=0}^{m-1} \) is a partition of \(X \), and all the sets \(A_0, \ldots, A_{n-1} \) have equal measure. Let \(C_{i, j} = \{(i, x) : x \in B_j\} \). Then, letting \(d = t_{\alpha(n)} \times b \), for all \(\gamma \in F \) and \(i, i' \leq n, j, j' \leq m \), if \(i \neq i' \) we have \(\gamma^d C_{i, j} \cap C_{i', j'} = \emptyset = \gamma^{i \times b}(A_i \times B_j) \cap (A_{i'} \times B_{j'}), \) while if \(i = i' \) we have

\[
(\eta_{\alpha(n)} \times \mu)(\gamma^d C_{i, j} \cap C_{i', j'}) = \frac{1}{n} \mu(\gamma^b B_j \cap B_{j'}) = \eta(A_i) \mu(\gamma^b B_j \cap B_{j'}) = \lambda(\gamma^{i \times b}(A_i \times B_j) \cap (A_i \times B_{j'})),
\]

showing that \(t \times b \sim B_1 \).

Proof of Theorem 1.1. We apply Proposition 3.6 and Lemma 3.8, then Lemma 3.7 to obtain

\[
E(t \times b, K) \subseteq \bigcup_{n \geq 1} E(t_{\alpha(n)} \times b, K) \subseteq \bar{\sigma}E(b, K) \subseteq E(t \times b, K)
\]

and so \(E(t \times b, K) = \bar{\sigma}E(b, K) \).

The proof of Theorem 1.2 now proceeds in analogy with the proof of the corresponding fact for unitary representations (see [BdlHV08, F.1.4]).

Proof of Theorem 1.2. Suppose that \(a \) is ergodic and \(a \prec t \times b \). We want to show that \(a \prec b \), or equivalently \(E(a, K) \subseteq E(b, K) \) for every compact Polish space \(K \). By hypothesis we have that \(E(a, K) \subseteq \overline{E}(t \times b, K) \), so by Theorem 1.1, \(E(a, K) \subseteq \overline{\sigma}E(b, K) \). Since every element of \(E(a, K) \) is ergodic, \(E(a, K) \) is contained in the extreme points of \(M(K^\Gamma) \), and so \(a \) is contained in the extreme points of \(\overline{\sigma}E(b, K) \). Since in a locally convex space the extreme points of a given compact convex set are contained in every closed set generating that convex set (see, for example, [Ph02, Proposition 1.5]), it follows that \(E(a, K) \subseteq \overline{E}(b, K) \), as was to be shown.
3.3. **Ergodic decomposition and weak containment.** We begin with the following observation about factors.

Proposition 3.9. Let d be a measure preserving action of Γ on (Y, ν) and suppose that $\pi : (Y, \nu) \to (Z, \eta)$ is a factor map from d onto an identity action $\Gamma \acts \nu$. Let $v = \int Z v_z d\eta$ be the disintegration of v with respect to π and let $d_z = \Gamma \acts d (Y, v_z)$. Suppose that $a = \Gamma \acts (X, \mu)$ is an ergodic factor of d via the map $\varphi : (Y, \nu) \to (X, \mu)$. Then for η-almost every $z \in Z$, a is a factor of d_z via the map φ.

Proof. The map $\pi \times \varphi : (Y, \nu) \to (Z \times X, (\pi \times \varphi)_*\nu)$, $y \mapsto (\pi(y), \varphi(y))$, factors d onto a joining b of the identity action t_η and the ergodic action a. Since ergodic and identity actions are disjoint [G103, 6.24] we have that $(\pi \times \varphi)_*\nu = \eta \times \mu$ and $b = t_\eta \times a$. The measure $(\pi \times \varphi)_*\nu$ lives on $\{z\} \times X$ almost surely, and

$$\eta \times \mu = (\pi \times \varphi)_*\nu = \int Z (\pi \times \varphi)_*v_z d\eta,$$

so by uniqueness of disintegration $(\pi \times \varphi)_*v_z = \delta_z \times \mu$ almost surely. Since $\text{proj}_X \circ (\pi \times \varphi) = \varphi$ we have that $\varphi_*\nu = (\text{proj}_X)_*(\delta_z \times \mu) = \mu$ almost surely. \(\square\)

Corollary 3.10. If a is ergodic and φ factors d onto a then φ factors almost every ergodic component of d onto a.

Using ultraproducts of measure preserving actions (see Appendix A) we can prove an analogous result for weak containment, which generalizes Theorem 1.2. For the remainder of this section we fix a non-principal ultrafilter U on \mathbb{N} and we also fix a compact Polish space K homeomorphic to $2^{\mathbb{N}}$. Let $a_n = \Gamma \acts (Y_n, \nu)$, $n \in \mathbb{N}$, be a sequence of measure preserving actions of Γ and let $a_U = \Gamma \acts (Y_U, \mu_U)$ be the ultraproduct of the sequence a_n with respect to the non-principal ultrafilter U on \mathbb{N}. Let $\Phi_n : Y_n \to K$ be a sequence of Borel functions and let $\Phi_U = \Phi^{\phi_{\cdot \cdot \cdot \cdot \cdot} : Y_U \to K$. We let ϕ denote the ultralimit function determined by the sequence ϕ_n, that is, $\phi : Y_U \to K$ is the function given by

$$\phi([y_n]) = \lim_{n \to U} \Phi_n(y_n)$$

for $[y_n] \in Y_U$. The function ϕ is B_U-measurable since $\phi^{-1}(V) = [\phi_n^{-1}(V)]$ whenever $V \subseteq K$ is open.

Proposition 3.11. Let $\Phi = \Phi^{\phi_{\cdot \cdot \cdot \cdot \cdot}}$. Then:

1. $\Phi([y_n]) = \lim_{n \to U} \Phi_n(y_n)$ for all $[y_n] \in Y_U$;
2. $\Phi_*\nu_U = \lim_{n \to U}(\Phi_n)_*\nu_n$;
3. for every B_U-measurable function $\psi : Y_U \to K$ there exists a sequence $\varphi_n : Y_n \to K$ of Borel functions such that $\psi([y_n]) = \lim_{n \to U} \varphi_n(y_n)$ for ν_U-almost every $[y_n] \in Y_U$.

Proof. (1) For each $[y_n] \in Y_U$ and $\gamma \in \Gamma$ we have

$$\Phi([y_n])(\gamma) = \phi((\gamma^{-1})^{a_U}[y_n]) = \phi([(\gamma^{-1})^{a_U}y_n]) = \lim_{n \to U} \phi((\gamma^{-1})^{a_n}y_n)$$

$$= \lim_{n \to U} \Phi_n(y_n)(\gamma) = \left(\lim_{n \to U} \Phi_n(y_n)\right)(\gamma),$$

the last equality following by continuity of the evaluation map $f \mapsto f(\gamma)$ on K^Γ.

http://journals.cambridge.org Downloaded: 29 Jan 2015 IP address: 131.215.70.231
(2) Let \(\lambda = \lim_{n \to \mathcal{U}}(\Phi_n)_*v_n \). Then \(\lambda \) is the unique element of \(M_*(K^\Gamma) \) such that \(\lambda(C) = \lim_{n \to \mathcal{U}}((\Phi_n)_*v_n(C)) \) for all clopen \(C \subseteq K^\Gamma \). Part (1) implies that \(\Phi^{-1}(C) = [\Phi^{-1}_n(C)] \) whenever \(C \subseteq K^\Gamma \) is clopen, and so \(\Phi_*v_\mathcal{U}(C) = \lim_{n \to \mathcal{U}}v_n(\Phi^{-1}_n(C)) = \lim_{n \to \mathcal{U}}(\Phi_n)_*v_n(C) \).

(3) We may assume that \(K = 2^\mathbb{N} \). For \(m \in \mathbb{N} \) define \(\psi_m : Y_\mathcal{U} \to K \) by \(\psi_m((y_n)) = \psi((y_n))(m) \). For \(i \in \{0, 1\} \) let \(A^{m,i} = \psi^{-1}_m((i)) \in B_\mathcal{U} \) and fix \([A^{m,i}] \in A_\mathcal{U} \) such that \(v_\mathcal{U}(A^{m,i} \Delta [A^{m,i}]) = 0 \). For each \(m, n \in \mathbb{N} \) let \(B^{m,0}_n = A^{m,0}_n \setminus A^{m,1}_n \) and let \(B^{m,1}_n = Y_n \setminus B^{m,0}_n \) so that \(\{B^{m,0}_n, B^{m,1}_n\} \) is a Borel partition of \(Y_n \). Then for each \(m \in \mathbb{N} \) we have \(v_\mathcal{U}(A^{m,0} \Delta [B^{m,1}_n]) = 0 = v_\mathcal{U}(A^{m,1} \Delta [B^{m,1}_n]) \). Define \(\varphi_n : Y_\mathcal{U} \to Y \) by taking \(\varphi_n(y)(m) = i \) if and only if \(y \in B^{m,i}_n \). Let \(\varphi : Y_\mathcal{U} \to K \) be the ultralimit function \(\varphi((y_n))(m) = \lim_{n \to \mathcal{U}}\varphi_n(y)(m) \). Then for \(i \in \{0, 1\} \) we have

\[
\varphi([y_n])(m) = i \iff \lim_{n \to \mathcal{U}}\varphi_n(y)(m) = i \iff \{n : y_n \in B^{m,i}_n\} \in \mathcal{U} \iff [y_n] \in [B^{m,i}_n],
\]

and so \(\varphi \) is equal to \(\psi \) off the null set \(\bigcup_{m \in \mathbb{N}, i \in \{0, 1\}} A^{m,i} \Delta [B^{m,i}_n] \).

Theorem 3.12. Let \(\mathcal{d} \) be a measure preserving action of \(\Gamma \) on \((Y, \nu) \) and suppose that \(\pi : (Y, \nu) \to (Z, \eta) \) is a factor map from \(\mathcal{d} \) onto an identity action \(\Gamma \curvearrowright \eta \). Let \(\nu = \int_z \nu_z d\eta \) be the disintegration of \(\nu \) with respect to \(\pi \) and let \(\mathcal{d}_\mathcal{z} = \Gamma \curvearrowright \mathcal{d}(Y, \nu_z) \). Suppose that \(\mathcal{a} = \Gamma \curvearrowright \mathcal{d} \) is ergodic and weakly contained in \(\mathcal{d} \). Then \(\mathcal{a} \) is weakly contained in \(\mathcal{d}_\mathcal{z} \) for almost all \(z \in Z \).

Proof. Taking \(K = 2^\mathbb{N} \), it suffices to show for each \(\lambda \in E(\mathcal{a}, K) \) that \(\eta([z : \lambda \in E(\mathcal{d}_\mathcal{z}, K)]) = 1 \). Let \(\mathcal{U} \) be a non-principal ultrafilter on \(\mathbb{N} \) and let \(\mathcal{D}_\mathcal{U} = \Gamma \curvearrowright \mathcal{d}_\mathcal{U} \). Then \(\mathcal{U} \) and \(\mathcal{U} \) are the ultrapowers of \(\mathcal{d} \) and \(\eta \), respectively. The map \(\pi_\mathcal{U} : Y_\mathcal{U} \to Z_\mathcal{U} \) defined by \(\pi_\mathcal{U}((y_n)) = [\pi(y_n)] \) factors \(\mathcal{D}_\mathcal{U} \) onto \(\mathcal{U} \).

Given any \(\lambda \in E(\mathcal{a}, K) \), since \(\mathcal{a} \prec \mathcal{d} \) there exists \(\phi_\mathcal{a} : Y \to K \) such that \((\Phi^{\phi_\mathcal{a}, \mathcal{d}})_*\nu \to \lambda \).

Let \(\Phi : Y_\mathcal{U} \to K \) be the ultralimit of the functions \(\phi_\mathcal{a} \), let \(\Phi_\mathcal{U} = \Phi^{\phi_\mathcal{a}, \mathcal{d}} \), and let \(\Phi = \Phi^{\phi_\mathcal{d}, \mathcal{U}} \).

Claim. \(\lim_{n \to \mathcal{U}}(\Phi_n)_*v_n = \lambda \) for \(\eta_\mathcal{U} \)-almost every \([z_n] \in Z_\mathcal{U} \).

Proof of claim. By Proposition A.1, \(\nu_\mathcal{U}(A) = \int_{[z_n]} v_{[z_n]}(A) d\eta_\mathcal{U} \) for all \(A \in B_\mathcal{U}(Y_\mathcal{U}) \). As \(\sigma_*v_{[z_n]} \) lives on \([z_n] \times K^\Gamma \), it follows for \(D \in B_\mathcal{U}(z_\mathcal{U}) \) and \(C \subseteq K^\Gamma \) that

\[
\int_{[z_n]} \lambda(C) d\eta_\mathcal{U} = \eta_\mathcal{U}(D \setminus C) = \int_{[z_n]} \sigma_*v_{[z_n]}(D \setminus C) d\eta_\mathcal{U} = \int_{[z_n]} \Phi_*v_{[z_n]}(C) d\eta_\mathcal{U} = \int_{[z_n]} \Phi_*v_{[z_n]}(D \setminus C) d\eta_\mathcal{U} = \int_{[z_n]} \Phi_*v_{[z_n]}(C) d\eta_\mathcal{U}.
\]

Thus for each clopen \(C \subseteq K^\Gamma \), \(\Phi_*v_{[z_n]}(C) = \lambda(C) \) for \(\eta_\mathcal{U} \)-almost every \([z_n] \in Z_\mathcal{U} \). It follows that \(\Phi_*v_{[z_n]} = \lambda \) for \(\eta_\mathcal{U} \)-almost every \([z_n] \in Z_\mathcal{U} \). By Proposition 3.11, \(\lim_{n \to \mathcal{U}}(\Phi_n)_*v_n = \lambda \) for \(\eta_\mathcal{U} \)-almost every \([z_n] \in Z_\mathcal{U} \).\(\Box \)
If now V is any open neighborhood of λ in $M_\lambda(K^\Gamma)$ then let $B = \{z \in Z : E(d_z, K) \cap V = \emptyset\}$. Suppose toward a contradiction that $\eta(B) > 0$, then let $B_n = B$ for all n so that $[B_n] \in A_{\text{I}tl}(Z_{\text{I}l})$ and $\eta([B_n]) > 0$. Thus, for some $[z_n] \in [B_n]$ we have $\lim_{n \to \text{I}l} \nu_{z_n} = \lambda$ and so for some $n \in \mathbb{N}$ with $z_n \in B_n = B$ we have $(\Phi_n)_* \nu_{z_n} \in E(d_{z_n}, K) \cap V$, which contradicts the definition of B. This shows that $\eta(B) = 0$. It follows that $\lambda \in \overline{(d_z, K)}$ almost surely. □

Theorem 3.13. Let $\varphi : \Gamma \curvearrowright (X, \mu) \to \Gamma \curvearrowright (Z, \eta)$ and $\psi : \Gamma \curvearrowright (Y, \nu) \to \Gamma \curvearrowright (Z, \eta)$ be factor maps from b and d respectively onto ι_0. Let $\mu = \int_Z \mu_z \, d\eta$ and $\nu = \int_Z \nu_z \, d\eta$ be the disintegrations of μ and ν via φ and ψ respectively, and for each $z \in Z$ let $b_z = \Gamma \curvearrowright (X, \mu_z)$ and let $d_z = \Gamma \curvearrowright (Y, \nu_z)$. Then:

1. If $b_z < d_z$ for all $z \in Z$ then $b < d$;
2. If $b < d$ for all $z \in Z$ then $\iota_0 \times b < \iota_0 \times d$;
3. If $b_z \sim d_z$ for all $z \in Z$ then $b \sim d$ and if $b \sim d$ for all $z \in Z$ then $\iota_0 \times b \sim \iota_0 \times d$.

We also have the following version for stable weak containment (see Appendix B).

1. If $b_z \prec_s d_z$ for all $z \in Z$ then $b \prec_s d$.
2. If $b_z \prec d$ for all $z \in Z$ then $b \prec d$, and if $b_z \prec d$ for all $z \in Z$ then $b \prec d$.
3. If $b_z \sim_s d_z$ for all $z \in Z$ then $b \sim_s d$, and if $b \sim_s d$ for all $z \in Z$ then $b \sim_s d$.

Proof. (1) Let $\{B_n\}_{n \in \mathbb{N}}$ be a countable algebra of subsets of Y generating the Borel σ-algebra of Y. Fix a partition A_0, \ldots, A_{k-1} of Borel subsets of X along with $F \subseteq \Gamma$ finite and $\epsilon > 0$. For each z there exists a k-tuple $(n_0(z), \ldots, n_{k-1}(z)) \in \mathbb{N}^k$ such that the sets $B_{n_0}, \ldots, B_{n_{k-1}} \subseteq Y$ witness that $b_z \prec d_z$ with respect to the parameters A_0, \ldots, A_{k-1}.

We let $n(z) = (n_0(z), \ldots, n_{k-1}(z))$ be the lexicographically least k-tuple that satisfies this for z. For each $j < k$ the set

$$D_j = \{y \in Y : \exists z \in Z(\psi(y) = z \text{ and } y \in B_{n_j(z)})\} = \bigcup_z (B_{n_j(z)} \cap \psi^{-1}(z))$$

is analytic and so is measurable. For all $z \in Z$, $\gamma \in \Gamma$, and $j < k$ we then have that $\gamma^d D_j \cap \psi^{-1}(z) = \gamma^d B_{n_j(z)} \cap \psi^{-1}(z)$ and it follows that $\nu_z(\gamma^d D_j \cap D_j) = \nu_z(\gamma^d B_{n_j(z)} \cap B_{n_j(z)})$, since ν_z concentrates on $\psi^{-1}(z)$. For $\gamma \in F$ and $i, j < k$ we then have

$$|\nu(\gamma^d D_i \cap D_j) - \mu(\gamma^b A_i \cap A_j)|$$

$$\leq \int_{z \in Z} |\nu_z(\gamma^d B_{n_i(z)} \cap B_{n_j(z)}) - \mu_z(\gamma^{b \mu} A_i \cap A_j)| \, d\eta(z) \leq \eta(Z) \epsilon = \epsilon$$

which finishes the proof of (1).

Statements (2) through (6) now follow from (1). □

Question 3.14. Is every measure preserving action d of Γ stably weakly equivalent to an action with countable ergodic decomposability?

A positive answer to Question 3.14 would be an ergodic theoretic analogue of the fact that every unitary representation of Γ on a separable Hilbert space is weakly...
equivalent to a countable direct sum of irreducible representations ([Di77]; this also follows from [BdlHV08, F.2.7]). We also mention the following related problem.

Problem 3.15. Describe the set \(\text{ex}(\overline{\text{co}}E(a, 2^N)) \) of extreme points of \(\overline{\text{co}}E(a, 2^N) \) for \(a \in \mathcal{A}(\Gamma, X, \mu) \).

4. **Consequences of Theorem 1.2 and applications to MD and EMD**

4.1. **Free, non-ergodic weak equivalence classes.** We can now prove Theorem 1.3.

Proof of Theorem 1.3. If \(a \) is any ergodic action of \(\Gamma \) and \(a < \iota \times b \) then by Theorem 1.2 \(a < b \), and so \(a \) is strongly ergodic. It follows that we cannot also have \(\iota \times b < a \), otherwise \(a \) would not be strongly ergodic.

Remark 4.1. Foreman and Weiss [FW04, Claim 18] show that for any free measure preserving action \(a = \Gamma \ltimes^\alpha (X, \mu) \) of an infinite amenable group, \(b < a \) for every \(b \in \mathcal{A}(\Gamma, X, \mu) \). We note that a quick alternative proof of this follows from [BT-D13, Theorem 1.2], which says that if \(\Delta \) is a normal subgroup of a countably infinite group \(\Gamma \) and \(\Gamma/\Delta \) is amenable, then \(b < \text{ClInd}_\Delta^\Gamma((\iota \times b)|\Delta) \) for every \(b \in \mathcal{A}(\Gamma, X, \mu) \). Taking \(\Gamma \) to be an infinite amenable group and \(\Delta = \langle e \rangle \) the trivial group, the restriction \((\iota \times b)|\langle e \rangle\) is trivial, so \(\text{ClInd}_{\langle e \rangle}^\Gamma((\iota \times b)|\langle e \rangle) \) is the Bernoulli shift action \(s_\Gamma \) of \(\Gamma \). Thus, \(b < s_\Gamma \). By [AW13, Theorem 1] (or alternatively, Corollary 1.6), since \(a \) is free, we have \(s_\Gamma < a \) and so \(b < a \).

Combining this with Theorem 1.3 gives a new characterization of (non-)amenability for a countable group \(\Gamma \).

Corollary 4.2. A countably infinite group \(\Gamma \) is non-amenable if and only if there exists a free measure preserving action of \(\Gamma \) that is not weakly equivalent to any ergodic action.

Remark 4.3. It is noted in [CK13, 4.(C)] that if \(\Gamma \) is a non-amenable group, and if \(S \subseteq \Gamma \) is a set of generators for \(\Gamma \) such that the Cayley graph \(\text{Cay}(\Gamma, S) \) is bipartite, then there are continuum many weak equivalence classes of free measure preserving actions of \(\Gamma \). Their method of using convex combinations of actions can be used to show that this holds for all non-amenable \(\Gamma \), and in fact the proof shows that there exists a collection \(\{a_\alpha : 0 < \alpha \leq \frac{1}{2}\} \) with \(a_\alpha \) and \(a_\beta \) weakly incomparable when \(\alpha \neq \beta \). Indeed, if \(a = \Gamma \ltimes^\alpha (X, \mu) \) is any free strongly ergodic action of \(\Gamma \) (which exists when \(\Gamma \) is non-amenable), then for any \(0 < \alpha < \beta \leq \frac{1}{2} \) the actions \(a_\alpha = a + (1 - \alpha)\alpha \) and \(a_\beta = \beta a + (1 - \beta)\alpha \) are weakly incomparable. To see this, note that any action weakly containing \(a_\alpha \) has a sequence of asymptotically invariant sets with measures converging to \(\alpha \). Since \(a \) is strongly ergodic it is clear that no such sequence exists for \(a_\beta \), and so \(a_\alpha \not\prec a_\beta \). Similarly, \(a_\beta \not\prec a_\alpha \).

It is open whether every non-amenable group has continuum many weak equivalence classes of free ergodic measure preserving actions. It is in fact unknown whether there exists a non-amenable group with just one free ergodic action up to weak equivalence (though it is shown in the fourth remark after [Ke10, Proposition 13.2] that any such group must, among other things, have property (T) and cannot contain a non-abelian free group). In [AE12] Abért and Elek show that \(\Gamma \) has continuum many pairwise weakly incomparable (hence inequivalent) free ergodic actions when \(\Gamma \) is a finitely generated free group or a
linear group with property (T). Their result also holds for stable weak equivalence in view of the following consequence of Theorem 1.2.

COROLLARY 4.4. Let \(a \) and \(b \) be ergodic measure preserving actions of \(\Gamma \) and let \((Z, \eta)\) be a standard probability space. Then \(a \sim b \) if and only if \(\iota_{\eta} \times a \sim \iota_{\eta} \times b \). In particular, \(a \sim b \) if and only if \(a \sim_s b \).

Proof. If \(a \sim b \) then \(\iota_{\eta} \times a \sim \iota_{\eta} \times b \) by continuity of the product operation. Conversely, if \(\iota_{\eta} \times a \sim \iota_{\eta} \times b \) then \(a \prec \iota_{\eta} \times a \prec \iota_{\eta} \times b \) so that \(a \prec b \) by Theorem 1.2. Likewise, \(b \prec a \), so \(a \sim b \). \(\square \)

I also do not know whether every non-amenable group has continuum many stable weak equivalence classes of free measure preserving actions, or whether there exists a non-amenable group all of whose free measure preserving actions are stably weakly equivalent.

4.2. The properties MD and EMD.

Definition 4.5. Let \(B \) be a class of measure preserving actions of a countable group \(\Gamma \). If \(a \in B \) then \(a \) is called universal for \(B \) if \(b \prec a \) for every \(b \in B \). When \(a \) is universal for the class of all measure preserving actions of \(\Gamma \) then \(a \) is simply called universal.

Definition 4.6. [Ke12] Let \(\Gamma \) be a countably infinite group. Then \(\Gamma \) is said to have property EMD if the measure preserving action \(p_{\Gamma} \) of \(\Gamma \) on its profinite completion is universal. \(\Gamma \) is said to have property EMD* if \(p_{\Gamma} \) is universal for the class of all ergodic measure preserving actions of \(\Gamma \). \(\Gamma \) is said to have property MD if \(\iota \times p_{\Gamma} \) is universal.

If \(\Gamma \) has property EMD, EMD*, or MD, then \(p_{\Gamma} \) must be free (this follows, for example, from the proof of Lemma 5.3 below) and so \(\Gamma \) must be residually finite. It is also clear that EMD implies both EMD* and MD. We now show that EMD* and MD are equivalent.

Proof of Theorem 1.4. The implication EMD* \(\Rightarrow \) MD is shown in [Ke12], but also follows from Theorem 3.13 above. For the converse, suppose that \(\Gamma \) has MD so that \(\iota \times p_{\Gamma} \) is universal, and let \(a \) be an ergodic action of \(\Gamma \). Then \(a \prec \iota \times p_{\Gamma} \), so since \(a \) is ergodic, Theorem 1.2 implies \(a \prec p_{\Gamma} \). Thus \(p_{\Gamma} \) is universal for ergodic actions of \(\Gamma \), and so \(\Gamma \) has EMD*.

COROLLARY 4.7. EMD and MD are equivalent for groups without property (T).

Proof. Suppose that \(\Gamma \) has MD and does not have (T). Then \(\iota \times p_{\Gamma} \) is universal and, by Theorem 1.4, \(p_{\Gamma} \) is universal for ergodic measure preserving actions. Since \(\Gamma \) does not have property (T) there exists an ergodic \(a = \Gamma \curvearrowright (X, \mu) \) with \(\iota \prec a \), and so \(\iota \prec a \prec p_{\Gamma} \). Since \(p_{\Gamma} \) is ergodic with \(\iota \prec p_{\Gamma} \) it follows that \(\iota \times p_{\Gamma} \prec p_{\Gamma} \) (see [AW13, Theorem 3]) and so \(p_{\Gamma} \) is universal.

In what follows, if \(\varphi : \Gamma \to \Delta \) is a group homomorphism then for each \(a \in A(\Delta, X, \mu) \) we let \(a^{\varphi} \in A(\Gamma, X, \mu) \) denote the action that is the composition of \(a \) with \(\varphi \), that is, \(\gamma^{a^{\varphi}} = \varphi(\gamma)^{a} \). Also, we note that for any two countable groups \(\Gamma_1, \Gamma_2 \), there is a natural equivariant homeomorphism from the diagonal action \(\text{Aut}(X, \mu) \curvearrowright A(\Gamma_1 \times \Gamma_2, X, \mu) \) to \(\text{Aut}(X, \mu) \curvearrowright A(\Gamma_1 \ast \Gamma_2, X, \mu) \). We denote this map
by \((a_1, a_2) \mapsto a_1 * a_2\). See [Ke10, §10 (G)]. We also refer to [Ke10, Appendix G] and [Zi84] for information about induced actions.

Theorem 4.8. Suppose that \(\Gamma_1 \) and \(\Gamma_2 \) are non-trivial countable groups and that for each \(i \in \{1, 2\}, \Gamma_i \) is either finite or has property MD. Then \(\Gamma_1 \ast \Gamma_2 \) has property EMD.

Proof. Let \(a_1 * a_2 \in A(\Gamma_1 \ast \Gamma_2, X, \mu)\) be given and let \(U = U_1 \ast U_2\) be an open neighborhood of \(a_1 * a_2\), where \(U_i\) is an open neighborhood of \(a_i\) for \(i = 1, 2\). It suffices to show that \(U_1 \ast U_2\) contains an ergodic profinite action. By [Ke12, Proposition 4.8], for each \(i = 1, 2\) there exists a finite group \(F_i \neq \{e\}\) along with a homomorphism \(\varphi_i : \Gamma_i \rightarrow F_i\) and \(b_i \in A(F_i, X, \mu)\) such that the corresponding measure preserving action \(b_i^\varphi \) of \(\Gamma_i\) is in \(U_i\). Let \(\varphi = \varphi_1 * \varphi_2 : \Gamma_1 \ast \Gamma_2 \rightarrow F_1 \ast F_2\) and let \(b = b_1 * b_2\). Then \(b_1^\varphi \ast b_2^\varphi \in U_1 \ast U_2\). For \(i \in \{1, 2\}\), using continuity of the map \(a \mapsto a^{\varphi_i}\), we may find an open neighborhood \(V_i \subseteq A(F_i, X, \mu)\) of \(b_i\) such that \(\{a^{\varphi_i} : a \in V_i\} \subseteq U_i\). Then \(b \in V_1 \ast V_2\), and for all \(d \in V_1 \ast V_2\) we have \(d^{\varphi} \in U_1 \ast U_2\).

Fix a (possibly abelian) finite index free subgroup \(F\) of \(F_1 \ast F_2\) (one may take \(F = \ker(\psi) = \{F_1, F_2\}\), where \(\psi\) is the natural homomorphism \(F_1 \ast F_2 \rightarrow F_1 \times F_2\), and since \(F\) has EMD [Ke12, Theorem 1] we have \(b|_F < p_F\). Letting \(a_{F/F}\) denote the action of \(F\) on \(F/F\) with normalized counting measure, we now have

\[
b \subseteq b \ast a_{F/F} \cong \text{Ind}_{F}^{\Gamma_1}(b|_F) \ast \text{Ind}_{F}^{\Gamma_2}(p_F) .
\]

The action \(d = \text{Ind}_{F}^{\Gamma_1}(p_F)\) is a profinite action, and \(d\) is ergodic since \(p_F\) is ergodic. As \(b < d\) there exists an isomorphic copy \(d_0\) of \(d\) in \(V_1 \ast V_2\). Then \(d_0^{\varphi} \in U_1 \ast U_2\), and \(d_0^{\varphi}\) is ergodic and profinite since \(d\) is ergodic and profinite.

Note 4.9. The group \(\Gamma_1 \ast \Gamma_2\) never has property (T) when \(\Gamma_1\) and \(\Gamma_2\) are non-trivial, so by Corollary 4.7 it would have been enough to show in the above proof that \(\Gamma_1 \ast \Gamma_2\) has MD, and then EMD would follow.

Theorem 4.10. The following are equivalent:

1. MD and EMD are equivalent properties for any countably infinite group \(\Gamma\);
2. EMD passes to subgroups;
3. MD is incompatible with property (T).

Proof. (1) \(\Rightarrow\) (2): property MD passes to subgroups, so if MD and EMD are equivalent, then EMD passes to subgroups. (2) \(\Rightarrow\) (1): if \(\Gamma\) is a countable group with MD then \(\Gamma \ast \Gamma\) has EMD, so if EMD passes to subgroups then \(\Gamma\) actually has EMD. (1) \(\Rightarrow\) (3): EMD is incompatible with property (T) since if \(\Gamma\) is an infinite residually finite group with property (T) then \(p_{\Gamma}\) is strongly ergodic so that \(t \neq p_{\Gamma}\). Thus, if MD and EMD are equivalent then MD is also incompatible with property (T). (3) \(\Rightarrow\) (1): this follows immediately from Corollary 4.7.

Note also that Theorem 1.2 gives the following proposition.

Proposition 4.11. MD is incompatible with \(\lnot((\tau) \land \lnot(T))\). That is, if a group \(\Gamma\) has both MD and property \((\tau)\), then \(\Gamma\) actually has property \((T)\).
Proof. If Γ has MD then by Corollary 4.7, p_{Γ} is universal for ergodic actions, so if Γ does not have (T) then there exists an ergodic a with $t < a$. This implies $t < p_{\Gamma}$ so that Γ does not have property (τ).

5. Weak equivalence and invariant random subgroups

5.1. Invariant random subgroups.

We let $\text{Sub}(\Gamma)$ denote the set of all subgroups of Γ. This is a compact subset of 2^Γ with the product topology, and is invariant under the left conjugation action of Γ, which is continuous, and which we denote by c, that is, $\gamma^c \cdot H = \gamma H \gamma^{-1}$. We will always view Γ as acting on $\text{Sub}(\Gamma)$ by conjugation, though the underlying measure on $\text{Sub}(\Gamma)$ will vary. By an invariant random subgroup of Γ we mean a conjugation-invariant Borel probability measure θ on $\text{Sub}(\Gamma)$. Invariant random subgroups are studied in [AGV12] as a stochastic generalization of normal subgroups. See also [AE11, Bo10, Ve11]. We let $\text{IRS}(\Gamma)$ denote the space of all invariant random subgroups of Γ. When $\theta \in \text{IRS}(\Gamma)$ we will let θ denote the measure preserving action $\Gamma \curvearrowright_{c} (\text{Sub}(\Gamma), \theta)$. For a measure preserving action $a = \Gamma \curvearrowright (X, \mu)$ we let $\text{type}(a)$ denote the type of a, which is defined to be the measure $(\text{stab}_a)_* \mu$ on $\text{Sub}(\Gamma)$, where $\text{stab}_a : X \rightarrow \text{Sub}(\Gamma)$ is the stabilizer map $x \mapsto \text{stab}_a(x) = \Gamma_x = \{ \gamma \in \Gamma : \gamma^a x = x \} \subset \text{Sub}(\Gamma)$. It is clear that $\text{type}(a)$ is always an IRS of Γ. Types are studied in [AE11] in order to examine freeness properties of measure preserving actions.

5.2. The compact space of weak equivalence classes.

Abért and Elek [AE11] define a compact Polish topology on the set of weak equivalence classes of measure preserving actions of Γ. We define this topology below and provide a variation of their proof showing that it is a compact Polish topology.

For this subsection we fix a standard probability space (X, μ) and a compact zero-dimensional Polish space K homeomorphic to Cantor space $2^\mathbb{N}$. We let $\mathcal{K} = \mathcal{K}(M_s(K^\Gamma))$ denote the space of all non-empty compact subsets of $M_s(K^\Gamma)$, equipped with the Vietoris topology τ_V which makes \mathcal{K} into a compact Polish space. Since $M_s(K^\Gamma)$ is a compact metric space, convergence in this topology may be described as follows. A sequence $L_n \in \mathcal{K}$, $n \in \mathbb{N}$, converges if and only if the sets

$$\overline{\text{lim}_n} L_n = \{ \lambda \in M_s(K^\Gamma) : \exists (\lambda_n) [\forall n \lambda_n \in L_n, \ and \ \lambda_n \rightarrow \lambda] \}$$

are equal, in which case their common value is the limit of the sequence L_n (see, for example, [Ke95, 4.F]).

Let $\Phi : A(\Gamma, X, \mu) \rightarrow \mathcal{K}$ be the map

$$\Phi(a) = \overline{E(a, K)}.$$

By Proposition 3.6, $\Phi(a) = \Phi(b)$ if and only if $a \sim b$. We now have the following theorem.

Theorem 5.1. The image of Φ in \mathcal{K} is a closed, hence compact subset of (\mathcal{K}, τ_V).

Let \(a_0, a_1, a_2, \ldots \) be a sequence in \(A(\Gamma, X, \mu) \) and suppose that \(\Phi(a_n) \) converges in \((K, \tau_K) \) to the compact set \(L \in K \). We will show that there exists \(a_\infty \in A(\Gamma, X, \mu) \) such that \(\Phi(a_\infty) = L \). Since \(E(a_n, K) \) is dense in \(\Phi(a_n) \) we may write \(L \) as

\[
L = \{ \lambda \in M_s(K^\Gamma) : \exists (\lambda_n) [\forall n \lambda_n \in E(a_n, K), \text{and} \lambda_n \to \lambda] \} = \{ \lambda \in M_s(K^\Gamma) : \exists (\lambda_n) [\forall n \lambda_n \in E(a_n, K), \text{and for some subsequence} (\lambda_{n_k}), \lambda_{n_k} \to \lambda] \}.
\]

Fix a non-principal ultrafilter \(\mathcal{U} \) on \(\mathbb{N} \), let \((X_{\mathcal{U}}, \mu_{\mathcal{U}}) \) be the ultrapower of the measure space \((X, \mu)\), and let \(a_{\mathcal{U}} = \Gamma \cap_{\mathcal{U}} X_{\mathcal{U}}, \mu_{\mathcal{U}} \) denote the ultraproduct \(\prod_n a_n/\mathcal{U} \) of the sequence \(\{a_n\}_{n \in \mathbb{N}} \).

Claim. \(L = E(a_{\mathcal{U}}, K) \).

Proof of claim. Let \(\lambda \in L \) and let \(\lambda_n \in E(a_n, K), n \in \mathbb{N} \), with \(\lambda_n \to \lambda \). For each \(n \) there exists \(\phi_n : X \to K \) such that \(\lambda_n = (\Phi_{\phi_n,a_n})_n \mu \). Let \(\phi : X_{\mathcal{U}} \to K \) be the ultralimit of the functions \(\phi_n \). By Proposition 3.11(2),

\[
(\Phi_{\phi,a_{\mathcal{U}}})_{\mu_{\mathcal{U}}} = \lim_{n \to \mathcal{U}} (\Phi_{\phi_n,a_n})_n \mu = \lim_{n \to \mathcal{U}} \lambda_n = \lambda.
\]

This shows that \(\lambda \in E(a_{\mathcal{U}}, K) \), and thus \(L \subseteq E(a_{\mathcal{U}}, K) \).

Conversely, let \(\lambda \in E(a_{\mathcal{U}}, K) \), say \(\lambda = (\Phi_{\psi,a_{\mathcal{U}}})_n \mu_{\mathcal{U}} \) for some \(\mathcal{U} \)-measurable \(\psi : X_{\mathcal{U}} \to K \). By Proposition 3.11(3), we may find a sequence \(\phi_n : X \to K, n \in \mathbb{N} \), of Borel functions such that, letting \(\phi \) denote the ultralimit of the \(\phi_n \), \(\mu_{\mathcal{U}} \)-almost everywhere \(\psi([x_n]) = \phi([x_n]) \). Let \(\Phi_n = \Phi_{\phi_n,a_n} \), let \(\Phi = \Phi_{\phi,a_{\mathcal{U}}} \), and let \(\lambda_n = (\Phi_n)_n \mu \in E(a_n, K) \). Then \(\Phi_{\psi,a_{\mathcal{U}}}([x_n]) = \Phi([x_n]) \) almost everywhere, so by Proposition 3.11(2) we have \(\lambda = (\Phi_{\psi,a_{\mathcal{U}}})_n \mu_{\mathcal{U}} = \Phi_\mu_{\mathcal{U}} = \lim_{n \to \mathcal{U}} \lambda_n \) so there exists a subsequence \(n_0 < n_1 < \cdots \) such that \(\lambda_{n_k} \to \lambda \). Hence \(\lambda \in L \) and so \(E(a_{\mathcal{U}}, K) \subseteq L \). \(\square \)

Let \(D \subseteq L \) be a countable dense subset of \(L = E(a_{\mathcal{U}}, K) \). For each \(\lambda \in D \) we choose some \(B_{\lambda} \)-measurable \(\phi_\lambda : X_{\mathcal{U}} \to K \) with \((\Phi_{\phi_\lambda,a_{\mathcal{U}}})_n \mu_{\mathcal{U}} = \lambda \), and we also choose a sequence \(\phi_{\lambda,m} : X_{\mathcal{U}} \to K, m \in \mathbb{N} \), of functions converging in measure to \(\phi_\lambda \), such that each \(\phi_{\lambda,m} \) is constant on some \(B_{\lambda} \)-measurable finite partition \(\mathcal{P}(\lambda,m) \) of \(X_{\mathcal{U}} \).

By Theorem A.3 there exists a countably generated standard factor \(M \) of \(\text{MALG}_{\mu_{\mathcal{U}}} \) containing \(\bigcup_{\lambda \in D} \bigcup_{m \in \mathbb{N}} \mathcal{P}(\lambda,m) \) that is isomorphic to \(\text{MALG}_\mu \). Let \(a_\infty \) be an action on \((X, \mu) \) corresponding to a point realization of the action of \(\Gamma \) on \(M \) by measure algebra automorphisms. It is clear that \(E(a_\infty, K) \subseteq E(a_{\mathcal{U}}, K) = L \). We show that \(D \subseteq E(a_\infty, K) \). Given \(\lambda \in D \), each of the functions \(\phi_{\lambda,m} \) is \(M \)-measurable, so \((\Phi_{\phi_{\lambda,m},a_{\mathcal{U}}})_n \mu_{\mathcal{U}} \in E(a_\infty, K) \) for all \(m \). Since \(\phi_{\lambda,m} \to \phi_\lambda \) in measure it follows that \((\Phi_{\phi_{\lambda,m},a_{\mathcal{U}}})_n \mu_{\mathcal{U}} \to \lambda \), and thus \(\lambda \in E(a_\infty, K) \). Thus \(L = E(a_\infty, K) \). \(\square \)

For \(a \in A(\Gamma, X, \mu) \) let \([a] \subseteq A(\Gamma, X, \mu) \) denote the weak equivalence class of \(a \) in \(A(\Gamma, X, \mu) \). Let \(A_\sim(\Gamma, X, \mu) = \{ [a] : a \in A(\Gamma, X, \mu) \} \) be the set of all weak equivalence classes of elements of \(A(\Gamma, X, \mu) \), and let \(\tau \) denote the topology on \(A_\sim(\Gamma, X, \mu) \) obtained by identifying \(A_\sim(\Gamma, X, \mu) \) with a closed subset of \((K, \tau_K) \) via \(\Phi \). This makes \(A_\sim(\Gamma, X, \mu) \) into a compact metrizable space.
Theorem 5.2.

(1) [AE11] The type, type(a), of a measure preserving action is an invariant of weak equivalence.

(2) The map $[a] \mapsto \text{type}(a)$ is a continuous map from the space $(A \sim (\Gamma, X, \mu, \tau)$ of weak equivalence classes of measure preserving actions of Γ to the space IRS(Γ) of invariant random subgroups of Γ equipped with the weak* topology.

Proof. Let $b_n \in A(\Gamma, X, \mu), n \in \mathbb{N}$, and suppose that $[b_n] \to [b]$ in τ, that is, $E(b_n, K) \to E(b, K)$ in τ_V. In light of Proposition A.4, both (1) and (2) will follow once we show that type$(a_n) \to \text{type}(a)$ for all $a_n \in [b_n]$ and $a \in [b]$. Let $\theta = \text{type}(a_n)$ and let $\theta = \text{type}(a)$. Let $F, G \subseteq \Gamma$ be finite. We define $N_F = \{H \in \text{Sub}(\Gamma): F \cap H = \emptyset\}$, $N_{F,G} = \{H \in \text{Sub}(\Gamma): F \cap H = \emptyset$ and $G \subseteq H\}$ and

$$A^n_F = \bigcup_{\gamma \in F} \text{supp}(\gamma^{a_n}), \quad A^n_{F,G} = \bigcap_{\gamma \in F} \text{supp}(\gamma^{a_n}) \cap \bigcap_{\gamma \in G} X\backslash \text{supp}(\gamma^{a_n}),$$

$$A_F = \bigcup_{\gamma \in F} \text{supp}(\gamma^a), \quad A_{F,G} = \bigcap_{\gamma \in F} \text{supp}(\gamma^a) \cap \bigcap_{\gamma \in G} X\backslash \text{supp}(\gamma^a).$$

Then $\theta_n(N_F) = \mu(A^n_F), \theta_n(N_{F,G}) = \mu(A^n_{F,G}), \theta(N_F) = \mu(A_F), \quad \theta(N_{F,G}) = \mu(A_{F,G})$. We will be done once we show that $\mu(A^n_{F,G}) \to \mu(A_{F,G})$ for all finite $F, G \subseteq \Gamma$.

We first show that $\mu(A^n_F) \to \mu(A_F)$ for all finite $F \subseteq \Gamma$.

Lemma 5.3. $\mu(A_F) \leq \liminf_n \mu(A^n_F)$ for all finite $F \subseteq \Gamma$.

Proof. We may write A_F as a countable disjoint union $A_F = \bigsqcup_{m \geq 0} A_m$, where $\mu(\gamma^a A_m \cap A_m) = 0$ for all $\gamma \in F$ and $m \in \mathbb{N}$. Then for any $\epsilon > 0$ we can find M so large that $\sum_{m \geq M} \mu(A_m) < \epsilon/2 |F|$. Since $[a_n] \to [a]$ in τ we have that $E(a, K) \subseteq \text{TLim}_n E(a, K)$ so, by Proposition 3.6, $a < [a_n : n \in I]$ for any infinite $I \subseteq \mathbb{N}$. There thus exists N such that for each $n > N$ we can find A^n_0, \ldots, A^n_{M-1} such that for all $\gamma \in F \cup \{e\}$ and $i, j < M$ we have

$$|\mu(\gamma^a A_i \cap A_j) - \mu(\gamma^{a_n} A^n_i \cap A^n_j)| < \frac{\epsilon}{2M^2 |F|}.$$

Then, fixing n with $n > N$, in particular we have $\mu(\gamma^{a_n} A^n_i \cap A^n_j) < (\epsilon/2M^2 |F|)$ and $|\mu(A_i) - \mu(A^n_i)| < (\epsilon/2M^2 |F|)$ for all $\gamma \in F$ and $i, j < M$, and $\mu(A^n_i \cap A^n_j) < (\epsilon/2M^2 |F|)$ for all $i, j < M, i \neq j$. Define for $i < M$ the sets

$$B^n_i = A^n_i \setminus \left(\bigcup_{\gamma \in F} \gamma^{a_n} A^n_i \cup \bigcup_{j \neq i} A^n_j \right).$$

Then for $\gamma \in F, \gamma^{a_n} B^n_i \cap B^n_i = \emptyset$, and for $i \neq j, B^n_i \cap B^n_j = \emptyset$. Thus $\bigsqcup_i B^n_i \subseteq A^n_F$. Since $\mu(B^n_i) \geq \mu(A^n_i) - ((M - 1) + |F|)(\epsilon/2M^2 |F|) > \mu(A_i) - \epsilon/2M$ it follows that

$$\mu(A^n_F) \geq \sum_{i < M} \mu(B^n_i) > (\sum_{i < M} \mu(A_i)) - \epsilon/2 > \mu(A_F) - \epsilon.$$

Since this holds for all $n > N$ and since $\epsilon > 0$ was arbitrary we are done. \qed
LEMMA 5.4. \(\limsup_n \mu(A^n_F) \leq \mu(A_F) \) for all finite \(F \subseteq \Gamma \).

Proof. We may write each \(A^n_F \) as a countable disjoint union \(A^n_F = \bigcup_{m=0}^{\infty} A^n_m \), where for all \(n, m \in \mathbb{N}, \gamma^a \cdot A^n_m \cap A^n_m = \emptyset \). We also define \(A^n_{-1} = X \setminus A^n_F \). Let \(B_{-1}, B_0, B_1, B_2, \ldots \) be a sequence of disjoint non-empty clopen subsets of \(K \), let \(k_m \in B_m \), and define \(\phi_n : X \to K \) by \(\phi_n(x) = k_m \) for \(x \in A^n_m \). The set

\[
B_F = \{ f \in K^\Gamma : (\forall m \geq -1)[f(e) \in B_m \Rightarrow (\forall n \in F)(f(\gamma) \notin B_m)] \}
\]

is closed and contained in the open set \(U_F = \{ f : \forall \gamma \in F \ f(\gamma) \neq f(e) \} \). Fixing \(n \), for each \(m \geq 0 \) we have that

\[
(\Phi_{\phi_n}^{-1})(\pi^{-1}_e(B_m) \cap \bigcup_{\gamma \in F} \pi^{-1}_\gamma(B_m)) = A^n_m \cap \bigcup_{\gamma \in F} \gamma_a A^n_F = \emptyset,
\]

while for \(m = -1 \) we have that \((\Phi_{\phi_n}^{-1})(\pi^{-1}_e(B_{-1}) \cap \bigcup_{\gamma \in F} \pi^{-1}_\gamma(B_{-1})) = A^n_{-1} \) since \(A^n_{-1} = \bigcup_{\gamma \in F} \gamma_a A^n_{-1} \). It follows that \((\Phi_{\phi_n}^{-1})(B_F) = A^n_F \). Let \(\lambda_n = (\Phi_{\phi_n})_* \mu \in E(a_n, K) \). Take any convergent subsequence \(\{\lambda_{n_k}\} \), and let \(\lambda = \lim_k \lambda_{n_k} \). Since \(E(a_n, K) \to E(a, K) \) we have that \(\lambda \in E(a, K) \), so let \(\rho_n = (\Phi_{\psi_n})_* \mu \in E(a, K) \) be such that \(\rho_n \to \lambda \). We now have

\[
\limsup_k \mu(A^n_{\rho_k}) = \lim_k \lambda_{n_k}(B_F) \leq \lambda(B_F) \leq \lambda(U_F)
\]

\[
\leq \liminf_n \rho_n(U_F) = \liminf_n \mu((x : \forall \gamma \in F \ \psi_n((\gamma^{-1})^a x) \neq \psi_n(x)))
\]

\[
\leq \mu(A_F).
\]

Since the convergent subsequence \(\{\lambda_{n_k}\} \) was arbitrary we conclude that \(\limsup_n \mu(A^n_F) \leq \mu(A_F) \). \(\square \)

It follows from the above two lemmas that \(\mu(A_F) = \lim_n \mu(A^n_F) \) for all finite \(F \subseteq \Gamma \). Now let \(F, G \subseteq \Gamma \) be finite and note that \(A^n_F = A^n_{F,G} \cup \bigcup_{\gamma \in G} A^n_{F \cup \gamma} \) and \(A_F = A_{F,G} \cup \bigcup_{\gamma \in G} A_{F \cup \gamma} \). We have just shown that \(\mu(A_F) = \lim_n \mu(A^n_F) \). By the inclusion-exclusion principle we have

\[
\mu\left(\bigcup_{\gamma \in G} A^n_{F \cup \gamma} \right) = \sum_{k=1}^{[G]} (-1)^{k-1} \sum_{J \subseteq G \mid |J| = k} \mu(A^n_{F \cup J}).
\]

and since \(\mu(A^n_{F \cup J}) \to \mu(A_{F \cup J}) \) for each \(J \subseteq G \) it follows after another application of inclusion-exclusion that \(\mu(\bigcup_{\gamma \in G} A^n_{F \cup \gamma}) \to \mu(\bigcup_{\gamma \in G} A_{F \cup \gamma}) \). Thus \(\mu(A^n_{F,G}) \to \mu(A_{F,G}) \). \(\square \)

COROLLARY 5.5. [AE11] For each \(\theta \in IRS(\Gamma) \), \(\{[a] : \text{type}(a) = \theta\} \subseteq A_{\sim}(\Gamma, X, \mu) \) is compact in \(\tau \). In particular, \(\{[a] : [a] \text{ is free}\} \) is compact in \(\tau \).

Remark 5.6. The technique used in the proof of Theorem 5.2 can be used to show that combinatorial invariants of measure preserving actions such as independence number (see [CK13, CKT-D13]) are continuous functions on \((A_{\sim}(\Gamma, X, \mu), \tau) \).
Theorem 5.7. Let Γ be a countable group.

1. The map $(A(\Gamma, X, \mu), w) \rightarrow (A_{\sim}(\Gamma, X, \mu), \tau)$, $a \mapsto [a]$ is Baire class 1. In particular, for each $\theta \in \text{IRS}(\Gamma)$ the space $\{a \in A(\Gamma, X, \mu) : \text{type}(a) = \theta\}$ is a G_δ hence Polish subspace of $(A(\Gamma, X, \mu), w)$.

2. The topology τ is a refinement of the quotient topology on $A_{\sim}(\Gamma, X, \mu)$ induced by w. If (X, μ) is not a discrete space and $\Gamma \neq \{e\}$ then the τ topology is strictly finer than the quotient topology.

Proof. We begin with (1). For this we show that $a \mapsto E(a, K) \in \mathcal{K}$ is Baire class 1. We observe that $\{a : E(a, K) \subseteq C\}$ is closed in $(A(\Gamma, X, \mu), w)$ whenever $C \subseteq M_s(K^{1})$ is closed. This is because if $a_n \in A(\Gamma, X, \mu)$, $n \in \mathbb{N}$, is such that $E(a, K) \subseteq C$ and $a_n \rightarrow a \in A(\Gamma, X, \mu)$ in the weak topology then $E(a, K) \subseteq \bigcup_n E(a_n, K) \subseteq C$.

The topology τ_V on \mathcal{K} is generated by the sets $\{L : L \subseteq U\}$ and $\{L : L \cap U \neq \emptyset\}$, where U ranges over all open subsets of $M_s(K^{1})$. For any open $U \subseteq M_s(K^{1})$ the above observation shows that $\{a : E(a, K) \cap U \neq \emptyset\}$ is open, and if we write $U = \bigcup_n C_n$, where each C_n is closed and $C_n \subseteq \text{int}(C_{n+1})$, then $\{a : E(a, K) \subseteq U\} = \bigcup_n \{a : E(a, K) \subseteq C_n\}$, which is F_σ.

For the first part of (2) we note that the following are equivalent for a subset B of $A(\Gamma, X, \mu)$:

(i) B is weakly closed and for all $a, b \in A(\Gamma, X, \mu)$, $a \in B$ and $b \sim a$ implies $b \in B$;

(ii) B is weakly closed and for all $a, b \in A(\Gamma, X, \mu)$, $a \in B$ and $b \equiv a$ implies $b \in B$;

(iii) for all $a \in A(\Gamma, X, \mu)$, $a \prec B$ implies $a \in B$.

The implication (i) \Rightarrow (ii) is trivial, (ii) \Rightarrow (iii) follows from Proposition 3.6, and (iii) \Rightarrow (i) follows from the fact that if $a_n \rightarrow a$ in $A(\Gamma, X, \mu)$ then $a \prec \{a_n\}_{n \in \mathbb{N}}$. To show the first part of (2) it suffices to show that if B satisfies the above equivalent properties, then $B_{\sim} = \{[a] : a \in B\}$ is closed in τ. Let $L = \bigcup_{a \in B} E(a, K)$. Then $L \subseteq M_s(K^{1})$ is closed and property (iii) tells us that $B_{\sim} = \{[a] \in A_{\sim}(\Gamma, X, \mu) : E(a, K) \subseteq L\}$, which is exactly the definition of a basic closed set in τ_V.

Suppose that (X, μ) is not discrete and let $C \subseteq X$ be the continuous part of X so that $\mu(C) > 0$. Then (C, μ_C) is a standard non-atomic probability space so there exists a universal measure preserving action $a = \Gamma \curvearrowright (C, \mu_C)$ weakly containing all other measure preserving actions of Γ. Let b be the action of Γ on (X, μ) whose restriction to C is equal to a and whose restriction to $X \setminus C$ is identity and let $b = \Gamma \curvearrowright (X, \mu)$. As $\mu_C \prec a$ by Lemma 3.5 there exist isomorphic copies of a converging to μ_C in $A(\Gamma, C, \mu_C)$. This yields isomorphic copies of b converging to μ in $A(\Gamma, X, \mu)$. Thus $[\mu]$ is in the closure of $\{[b]\}$ in the quotient topology, but $[\mu]$ is not in the τ topology closure of $\{[b]\}$ since $\Gamma \neq \{e\}$ so that $[\mu] \neq [b]$. □

Remark 5.8. The map $\mathcal{K} \rightarrow \mathcal{K}$ sending $L \mapsto \overline{\partial}L$ is continuous in the Vietoris topology τ_V. Indeed, if $L_n \rightarrow L_\infty$ we show that $\overline{\lim_n} \overline{\partial}L_n \subseteq \overline{\partial}L_\infty \subseteq \overline{\lim_n} \overline{\partial}L_n$. Let $\lambda \in \overline{\lim_n} \overline{\partial}L_n$ so that there exists $\lambda_n \in \overline{\partial}L_n$ with $\lambda_n \rightarrow \lambda$. Then there exist probability measures μ_n on $M_s(K^{1})$ supported on L_n with $\lambda_n = \int_{\rho \in M_s(K^{1})} \rho \ d\mu_n$ and (after moving to a subsequence if necessary) we may assume that μ_n converges to some measure μ on $M_s(K^{1})$. Then $\lambda = \int_{\rho \in M_s(K^{1})} \rho \ d\mu$. Let $C_0 \supseteq C_1 \supseteq \cdots$ be a sequence of closed subsets of $M_s(K^{1})$ with $L_\infty \subseteq \text{int}(C_m)$ for all m and $L_\infty = \bigcap_m C_m$. For each m the
set \(\{ L \in K : L \subseteq C_m \} \) is a neighborhood of \(L_\infty \) in \(K \) and so contains \(L_{n_k} \) for all large enough \(k \). It follows that \(\mu(C_m) \geq \lim \inf_k \mu_{n_k}(C_m) = 1 \), and so \(\mu(L_\infty) = \lim_m \mu(C_m) = 1 \). Since \(\mu \) is supported on \(L_\infty \) and has barycenter \(\lambda \), it follows that \(\lambda \in \overline{\sigma L}_\infty \). For the second inclusion it is easy to see that \(\sigma L_\infty \subseteq \overline{\lim}_n \sigma L_n \) and since the latter set is closed it follows that \(\overline{\sigma L}_\infty \subseteq \overline{\lim}_n \sigma L_n \).

If now \(a \) is a measure preserving action of \(\Gamma \) and \((Y, \nu) \) is non-atomic then \(a \) is stably weakly equivalent to an action on \((Y, \nu) \) and we let \([a]_s = \{ b : b \sim s, a \} \) denote the stable weak equivalence class of \(a \) in \((Y, \nu) \) (see Definition B.1). It follows that the space \(A_{\sim, s}(\Gamma, Y, \nu) = \{ [a]_s : a \) is a measure preserving action of \(\Gamma \} \) of all stable weak equivalence classes of measure preserving actions of \(\Gamma \) may be viewed as a compact subset of \(K \) via the map \([a]_s \mapsto \overline{\sigma E}(a, K) \). Since type \((a) = \text{type}(s \times a) \) it follows that type \((a) \) is an invariant of stable weak equivalence. The map \([a] \mapsto \text{type}(a) \) then factors through \([a] \mapsto [a]_s \), and so Theorem 5.2 also holds for stable weak equivalence.

5.3. Random Bernoulli shifts. Given \(\theta \in \text{IRS}(\Gamma) \), one constructs a measure preserving action of \(\Gamma \) of type \(\theta \) as follows (see [AGV12, Proposition 45]).

Fix a standard probability space \((Z, \eta) \) and let \(Z^{\leq \Gamma} = \bigsqcup_{H \in \text{Sub}(\Gamma)} Z^H\backslash \Gamma \). Here, \(H \backslash \Gamma \) denotes the collection of right cosets of \(H \) in \(\Gamma \). We define the projection map \(Z^{\leq \Gamma} \to \text{Sub}(\Gamma), f \mapsto H_f \in \text{Sub}(\Gamma) \), where \(H_f = H \) when \(f \in Z^H\backslash \Gamma \). We endow \(Z^{\leq \Gamma} \) with the standard Borel structure it inherits as a Borel subset of \(Z^\Gamma \times \text{Sub}(\Gamma) \) via the injection \(f \mapsto ((\gamma \mapsto f(H_f \gamma)), H_f) \). The image of \(Z^{\leq \Gamma} \) under this map is invariant under the product action \(\tilde{s} \times c \) of \(\Gamma \) on \(Z^{\leq \Gamma} \times \text{Sub}(\Gamma) \) (where \(\tilde{s} \) denotes the shift action of \(\Gamma \) on \(Z^{\Gamma} \)), and we let \(s \) denote the corresponding action of \(\Gamma \) on \(Z^{\leq \Gamma} \). We have that \(H_f \gamma = \gamma H_f \gamma^{-1} \) for each \(\gamma \in \Gamma \) and \(f \in Z^{\leq \Gamma} \) and \((\gamma s f)(\gamma H_f \gamma^{-1} s) = f(H_f \gamma^{-1} s) \). Let \(\eta^{H \Gamma} \) denote the product measure on \(Z^H \backslash \Gamma \subseteq Z^{\leq \Gamma} \), and observe that under this action we have \((\gamma s)_{\ast} \eta^{H \Gamma} = \eta^{H \Gamma} \gamma^{-1} \Gamma \). It follows that the measure \(\eta^{\theta} \) on \(Z^{\leq \Gamma} \) defined by

\[
\eta^{\theta} = \int_H \eta^{H \Gamma} d\theta(H)
\]

is invariant under the action of \(\Gamma \). We let \(s_{\theta, \eta} \) denote the measure preserving action \(\Gamma \curvearrowright^s (Z^{\leq \Gamma}, \eta^{\theta} \Gamma) \), and we call \(s_{\theta, \eta} \) the \(\theta \)-random Bernoulli shift of \(\Gamma \) over \((Z, \eta) \). This action always contains \(\theta \) as a factor via the ‘projection’ map \(f \mapsto H_f \). When \(\eta \) is non-atomic, the stabilizer map \(f \mapsto \Gamma_f \) of \(s_{\theta, \eta} \) coincides almost everywhere with this projection. Indeed, if \(\eta \) is non-atomic then for \(\eta^{\theta} \)-almost every \(f \) the function \(f : H \backslash \Gamma \to Z \) is injective. Since every \(\gamma \in \Gamma_f \) satisfies \(f(H_f \gamma^{-1}) = f(H_f) \), the inclusion \(\Gamma_f \subseteq H_f \) is immediate for injective \(f \), and as \(H_f \subseteq \Gamma_f \) always holds we conclude that \(\Gamma_f = H_f \) almost surely. In particular, type \((s_{\theta, \eta}) = \theta \). We have thus shown the following proposition.

Proposition 5.9. [AGV12, Proposition 45] Let \(\Gamma \) be a countable group. For every \(\theta \in \text{IRS}(\Gamma) \) there exists a measure preserving action of type \(\theta \). Namely, the \(\theta \)-random Bernoulli shift \(s_{\theta, \eta} \) over a non-atomic base space \((Z, \eta) \) has type \(\theta \).

It is clear that an isomorphism \((Z_1, \eta_1) \cong (Z_2, \eta_2) \) of measure spaces induces an isomorphism \(s_{\theta, \eta_1} \cong s_{\theta, \eta_2} \). The next proposition characterizes precisely when type \((s_{\theta, \eta}) = \theta \) for various \(\eta \). Below, we write \(N(H) \) for the normalizer of a subgroup \(H \) of \(\Gamma \).
PROPOSITION 5.10. Let \(\Gamma \) be a countable group, let \(\theta \in \text{IRS}(\Gamma) \), and let \((Z, \eta)\) be a standard probability space.

(1) If \(\eta \) is non-atomic then \(\Gamma_f = H_f \) almost surely.

(2) If \(\eta \) is a point mass then \(\Gamma_f = N(H_f) \) almost everywhere and the map \(f \mapsto H_f \) is an isomorphism \(s_{\theta, \eta} \cong \theta \) so that \(\text{type}(s_{\theta, \eta}) = \text{type}(\theta) \).

(3) Suppose that \(\eta \) is not a point mass. Then for each infinite index subgroup of \(H \leq \Gamma \), \(\Gamma_f = H_f \) for \(\eta^{H \setminus \Gamma} \)-almost every \(f \in Z^{H \setminus \Gamma} \). Thus, if

\[
\theta([H : [\Gamma : H] < \infty \text{ and } N(H) \neq H]) = 0
\]

then \(\Gamma_f = H_f \) almost surely. In particular, if \(\theta \) concentrates on the infinite index subgroups of \(\Gamma \) then \(\Gamma_f = H_f \) almost surely.

(4) Suppose that \(\eta \) contains atoms. If

\[
\theta([H : [\Gamma : H] < \infty \text{ and } N(H) \neq H]) > 0
\]

then \(\text{type}(s_{\theta, \eta}) \neq \theta \).

In particular, \(\text{type}(s_{\theta, \eta}) = \theta \) if and only if \(H_f = \Gamma_f \) almost surely.

Proof. We have already shown (1) in Proposition 5.9 and (2) is clear. For (3) fix an infinite index \(H \leq \Gamma \) along with some \(\gamma \notin H \) and inductively define an infinite sequence \(\{\delta_n\}_{n \in \mathbb{N}} \) by taking \(\delta_{n+1} \in \Gamma \) to be any element of the complement of \(\bigcup_{i \leq n} (\delta_i \cup H\gamma^{-1}\delta_i \cup (\gamma H\gamma^{-1})\delta_i \cup (\gamma H\gamma^{-1})(\gamma \delta_i)) \) (we are using here the fact that the collection \(\{H\delta : H \in \text{Sub}(\Gamma), \delta \in \Gamma, \text{ and } [\Gamma : H] = \infty \} \) of all right cosets of infinite index subgroups of \(\Gamma \) generates a proper ideal of \(\Gamma \) (see, for example, [Ke05, Proof of Lemma 4.4])). By construction all of the cosets \(H\delta_0, H\gamma^{-1}\delta_0, H\delta_1, H\gamma^{-1}\delta_1, \ldots \) are distinct so, letting \(A \subseteq Z \) be any set with \(0 < \eta(A) < 1 \), it follows that

\[
\eta^{H \setminus \Gamma}([\{f : \gamma \in \Gamma_f\}] \leq \eta^{H \setminus \Gamma}([\{f : \forall \delta \in \Gamma (f(H\delta) = f(H\gamma^{-1}\delta))\}])
\]

\[
\leq \eta^{H \setminus \Gamma}\left(\bigcap_{n \in \mathbb{N}} \{f : f(H\delta_n), f(H\gamma^{-1}\delta_n) \in A \text{ or } f(H\delta_n), f(H\gamma^{-1}\delta_n) \notin A \} \right)
\]

\[
= \lim_{N \to \infty} (\eta(A)^2 + (1 - \eta(A))^2)^N = 0.
\]

Thus \(\gamma \notin \Gamma_f \) for \(\eta^{H \setminus \Gamma} \)-almost every \(f \), and since this is true for each \(\gamma \notin H \) we obtain \(\Gamma_f \subseteq H \) for \(\eta^{H \setminus \Gamma} \)-almost every \(f \).

We now prove (4). Let \(\theta_s = \text{type}(s_{\theta, \eta}) \). Let \(z_0 \in Z \) be an atom for the measure \(\eta \). The set \(A = \{f \in Z^{\leq \Gamma} : [\Gamma : H_f] < \infty, N(H_f) \neq H_f \text{ and } \forall \gamma \in \Gamma (f(H\gamma) = z_0)\} \) is \(\eta^{\Gamma \setminus \Gamma} \)-non-null and \(\Gamma_f = N(H_f) \neq H_f \) for each \(f \in A \). Thus \([\Gamma : \Gamma_f] = [\Gamma : N(H_f)] = [\Gamma : H_f] \) for each \(f \in A \). When \(f \notin A \) we still have \([\Gamma : \Gamma_f] \leq [\Gamma : H_f] \). It follows that

\[
\int_H \frac{1}{[\Gamma : H]} d\theta_s = \int_{f \in A} \frac{1}{[\Gamma : H_f]} d\eta^{\Gamma \setminus \Gamma} + \int_{f \notin A} \frac{1}{[\Gamma : H_f]} d\eta^{\Gamma \setminus \Gamma}
\]

\[
> \int_{f \in A} \frac{1}{[\Gamma : H_f]} d\eta^{\Gamma \setminus \Gamma} + \int_{f \notin A} \frac{1}{[\Gamma : H_f]} d\eta^{\Gamma \setminus \Gamma}
\]

\[
= \int_f \frac{1}{[\Gamma : H_f]} d\eta^{\Gamma \setminus \Gamma} = \int_H \frac{1}{[\Gamma : H]} d\theta
\]

and so \(\theta_s \neq \theta \), which finishes (4).
It is clear that $\Gamma_f = H_f$ almost everywhere implies $\text{type}(s_{\theta, \eta}) = \theta$. Suppose now that $\Gamma_f \neq H_f$ for a non-null set of $f \in Z^{\leq \Gamma}$. Then (1) implies that η contains atoms and (3) implies that the set $J = \{ f \in Z^{\leq \Gamma} : [\Gamma : H_f] < \infty \text{ and } \Gamma_f \neq H_f \}$ is non-null. The inclusions $H_f \subseteq \Gamma_f \subseteq N(H_f)$ hold for all $f \in Z^{\leq \Gamma}$ and so
\[
\theta([H : [\Gamma : H] < \infty \text{ and } N(H) \neq H]) \geq \eta^{\theta \setminus \Gamma}(J) > 0.
\]
Part (4) now implies that $\text{type}(s_{\theta, \eta}) \neq \theta$.

THEOREM 5.11. Let Γ be a countable group, let $\theta \in \text{IRS}(\Gamma)$, and let $s_{\theta, \eta}$ be the θ-random Bernoulli shift over the standard measure space (Z, η). Let $p : Z^{\leq \Gamma} \to \text{Sub}(\Gamma)$ denote the projection $p(f) = H_f$ factoring $s_{\theta, \eta}$ onto θ. Assume that η is not a point mass. Then the following are equivalent.

1. θ concentrates on the infinite index subgroups of Γ.
2. The extension $p : s_{\theta, \eta} \to \theta$ is ergodic.
3. The extension $p : s_{\theta, \eta} \to \theta$ is weak mixing.

In particular, if θ is infinite index then $s_{\theta, \eta}$ is ergodic if and only if θ is ergodic.

Proof. (3) \Rightarrow (2) is trivial. For (2) \Rightarrow (1), suppose that $\theta(C) > 0$, where $C = \{ H : [\Gamma : H] < \infty \}$ and let $A \subseteq Z$ be any measurable set with $0 < \eta(A) < 1$. Then the set $B = \{ f \in Z^{\leq \Gamma} : H_f \in C \text{ and } \text{ran}(f) \subseteq A \}$ is a non-trivial invariant set that is not p-measurable.

To show that (1) \Rightarrow (3), we must show that the extension $\tilde{p} : s_{\theta, \eta} \otimes s_{\theta, \eta} \to \theta$ is ergodic, where
\[
s_{\theta, \eta} \otimes s_{\theta, \eta} = \Gamma \curvearrowright s \times s \left(Z^{\leq \Gamma} \times Z^{\leq \Gamma}, \int_H \eta^{H \setminus \Gamma} \times \eta^{H \setminus \Gamma} \, d\theta \right)
\]
and $\tilde{p}(f, g) = p(f)$. Let $(Y, \nu) = (Z \times Z, \eta \times \eta)$. Then we have the natural isomorphism $\varphi : s_{\theta, \eta} \otimes s_{\theta, \eta} \cong s_{\theta, \nu}$ such that $\tilde{p}(f, g) = p \circ \varphi(f, g)$ almost surely, so it suffices to show that the extension $p : s_{\theta, \nu} \to \theta$ is ergodic. If $\theta = \int_{w \in W} \theta(w) \, d\rho(w)$ is the ergodic decomposition of θ then $s_{\theta, \nu}$ decomposes as $s_{\theta, \nu} = \int_{w \in W} s_{\theta, \nu}, d\rho(w)$ and $p : Y^{\leq \Gamma} \to \text{Sub}(\Gamma)$ factors $s_{\theta, \nu}$ onto θ_w almost surely. We may therefore assume that θ is ergodic toward the goal of showing that $s_{\theta, \nu}$ is ergodic as well.

Since θ is ergodic, the index i of $N(H)$ in Γ is constant on a θ-conull set. If $i < \infty$ then the orbit of almost every $H \in \Gamma$ is finite and ergodicity implies that there exists an $H_0 \in \text{Sub}(\Gamma)$ such that θ concentrates on the conjugates of H_0. Then H_0 is an infinite index normal subgroup of $K_0 = N(H_0)$ which implies that the generalized Bernoulli shift action $s = K_0 \curvearrowright (Y^{H_0 \setminus \Gamma}, \eta^{H_0 \setminus \Gamma})$ is ergodic (see, for example, [KT09]). Example 5.13 below then shows that $s_{\theta, \nu} \cong \text{Ind}^\Gamma_{K_0}(s)$, and so $s_{\theta, \nu}$ is ergodic.

If $i = \infty$ then we proceed as follows. Let $(X, \mu) = (Y^{\leq \Gamma}, \nu^{\leq \Gamma})$ and suppose toward a contradiction that $B \subseteq X$ is invariant and $0 < \mu(B) = r < 1$. The map $H \mapsto \nu^{H \setminus \Gamma}(B)$ is conjugation invariant so ergodicity of θ implies that $\nu^{H \setminus \Gamma}(B) = \mu(B) = r$ almost surely. Let $\epsilon > 0$ be small depending on r. Fix some countable Boolean algebra A_0 generating $B(Y)$ and let A be the countable Boolean algebra of subsets of X generated by $\{ \pi^{-1}_\gamma(D) : D \in A_0 \}$, where $\pi_\gamma(f) = f(H_f \gamma)$ for $f \in X$. Then for every $\epsilon > 0$ there exist $A_1, \ldots, A_n \in A$ and a partition C_0, \ldots, C_{n-1} of $\text{Sub}(\Gamma)$ into non-null measurable sets such that $\mu(A \Delta B) < \epsilon^2$, where $A = \bigsqcup_{i < n} (A_i \cap p^{-1}(C_i))$. There exist a finite $F \subseteq \Gamma$ and...
a collection \(\{ D_{i,j} : \delta \in F, \ j < n_i, \ i < n \} \subseteq A_0 \) such that \(A_i = \bigcup_{0 \leq j < n_i} \bigcap_{\delta \in F} \pi_\delta^{-1}(D_{i,j}) \) for each \(i < n \).

Lemma 5.12. Let \(C \subseteq \text{Sub}(\Gamma) \) be any non-null measurable set. Then for \(\theta \)-almost every \(H \in \text{Sub}(\Gamma) \) there exists \(\gamma \in \Gamma \) such that \(\{ H\alpha \}_{\alpha \in F} \cap \{ H\gamma^{-1}\delta \}_{\delta \in F} = \emptyset \) and \(\gamma H\gamma^{-1} \in C \).

Proof. Since \(\theta \) is ergodic and \([\Gamma : N(H)] = \infty \) almost surely, the intersection \(C^H \), of \(C \) with the orbit of \(H \), is almost surely infinite. Fix such an \(H \) with both \([\Gamma : N(H)] = \infty \) and \(C^H \) finite. Since the set \(FF^{-1} \cdot H = \{ \delta\alpha^{-1} H\alpha^{-1} : \alpha, \delta \in F \} \) is finite there exists \(\gamma \in \Gamma \) with \(\gamma H\gamma^{-1} \in C^H \setminus (F F^{-1} \cdot H) \). This \(\gamma \) works: \(\gamma H\gamma^{-1} \notin FF^{-1} \cdot H \) is equivalent to \(\gamma \notin \bigcap_{\alpha, \delta \in F} \delta\alpha^{-1} N(H) \), so if \(\alpha \), \(\delta \in F \) then \(\gamma \notin \delta\alpha^{-1} N(H) \) and thus \(H\alpha \neq \gamma H\gamma^{-1} \delta \). \(\square \)

Using this lemma and measure-theoretic exhaustion we may find a Borel function \(\varphi : \text{Sub}(\Gamma) \to \Gamma, H \mapsto \gamma_H \), with \(\{ H\alpha \}_{\alpha \in F} \cap \{ H\gamma^{-1}\delta \}_{\delta \in F} = \emptyset \) and \(\gamma H\gamma^{-1} \in C \) for almost every \(H \in C_1 \), and such that the function \(\psi : \text{Sub}(\Gamma) \to \text{Sub}(\Gamma), H \mapsto \gamma_H H\gamma_H^{-1} \), is injective on a conull set. In particular, \(\psi \) is measure preserving. Let \(\varphi : X \to X \) be given by \(\varphi(f) = (\gamma_H)^s \cdot f \) so that \(\varphi \) is also injective on a conull set and measure preserving.

For \(H \leq \Gamma \) and \(D \subseteq X \) let \(D_H = D \cap Y^H \Gamma \). Then for each \(i < n \) and almost every \(H \in C_1 \) we have \(\gamma_H H\gamma_H^{-1} \in C_1 \) and

\[
\varphi(A)_{\gamma_H H\gamma_H^{-1}} = (\gamma_H)^s \cdot ((A_i)_H) = \bigcup_{j < n_i, \delta \in F} \{ f \in Y^H H\gamma_H^{-1} \Gamma : f(\gamma_H H\gamma_H^{-1} \gamma_H \alpha) \in D_{i,j} \},
\]

\[
A_{\gamma_H H\gamma_H^{-1}} = (A_i)_{\gamma_H H\gamma_H^{-1}} = \bigcup_{j < n_i, \delta \in F} \{ f \in Y^H H\gamma_H^{-1} \Gamma : f(\gamma_H H\gamma_H^{-1} \delta) \in D_{i,j} \}.
\]

By our choice of \(\gamma_H \) the sets \(\{ \gamma_H H\gamma_H^{-1} \gamma_H \alpha \}_{\alpha \in F} \) and \(\{ \gamma_H H\gamma_H^{-1} \delta \}_{\delta \in F} \) are almost surely disjoint and it follows that the sets \(A \) and \(\varphi(A) \) are \(v_H Y^H \Gamma \)-independent almost surely. Since \(H \mapsto \gamma_H H\gamma_H^{-1} \) is a measure preserving injection it follows that \(A \) and \(\varphi(A) \) are \(v_H \Gamma \)-independent almost surely.

We have

\[
e^2 > \mu(A \Delta B) = \int_H v^{H \setminus \Gamma} (A \Delta B) \, d\theta \geq \int_H |v^{H \setminus \Gamma} (A) - r| \, d\theta
\]

so that \(\theta(\{ H : |v^{H \setminus \Gamma} (A) - r| \leq \epsilon \}) \geq 1 - \epsilon \) and since \(\mu(A \Delta B) = \mu(\varphi(A) \Delta B) \) we also have \(\theta(\{ H : |v^{H \setminus \Gamma} (\varphi(A)) - r| \leq \epsilon \}) \geq 1 - \epsilon \). Then

\[
r = \mu(B) \leq \mu(A \Delta B) + \mu(\varphi(A) \Delta B) + \mu(A \cap \varphi(A)) < 2e^2 + \int_H v^{H \setminus \Gamma} (A) v^{H \setminus \Gamma} (\varphi(A)) \, d\theta \leq 2e^2 + 2e + (r + \epsilon)^2 \to_{\epsilon \to 0} r^2.
\]

This is a contradiction for small enough \(\epsilon \) since \(0 < r < 1 \). \(\square \)

Example 5.13. The simplest example of an ergodic \(\theta \in \text{IRS}(\Gamma) \) is a point mass \(\theta = \delta_N \) on some normal subgroup \(N < \Gamma \). The corresponding random Bernoulli shift \(s_{\delta_N, \eta} \) is isomorphic to the usual generalized shift action of \(\Gamma \) on \((Z^{\Gamma/N}, \eta^{\Gamma/N}) \).

Almost as simple is when \(\theta \in \text{IRS}(\Gamma) \) has the form \(\theta = (1/n) \sum_{i=0}^{n-1} \delta_{\gamma_i H\gamma_i^{-1}} \), where \(H \leq \Gamma \) is a subgroup with finitely many conjugates \(\gamma_0 H\gamma_0^{-1}, \gamma_1 H\gamma_1^{-1}, \gamma_2 H\gamma_2^{-1}, \ldots, \gamma_{n-1} H\gamma_{n-1}^{-1} \). Clearly \(\theta \) is ergodic. In this case the random Bernoulli shift \(s_{\theta, \eta} \) may be described
as follows. The set $T = \{γ_i\}_{i < n}$ is a transversal for the left cosets of the normalizer $K = N(H)$ of H in $Γ$, and the natural action of $Γ$ on T given by $γ · t ∈ γ t K \cap T$ for $γ ∈ Γ$ and $t ∈ T$ preserves normalized counting measure $ν_T$ on T. Since H is normal in K, the restriction to K of the action s leaves $Z^H \setminus Γ$ invariant and preserves the measure $η^H \setminus Γ$ so that $s = K \circ (Z^H \setminus Γ, η^H \setminus Γ)$ becomes the usual generalized Bernoulli shift.

We let b denote the induced action $b = \text{Ind}_{K}^{H}(s)$, which is the measure preserving action $Γ \circ (Z^H \setminus Γ, η^H \setminus Γ)$ given by

$$γ^b (f, t) = (ρ(γ, t)^s f, γ · t),$$

where $ρ : Γ \times T → K$ is the cocycle given by $ρ(γ, t) = (γ · t)^{-1}γ t$. The map $π : Z^H \setminus Γ \times T → Z^N \setminus Γ$ given by $π(f, t) = t^s f ∈ Z^I \setminus Γ$ is an isomorphism of b with $s_θ, η$. Indeed, $π$ is equivariant since

$$π(γ^b (f, t)) = π(ρ(γ, t)^s f, γ · t) = (γ · t)^s ρ(γ, t)^s f = (γ t)^s f = γ^s π(f, t),$$

and $π$ is measure preserving since

$$π^*(η^H \setminus Γ \times ν_T) = \frac{1}{n} \sum_{t ∈ T} π^*(η^H \setminus Γ \times δ_t) = \frac{1}{n} \sum_{t ∈ T} η^1 \setminus Γ = η^0 \setminus Γ.$$

It is also clear that $π$ is injective since $t ↦ t H t^{-1}$ is a bijection of T with the conjugates of H.

5.4. A sufficient condition for weak containment.

Notation. For sets A and B we let $A ⊆ B = \bigcup_{C ⊆ B} A^C$. We identify $k ∈ \mathbb{N}$ with $k = \{0, 1, \ldots, k - 1\}$. A partition of $(X, µ)$ will always mean a finite partition of X into Borel sets. When P is a partition of $(X, µ)$ we will often identify elements of P with their equivalence class in $\text{MALG}_μ$. We use the script letters N, O, P, Q, R, S and T to denote partitions, and the standard italic letters N, O, P, Q, R, S and T respectively to denote their corresponding elements. If P and Q are two partitions of $(X, µ)$ then we let $Q ≤ P$ denote that Q is a refinement of P, that is, every $Q ∈ Q$ is contained, modulo null sets, in some $P ∈ P$. We let $P ∩ Q = \{P \cap Q : P ∈ P, Q ∈ Q\}$ denote the greatest common refinement of P and Q.

Suppose that $Γ \circ (X, µ)$ and $P = \{P_0, \ldots, P_{k-1}\}$ is a partition of X. If J is a finite subset of $Γ$ and $τ ∈ k^J$ then we define

$$P^a_τ = \bigcap_{γ ∈ J} γ^a · P_τ(γ).$$

We will write $P_τ$ when the action a is understood. Note that $P_∅ = X$. We let $Γ$ act on the set $∪\{k^J : J ⊆ Γ$ is finite $\}$ by shift, that is, $(γ · τ)(δ) = τ(γ^{-1}δ)$. Then $\text{dom}(γ · τ) = γ \text{dom}(τ)$.

The following lemma is a generalization of [AW13, Lemma 5]. It establishes a sufficient condition for weak containment which will be used in the proof of Theorem 1.5.
LEMMA 5.14. Suppose that \(a = \Gamma \triangleleft G \) (\(X, \mu \)) and \(B \) is a collection of measure preserving actions of \(\Gamma \). Suppose that \(P(0) \geq P(1) \geq \cdots \) is a sequence of partitions of \(X \) such that the smallest \(a \)-invariant measure algebra containing \(\bigcup_n P(n) \) is all of \(\text{MALG}_\mu \). Then \(a \triangleleft B \) if for any \(n \), writing \(P(n) = \{ P_0, \ldots, P_{k-1} \} \), for all finite subsets \(F \subseteq \Gamma \) and all \(\delta > 0 \), there exist some \(\Gamma \triangleleft b \) (\(Y, v \) = \(b \in B \) and a partition \(Q = \{ Q_0, \ldots, Q_{k-1} \} \) of \(Y \) such that for all \(\tau \in k^\mathbb{E} \), \(|\mu(P_\tau) - v(Q_\tau)| < \delta \).

Proof. Suppose that the condition is satisfied and let \(A_1, \ldots, A_m \in \text{MALG}_\mu \), \(F_0 \subseteq \Gamma \) finite with \(e \in F_0 \), and \(\epsilon > 0 \) be given. Let \(e \in G_0 \subseteq G_1 \subseteq \cdots \) be an increasing exhaustive sequence of finite subsets of \(\Gamma \), and let \(B^{(n)} \) denote the Boolean algebra generated by \(\bigcup_{\gamma \in G_n} \gamma^a : \mathcal{P}(n) \). Then \(B^{(0)} \subseteq B^{(1)} \subseteq \cdots \), and the Boolean algebra \(\bigcup_n B^{(n)} \) is dense in \(\text{MALG}_\mu \). We may therefore find some \(N \in \mathbb{N} \) and sets \(D_1, \ldots, D_m \in B^{(N)} \) such that \(\mu(A_i \Delta D_i) < \epsilon/4 \) for all \(i \leq m \). Let \(G = G_N \) and let \(P = \mathcal{P}^{(N)} = \{ P_0, \ldots, P_{k-1} \} \).

We can express each \(D_i \) as a finite disjoint union of sets of the form \(P_\tau \), \(\in \Gamma \). Applying the condition given by the lemma to \(F = F_0 G \) and \(0 < \delta < \epsilon/2k|G| \) we obtain \(\Gamma \triangleleft b \) (\(Y, v \) = \(b \in B \) and a partition \(Q = \{ Q_0, \ldots, Q_{k-1} \} \) \(\subseteq \text{MALG}_\mu \)) such that for all \(\tau \in k^{\mathbb{E}} F_0 G \), \(|\mu(P_\tau) - v(Q_\tau)| < \delta \). For \(i < m \) we let \(B_i = \bigcup_{Q_\sigma} \{ Q_\sigma : \sigma \in I_i \} \). Note that for \(\gamma \in F_0 \) and \(\sigma, \sigma' \in k^G \) we have \(\text{dom}(\gamma \cdot \sigma) = \gamma G \subseteq F_0 G \) and

\[
\gamma^a \cdot P_\sigma \cap P_{\sigma'} = \begin{cases} P_{\gamma^a \cdot \sigma \cap \sigma'} & \text{if } \gamma \cdot \sigma \text{ and } \sigma' \text{ are compatible}, \\ \emptyset & \text{otherwise}, \end{cases}
\]

\[
\gamma^b \cdot Q_\sigma \cap Q_{\sigma'} = \begin{cases} Q_{\gamma^b \cdot \sigma \cap \sigma'} & \text{if } \gamma \cdot \sigma \text{ and } \sigma' \text{ are compatible}, \\ \emptyset & \text{otherwise}. \end{cases}
\]

It follows from our choice of \(F \) that \(|\mu(\gamma^a P_\sigma \cap P_{\sigma'}) - v(\gamma^b Q_\sigma \cap Q_{\sigma'})| < \delta \) for all \(\sigma, \sigma' \in k^G \). We now have for \(i, j \leq m \) and \(\gamma \in F_0 \) that

\[
|\mu(\gamma^a A_i \cap A_j) - \mu(\gamma^b B_i \cap B_j)| \leq \frac{\epsilon}{2} + |I_i| |I_j| \delta < \epsilon.
\]

5.5. Independent joinings over an IRS and the proof of Theorem 1.5. Let \(a = \Gamma \triangleleft a \) (\(Y, v \)) be a non-atomic measure preserving action of \(\Gamma \), and let \(\theta = \text{type}(a) \). The stabilizer map \(y \mapsto \Gamma_y \) factors \(a \) onto \(\theta \) and we let \(v = \int_H v_H \, d\theta \) be the corresponding disintegration of \(v \) over \(\theta \). Fix a standard probability space \((Z, \eta) \) and let \(s_{\theta, \eta} = \Gamma \triangleleft \theta \) (\(Z \subseteq \Gamma \), \(\eta^\theta \Gamma \)) be the \(\theta \)-random Bernoulli shift over \((Z, \eta) \). The map \(f \mapsto H_f \) factors \(s_{\theta, \eta} \) onto \(\theta \) and the corresponding disintegration is given by \(\eta^\theta \Gamma = \int_H \eta^H \, d\theta \). The relatively independent joining of \(s_{\theta, \eta} \) and \(a \) over \(\theta \) is then the action \(\Gamma \triangleleft s \times a \) (\(Z \subseteq \Gamma \times Y \), \(\eta^\theta \Gamma \otimes \theta v \)), where

\[
\eta^\theta \Gamma \otimes \theta v = \int_H (\eta^H \Gamma \times v_H) \, d\theta = \int_H \left(\eta^H \Gamma \times \int_{\{y: H_y = H\}} \delta_y \, dv_H(y) \right) \, d\theta
\]

\[
= \int_y (\eta^\Gamma \Gamma \times \delta_y) \, dv.
\]
It is clear that \(\eta^0|_Y \otimes \nu \) concentrates on the set \(Z^{\leq \Gamma} \otimes \mu Y = \{(f, y) : H_f = \Gamma_y\} \). We write \(b = \Gamma \setminus (X, \mu) \) for \(\Gamma \setminus \times (Z^{\leq \Gamma} \otimes \mu Y, \eta^0|_Y \otimes \theta \nu) \), so that \(b = s \times a, X = Z^{\leq \Gamma} \otimes \mu Y \), and
\[
\mu = \int_{y \in Y} \eta^\Gamma_{\setminus Y} \times \delta_y \, d\nu(y).
\]

Theorem 1.5 then says that \(b \) is weakly equivalent to \(a \).

Proof of Theorem 1.5. It suffices to show that \(b < a \). Let \(N(0) \geq N(1) \geq \cdots \) and \(R(0) \geq R(1) \geq \cdots \) be sequences of finite partitions of \(Z \) and \(Y \), respectively, such that \(\bigcup_n N(n) \) generates \(\text{MALG}_\eta \) and \(\bigcup_n R(n) \) generates \(\text{MALG}_\nu \) (for example, if \(Z = Y = 2^\mathbb{N} \) then we can let \(N(n) = R(n) \) consist of the rank \(n \) basic clopen sets). For each \(y \in \Gamma \) let \(\pi_y : X \rightarrow Z \) be the projection \(\pi_y(f, y) = f(\Gamma_y) \) and define the finite partitions \(S(0) \geq S(1) \geq \cdots \) of \(X \) by
\[
S(n) = \{ \pi_y^{-1}(N) : N \in N(n) \}.
\]

For \(A \subseteq Y \) let \(\tilde{A} \subseteq X \) denote the inverse image of \(A \) under the projection map \((f, y) \mapsto y \in Y \) and define
\[
\tilde{R}(n) = \{ \tilde{R} : R \in R(n) \}.
\]

Then the smallest \(b \)-invariant measure algebra containing the partitions \(P(n) = S(n) \wedge \tilde{R}(n), n \in \mathbb{N} \), is all of \(\text{MALG}_\mu \). Fix \(n \), write \(N = N(n) = \{N_0, \ldots, N_{d-1}\} \), and for \(i < d \) let
\[
S_i = \pi_i^{-1}(N_i), \quad \alpha_i = \mu(S_i) = \eta(N_i),
\]
along with
\[
S = S(n) = \{S_0, \ldots, S_{d-1}\}, \quad R = R(n) = \{R_0, \ldots, R_{k-1}\}, \quad P = P(n) = \{P_{i,j} = S_i \cap \tilde{R}_j : i < d, \ j < k\}.
\]

For \(F \subseteq \Gamma \) finite we naturally identify \((d \times k)^F \) with \(\bigcup_{J \subseteq F} d^J \times k^J \). Under this identification, for \(J \subseteq F \) and \((\tau, \sigma) \in d^J \times k^J \) we have
\[
P^b_{(\tau, \sigma)} = \bigcap_{\gamma \in J} \gamma^{s \times a} P_{\tau(\gamma), \sigma(\gamma)} = \bigcap_{\gamma \in J} (\gamma^{s \times a} S_{\tau(\gamma)} \cap \gamma^{s \times a} \tilde{R}(\gamma)) = \bigcap_{\gamma \in J} (\gamma^{s \times a} S_{\tau(\gamma)} \cap \gamma^{s \times a} \tilde{R}(\gamma)) = S^b_{\tau} \cap \tilde{R}^b_{\sigma}.
\]

By Lemma 5.14, to show that \(b < a \) it suffices to show that for every \(F \subseteq \Gamma \) finite, and \(\epsilon > 0 \), there exists a partition \(Q = \{Q_{i,j} : i < d, \ j < k\} \) of \(Y \) such that for all \(J \subseteq F \), \((\tau, \sigma) \in d^J \times k^J \),
\[
|\mu(S_{\tau} \cap \tilde{R}_{\sigma}) - \nu(Q_{(\tau, \sigma)})| < \epsilon.
\]

Fix such an \(F \subseteq \Gamma \) finite and \(\epsilon > 0 \). We will proceed by finding a partition \(T = \{T_0, \ldots, T_{d-1}\} \) of \(Y \), and then take \(Q_{i,j} = T_i \cap R_j \), in which case we will have
\[
Q_{(\tau, \sigma)} = \left(\bigcap_{\gamma \in J} \gamma^a T_{\tau(\gamma)} \right) \cap \left(\bigcap_{\gamma \in J} \gamma^a R_{\sigma(\gamma)} \right) = T_{\tau} \cap R_{\sigma}.
\]
We are therefore looking for a partition \mathcal{T} so that
\[\forall (\tau, \sigma) \in (d \times k)^{\leq F}, \quad |\mu(S_{\tau} \cap \tilde{R}_\sigma) - \nu(T_{\tau} \cap R_\sigma)| < \epsilon. \]
(5.1)

We first calculate the value of $\mu(S_{\tau} \cap \tilde{A})$ for $\tau \in d^J$ ($J \subseteq F$) and $A \subseteq Y$. Let E_J denote the finite collection of all equivalence relations on the set J. For $E \in E_J$ let us say that $E \in E_J$ respects E, written $\tau \ll E$, if τ is constant on each E-equivalence class. For a subgroup $H \leq \Gamma$ let $E_J(H) \in E_J$ denote the equivalence relation determined by $tE_J(H)s$ if and only if $Ht = Hs$ (if and only if $t^{-1}H = s^{-1}H$). We write $E_J(y)$ for $E_J(\Gamma_y)$. For each $E \in E_J$ we fix a transversal $T_E \subseteq J$ for E. Then we have
\[\mu(S_{\tau} \cap \tilde{A}) = \int_{y \in A} \eta^{\Gamma_y \setminus \Gamma}(|\{f \in Z^{\Gamma_y \setminus \Gamma}: \forall t \in J (f(\Gamma_y t) \in N_{\tau(t)})\}|) d\nu(y)\]
\[\quad = \sum_{\{E \in E_J: \tau \ll E\}} \int_{\{y \in A: E_J(y) = E\}} \eta^{\Gamma_y \setminus \Gamma}(|\{f \in Z^{\Gamma_y \setminus \Gamma}: \forall t \in T_E (f(\Gamma_y t) \in N_{\tau(t)})\}|) d\nu(y) \]
\[\quad = \sum_{\{E \in E_J: \tau \ll E\}} \nu(A \cap \{y: E_J(y) = E\}) \prod_{t \in T_E} \alpha_{\tau(t)}. \]
(5.2)

We now proceed as in the proof of [AW13, Theorem 1]. Without loss of generality Y is a compact metric space with compatible metric $d_Y \leq 1$. Fix some $\epsilon_0 > 0$ such that $\epsilon_0^{1/2} < \epsilon/(2(dk)^{|F|/2}F+1)$. For $\delta \geq 0$ define the sets
\[D_\delta = \{y \in Y: \forall s, t \in F(t^{-1}y \neq s^{-1}y \Rightarrow d_Y(t^{-1}y, s^{-1}y) > \delta)\}, \]
\[E_\delta = \{(y, y') \in D_\delta \times D_\delta: \forall s, t \in F(d_Y(s^{-1}y, t^{-1}y') > \delta)\}. \]

Then $\nu(D_0) = 1$ by definition, and $v^2(E_0) = 1$ since v is non-atomic. Thus there exists $\delta > 0$ such that
\[\nu(D_\delta) > 1 - \frac{\epsilon_0}{4|E_F|} \quad \text{and} \quad v^2(E_\delta) > 1 - \frac{\epsilon_0}{4|E_F|^2}. \]

Fix a finite Borel partition $\{O_m: 1 \leq m \leq M\}$ of Y with $\text{diam}(O_m) < \delta$ for each m. For $y \in Y$ let $\alpha(y) = m$ if and only if $y \in O_m$. Let $(\Omega, P) = (d^M, \rho^M)$ and let $Y_m(\omega) = \omega(m)$, so that $\{Y_m: 1 \leq m \leq M\}$ are independent and identically distributed random variables. For $\omega \in \Omega$ and $i = 0, \ldots, d - 1$ define
\[T_i(\omega) = \{y \in Y: \omega(\alpha(y)) = i\}. \]

Then each $\omega \in \Omega$ defines the partition $T(\omega) = \{T_0(\omega), \ldots, T_{d-1}(\omega)\}$ of Y. Let $T_i = \{(\omega, y): y \in T_i(\omega)\}$ and let
\[T_i = \{(\omega, y) \in \Omega \times Y: y \in T_i(\omega) = \bigcap_{t \in J} t^a \cdot (T_{\tau(t)}(\omega))\}, \quad t \in d^{\leq F}. \]

We view T as a ‘random partition’ of Y. We let Γ act on Ω trivially so that, for example, $\gamma \cdot (T_{\tau}(\omega)) = (\gamma \cdot T_{\tau})(\omega)$, and for $B \subseteq \Omega \times Y$ and $y \in Y$ we let B^y denote the section $B^y = \{\omega: (\omega, y) \in B\}$. We show that T satisfies (5.1) with high probability.

Now fix some $A \subseteq Y$ and $\tau \in d^J$, $J \subseteq F$. Note that if $y \in Y$ and τ does not respect $E_J(y)$ then there exist $t, s \in J$ with $t^{-1}y = s^{-1}y$ and $\tau(t) \neq \tau(s)$, so that $(T_{\tau(t)})^{-1}y \cap (T_{\tau(s)})^{t^{-1}y}$ is not empty and thus $(T_{\tau})^y = \bigcap_{t \in J} (t \cdot T_{\tau(t)})^y = \bigcap_{t \in J} (\nu(T_{\tau(t)}))^y = \emptyset$. It follows that
the expected measure of $T_t(\omega) \cap A$ is
\[
\mathbb{E}[v(T_t(\omega) \cap A)] = \int_A \left(\int_{\Omega} 1_{T_t(\omega, y)} dP(\omega) \right) dv(y)
\]
\[
= \int_A \mathbb{P}((T_t)^y) dv(y) = \sum_{\{E \in E_J : \tau \ll E\}} \int_{\{y \in A : E_J(y) = E\}} \mathbb{P}((T_t)^y) dv(y)
\]
\[
= \sum_{\{E \in E_J : \tau \ll E\}} \left(\int_{\{y \in A \cap D_\delta : E_J(y) = E\}} \mathbb{P}((T_t)^y) dv \right) + \int_{A \setminus D_\delta} \mathbb{P}((T_t)^y) dv. \tag{5.3}
\]

Fix some $E \in E_J$ with $\tau \ll E$ and some $y \in D_\delta$ with $E_J(y) = E$. For $t, s \in J$, if t and s are not E-related then $t^{-1}y \neq s^{-1}y$ and so $dv(t^{-1}y, s^{-1}y) > \delta$. It follows that $O_{\alpha(t^{-1}y)} \neq O_{\alpha(s^{-1}y)}$ since each O_α has diameter smaller than δ. So as t ranges over T_E, the numbers $\alpha(t^{-1}y)$ are all distinct and the variables $Y_{\alpha(t^{-1}y)} : \omega \mapsto \omega(\alpha(t^{-1}y))$, $t \in T_E$, are therefore independent. We have $t^{-1}y \in T_t(\omega)$ if and only if $\omega(\alpha(t^{-1}y)) = \tau(t)$, so the sets $(t \cdot T_t(\omega))^y = (T_t(\omega))^{t^{-1}}$, $t \in T_E$, are all independent. If $t ES$ then as $\tau \ll E$ we have that $(T_t(\omega))^{t^{-1}y} = (T_t)^{t^{-1}y}$. It follows that
\[
\mathbb{P}((T_t)^y) = \mathbb{P}\left(\bigcap_{t \in J} (t \cdot T_t(\omega))^y \right) = \prod_{t \in T_E} \mathbb{P}((T_t(\omega))^{t^{-1}y}) = \prod_{t \in T_E} \alpha(\tau(t)). \tag{5.4}
\]

Continuing the computation, the second integral in (5.3) is no greater than $v(A \setminus D_\delta) < \epsilon_0/4$ and $v(A \cap D_\delta \cap \{y : E_J(y) = E\})$ is within $\epsilon_0/4|E_F|$ of $v(A \cap \{y : E_J(y) = E\})$, so after summing over all $E \in E_J$ we see that (5.3) is within $\epsilon_0/2$ of (5.2), that is,
\[
|\mathbb{E}[v(T_t(\omega) \cap A)] - \mu(S_\tau \cap \tilde{A})| < \frac{\epsilon_0}{2}. \tag{5.5}
\]

Now we compute the second moment of $v(T_t(\omega) \cap A)$:
\[
\mathbb{E}[v(T_t(\omega) \cap A)^2] = \int_{\Omega} \left(\int_{y \in A} 1_{T_t(\omega, y)} dv(y) \right) \left(\int_{y' \in A} 1_{B_t(\omega, y')} dv(y') \right) dP
\]
\[
= \int_{(y, y') \in A \times A} \left(\int_{\Omega} 1_{T_t(\omega, y)} 1_{T_t(\omega, y')} dv \right) dv^2
\]
\[
= \int_{(y, y') \in A \times A} \mathbb{P}((T_t)^y \cap (T_t)^y) dv^2. \tag{5.6}
\]

For $(y, y') \in E_\delta$, if $t, s \in J$ then $dv(t^{-1}y, s^{-1}y') > \delta$, so that $O_{\alpha(t^{-1}y)}$ and $O_{\alpha(s^{-1}y')}$ are disjoint. It follows that the two events
\[
\{\omega : \forall t \in J \ (Y_{\alpha(t^{-1}y)}(\omega) = \tau(t))\} = \bigcap_{t \in J} (T_t(\omega))^{t^{-1}y} = (T_t)^y
\]
and
\[
\{\omega : \forall s \in J \ (Y_{\alpha(s^{-1}y')}(\omega) = \tau(s))\} = \bigcap_{s \in J} (T_t(\omega))^{s^{-1}y} = (T_t)^{y'}
\]
are independent. We obtain that the part of (5.6) integrated over \((A \times A) \cap E_\delta\) is equal to
\[
\int_{(y, y') \in (A \times A) \cap E_\delta} \mathbb{P}((T_\tau)^y \cap (T_\tau)^{y'}) \, d\nu^2
\]
\[
= \int_{(y, y') \in (A \times A) \cap E_\delta} \mathbb{P}((T_\tau)^y) \mathbb{P}((T_\tau)^{y'}) \, d\nu^2
\]
\[
= \sum_{\tau \ll E, E' \in E_\delta} \nu^2((A \times A) \cap E_\delta \cap ((y, y') : E_J(y) = E, E_J(y') = E')) \prod_{t \in T_E} \alpha_{\tau(t)}
\]
\[
\times \prod_{s \in T_{E'}} \alpha_{\tau(s)},
\]
where we used the fact that \(E_\delta \subseteq D_\delta \times D_\delta\) along with the known values from (5.3) and (5.4). The part of (5.6) integrated over \((A \times A) \setminus E_\delta\) is no greater than \(\epsilon_0/4\), and for each pair \(E, E' \in E_\delta\) with \(\tau \ll E, E'\), the value of \(v^2((A \times A) \cap E_\delta \cap ((y, y') : E_J(y) = E, E_J(y') = E'))\) is within \(\epsilon_0/4|E_F|\) of \(v(A \cap \{y : E_J(y) = E\})v(A \cap \{y' : E_J(y') = E'\})\). Summing over all such \(E, E' \in E_\delta\) we obtain that (5.6) is within \(\epsilon_0/2\) of the square of (5.2), that is,
\[
|\mathbb{E}[v(T_\tau(\omega) \cap A)^2] - \mu(S_\tau \cap A)^2| < \frac{\epsilon_0}{2}.
\]
(5.7)

From (5.5) and (5.7) it follows that the variance of \(v(T_\tau(\omega) \cap A)\) is no greater than \(\epsilon_0\). By Chebyshev’s inequality we then have
\[
\mathbb{P}(|v(T_\tau(\omega) \cap A) - \mu(S_\tau \cap \tilde{A})| \geq \epsilon) \leq \mathbb{P}\left(|v(T_\tau(\omega) \cap A) - \mathbb{E}[v(T_\tau(\omega) \cap A)]| \geq \frac{\epsilon}{2}\right)
\]
\[
\leq \mathbb{P}(|v(T_\tau(\omega) \cap A) - \mathbb{E}[v(T_\tau(\omega) \cap A)]| \geq (kd)^{|F|/2} |F|^{1/2} + 1^{1/2}) \leq \frac{1}{(kd)^{|F|/2} |F|^{1/2} + 1^{1/2}},
\]
and since this is true for each \(\tau \in d^{\leq F}\) and \(|d^{\leq F}| \leq 2^{|F|}d|F|\), we find that
\[
\mathbb{P}(\exists \tau \in d^{\leq F} (|v(T_\tau(\omega) \cap A) - \mu(S_\tau \cap \tilde{A})| \geq \epsilon)) \leq \frac{1}{2^{|F|+2k|F|}.
\]
Since \(A \subseteq Y\) was arbitrary, this is in particular true for each \(A = R_\sigma, \sigma \in k^{\leq F}\), so that
\[
\mathbb{P}(\exists \tau \in d^{\leq F}, \sigma \in k^{\leq F} (|v(T_\tau(\omega) \cap R_\sigma) - \mu(S_\tau \cap \tilde{R}_\sigma)| > \epsilon)) \leq \frac{1}{4}.
\]
So taking any \(\omega_0\) in the complement of the above set, we obtain a partition \(T = T(\omega_0)\) satisfying (5.1).

Theorem 1.5 shows that among all non-atomic weak equivalence classes of type \(\theta\) there is a least, in the sense of weak containment, namely \(s_{\theta, \lambda}\) where \(\lambda\) is Lebesgue measure on \([0, 1]\). We note that there is also a greatest.

Theorem 5.15. Let \(\theta \in \text{IRS}(\Gamma)\). Then there exists a measure preserving action \(a_\theta\) of \(\Gamma\) with type\((a_\theta) = \theta\) such that for all measure preserving actions \(b\) of \(\Gamma\), if type\((b) = \theta\) then \(b < a_\theta\).

Proof. Let \((Y, \nu)\) be a non-atomic standard probability space. If \(b\) is any measure preserving action of \(\Gamma\) of type \(\theta\) then \(t \times b\) is also of type \(\theta\), weakly contains \(b\), and is
isomorphic to an element of $A(\Gamma, Y, \nu)$. It thus suffices to show there is an action a_θ of type θ that weakly contains every element in the set $A_\theta = \{ a \in A(\Gamma, Y, \nu) : \text{type}(a) = \theta \}$.

Let $\{ a_n \}_{n \in \mathbb{N}}$ be a countable dense subset of A_θ. For each n the stabilizer map $y \mapsto \text{stab}_{a_n}(y) = \{ y' \in \Gamma : y^{a_n} = y \}$ factors a_n onto θ. Let a_θ denote the relatively independent joining of the actions a_0, a_1, a_2, \ldots over the common factor θ, that is, $a_\theta = \Gamma \cap \prod a_n (Y_\mathbb{N}, \nu_\theta)$, where the measure ν_θ has each marginal equal to ν and concentrates on the set $\{ (y_0, y_1, y_2, \ldots) \in Y_\mathbb{N} : \forall n (\text{stab}_{a_n}(y_n) = \text{stab}_{a_0}(y_0)) \}$. Then for ν_θ-almost every $(y_0, y_1, \ldots) \in Y_\mathbb{N}$ we have $\text{stab}_{a_\theta}((y_0, y_1, \ldots)) = \text{stab}_{a_0}(y_0)$, from which it follows that $\text{type}(a_\theta) = \theta$. Since $a_n \subseteq a_\theta$ for all n the set $\{ a \in A_\theta : a \not< a_\theta \}$ is dense in A_θ so, by Proposition 3.5, a_θ weakly contains every element of A_θ. □

6. Non-classifiability

6.1. Non-classifiability by countable structures of \equiv, \equiv^w, and \equiv^u on free weak equivalence classes.

Definition 6.1. Let E and F be equivalence relations on the standard Borel spaces X and Y respectively.

1. A homomorphism from E to F is a map $\psi : X \to Y$ such that $x Ey \Rightarrow \psi(x)F\psi(y)$.
2. A reduction from E to F is a map $\psi : X \to Y$ such that $x Ey \Leftrightarrow \psi(x)F\psi(y)$.
3. E is said to admit classification by countable structures if there exist a countable language L and a Borel reduction from E to isomorphism \cong_L on X_L, where X_L is the space of all L-structures with universe \mathbb{N}.
4. Suppose that the space X is Polish. We say that E is generically F-ergodic if for every Baire measurable homomorphism ψ from E to F, there exists some $y \in Y$ such that $\psi^{-1}(\{ y \}_F)$ is comeager.

The proof of the following lemma is clear.

Lemma 6.2. Let F_1 and F_2 be equivalence relations on the standard Borel spaces Y_1 and Y_2 respectively, and let E be an equivalence relation on the Polish space P. Suppose that E is generically F_2-ergodic and that there exists a Borel reduction from F_1 to F_2. Then E is generically F_1-ergodic.

Since the orbit equivalence relation associated to a generically turbulent Polish group action is generically \cong_L-ergodic for all countable languages L [HJ00], Lemma 6.2 immediately implies the following result.

Lemma 6.3. Let \mathcal{G} be a Polish group and let P be a generically turbulent Polish \mathcal{G}-space with corresponding orbit equivalence relation $E_\mathcal{G}^P$. Let F be an equivalence relation on a standard Borel space Y and suppose that $E_\mathcal{G}^P$ is not generically F-ergodic. Then F does not admit classification by countable structures.

Let \mathcal{H} be an infinite dimensional separable Hilbert space and let $\mathcal{U}(\mathcal{H})$ denote the unitary group of \mathcal{H} which is a Polish group under the strong operator topology. The group $\mathcal{U}(\mathcal{H})$ acts on $\mathcal{U}(\mathcal{H})^\Gamma$ by conjugation on each coordinate and we may view the space $\text{Rep}(\Gamma, \mathcal{H})$ of all unitary representations of Γ on \mathcal{H} as an invariant closed subspace of $\mathcal{U}(\mathcal{H})^\Gamma$, so that it is a Polish $\mathcal{U}(\mathcal{H})$-space. We call the corresponding orbit equivalence...
relation on \(\text{Rep}(\Gamma, \mathcal{H}) \) unitary conjugacy, and if \(\pi_1 \) and \(\pi_2 \) are in the same unitary conjugacy class then we say that \(\pi_1 \) and \(\pi_2 \) are unitarily conjugate and write \(\pi_1 \cong \pi_2 \). Let \(\chi_\lambda : \Gamma \to \mathcal{U}(\ell^2(\Gamma)) \) denote the left regular representation of \(\Gamma \) and let \(\text{Rep}_\lambda(\Gamma, \mathcal{H}) \) be the set of unitary representations of \(\Gamma \) on \(\mathcal{H} \) that are weakly contained in \(\chi_\lambda \). Then \(\text{Rep}_\lambda(\Gamma, \mathcal{H}) \) is also a Polish \(\mathcal{U}(\mathcal{H}) \) space, being an invariant closed subspace of \(\text{Rep}(\Gamma, \mathcal{H}) \).

The following lemma is proved in the same way as [KLP10, Lemma 2.4], using that the reduced dual \(\hat{\Gamma}_\lambda \), which may be identified with the spectrum of the reduced \(C^* \)-algebra \(C^*_r(\Gamma) \), contains no isolated points [KLP10, 3.2].

Lemma 6.4. Let \(\kappa \) be a unitary representation of \(\Gamma \) and let \(\mathcal{H} \) be an infinite dimensional separable Hilbert space. Then the set \(\{ \pi \in \text{Rep}_\lambda(\Gamma, \mathcal{H}) : \pi \perp \kappa \} \) is dense \(G_\delta \) in \(\text{Rep}_\lambda(\Gamma, \mathcal{H}) \).

We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. Given a free action \(a_0 \in \text{A}(\Gamma, X, \mu) \), we let \([a_0] = \{ b \in \text{A}(\Gamma, X, \mu) : b \sim a_0 \}\) denote its weak equivalence class in \(\text{A}(\Gamma, X, \mu) \). Let \(\mathcal{H} = \mathbb{H}^2(\Gamma) \) and let \(g : \text{Rep}(\Gamma, \mathcal{H}) \to \text{A}(\Gamma, X, \mu) \) be the continuous map assigning to each \(\pi \in \text{Rep}_\lambda(\Gamma, \mathcal{H}) \) the corresponding Gaussian action \(g(\pi) \in \text{A}(\Gamma, X, \mu) \) (see [Ke10, Appendix E]). We have that \(g(\pi) \prec g(\infty \cdot \lambda_\Gamma) \cong \delta_1 \) and so, by Corollary 1.6, \(a_0 \times g(\pi) \sim a_0 \). Fix some isomorphism \(\varphi : X^2 \to X \) of the measure spaces \((X^2, \mu^2) \) and \((X, \mu) \) and denote by \(b \mapsto \varphi \cdot b \) the corresponding homeomorphism of \((\Gamma, X^2, \mu^2) \) with \((\Gamma, X, \mu) \). Let \(\psi : \text{Rep}_\lambda(\Gamma, \mathcal{H}) \to [a_0] \) be the map \(\pi \mapsto \varphi \cdot (a_0 \times g(\pi)) \). This is a continuous homomorphism from unitary conjugacy on \(\text{Rep}_\lambda(\Gamma, \mathcal{H}) \) to isomorphism on \([a_0]\), and is therefore also a homomorphism to \(\sim^w \) and to \(\sim^U \) on \([a_0]\).

Claim. The inverse image under \(\psi \) of each unitary equivalence class in \([a_0]\) is meager. In particular, the same is true for each isomorphism class and each weak isomorphism class.

Proof of claim. Let \(c \in [a_0] \). By Lemma 6.4 the set \(\{ \pi \in \text{Rep}_\lambda(\Gamma, \mathcal{H}) : \pi \perp \kappa_0 \} \) is comeager in \(\text{Rep}_\lambda(\Gamma, \mathcal{H}) \). If \(\psi(\pi) \equiv^U c \) then \(\pi \preceq \kappa_0 \) and so, by Corollary 1.6, \(a_0 \times g(\pi) \sim a_0 \). This is a continuous homomorphism from unitary conjugacy on \(\text{Rep}_\lambda(\Gamma, \mathcal{H}) \) to isomorphism on \([a_0]\), and is therefore also a homomorphism to \(\sim^w \) and to \(\sim^U \) on \([a_0]\).

By [KLP10, 3.3], the conjugacy action of \(\mathcal{U}(\mathcal{H}) \) on \(\text{Rep}_\lambda(\Gamma, \mathcal{H}) \) is generically turbulent. The homomorphism \(\psi \) witnesses that unitary conjugacy on \(\text{Rep}_\lambda(\Gamma, \mathcal{H}) \) is not generically \(F[[a_0]] \)-ergodic when \(F \) is any of \(\sim \), \(\sim^w \), or \(\sim^U \). The theorem now follows from Lemma 6.3.

Remark 6.5. If the weak equivalence class \([a_0]\) contains an ergodic (respectively, weak mixing) action \(b_0 \), then the action \(b_0 \times g(\pi) \) is ergodic (respectively, weak mixing) provided that the representation \(\pi \in \text{Rep}_\lambda(\Gamma, \mathcal{H}) \) is weak mixing. Since the weak mixing \(\pi \) are dense \(G_\delta \) in \(\text{Rep}_\lambda(\Gamma, \mathcal{H}) \) [KLP10, 3.6] we conclude that isomorphism (and \(\equiv^w \) and \(\equiv^U \)) restricted to the ergodic (respectively, weak mixing) elements of \([a_0]\) does not admit classification by countable structures.

It also follows from the above arguments and [HK95, 2.2] that the equivalence relation \(E_0 \) of eventual agreement on \(2^\mathbb{N} \) is Borel reducible to \(F[[a_0]] \) when \(F \) is any of \(\sim \), \(\sim^w \), or \(\sim^U \) (and the same holds for \(F[[b \in [a_0]]] : b \) is ergodic (respectively, weak mixing)) when \([a_0]\) contains ergodic (respectively, weak mixing) elements.
6.2. Extending Theorem 1.7. It would be interesting to see an extension of Theorem 1.7 to weak equivalence classes of measure preserving actions that are not necessarily free. We outline here one possible generalization of the argument given in the proof of Theorem 1.7 to measure preserving actions that almost surely have infinite orbits. Let \(a = \Gamma \curvearrowright \mu \) be such an action, and let \(\theta = \text{type}(a) \), so that \(\theta \) concentrates on the infinite index subgroups of \(\Gamma \). In place of unitary conjugacy on \(\text{Rep}_\mu (\Gamma, \mathcal{H}) \) we work with the cohomology equivalence relation on a certain orbit closure in the Polish space \(Z^1(\theta, \mathcal{U}(\mathcal{H})) \) of unitary cocycles of \(\theta \), where \(\mathcal{H} = L^2(\mathbb{N}) \). The cohomology equivalence relation on \(Z^1(\theta, \mathcal{U}(\mathcal{H})) \) is the orbit equivalence relation generated by the action of the Polish group \(\mathcal{U}(\mathcal{H}) = L(\text{Sub}(\Gamma), \theta, \mathcal{U}(\mathcal{H})) \) given by

\[
(f \cdot \alpha)(\gamma, H) = f(\gamma H^{-1})\alpha(\gamma, H)f(H)^{-1} \in \mathcal{U}(\mathcal{H}),
\]

where \(f \in \mathcal{U}(\mathcal{H}), \alpha \in Z^1(\theta, \mathcal{U}(\mathcal{H})), \gamma \in \Gamma \), and \(H \leq \Gamma \) (see [Ke10, Ch. III]). In place of the left regular representation \(\lambda \) of \(\Gamma \) we use a cocycle \(\lambda_\theta \) associated to \(\theta \) defined as follows. Identify right cosets of the infinite index subgroups \(H \leq \Gamma \) with natural numbers by fixing a Borel map \(n : \text{Sub}(\Gamma) \times \Gamma \to \mathbb{N} \) such that for each infinite index \(H \leq \Gamma \) the map \(\gamma \mapsto n(H, \gamma) \) is a surjection onto \(\mathbb{N} \) and satisfies \(n(H, \gamma) = n(H, \delta) \) if and only if \(H\gamma = H\delta \). Let \(\{e_n\}_{n \in \mathbb{N}} \) be the standard orthonormal basis for \(L^2(\mathbb{N}) = \mathcal{H} \) and define \(\lambda_\theta \in Z^1(\theta, \mathcal{U}(\mathcal{H})) \) by

\[
\lambda_\theta(\gamma, H)(e_n(h, \delta)) = e_{n(\gamma H^{-1}, \gamma \delta)}
\]

for all \(\gamma \in \Gamma \) and \(H \leq \Gamma \) of infinite index (recall that \(\theta \)-almost every \(H \) is infinite index in \(\Gamma \)). Fix an isomorphism \(T : \infty \cdot \mathcal{H} \to \mathcal{H} \) and let \(\sigma \in Z^1(\theta, \mathcal{U}(\mathcal{H})) \) be the image of \(\infty \cdot \lambda_\theta \) under \(T \), that is, \(\sigma(\gamma, H) = T \circ (\infty \cdot \lambda_\theta)(\gamma, H) \circ T^{-1} \). Let \(Z^1_\lambda(\theta, \mathcal{U}(\mathcal{H})) \) denote the orbit closure of \(\sigma \) in \(Z^1(\theta, \mathcal{U}(\mathcal{H})) \). Using the Gaussian map \(U(\mathcal{H}) \to \text{Aut}(X, \mu) \) (see [Ke10, Appendix E] or [BT-D13]), each \(\alpha \in Z^1_\lambda(\theta, \mathcal{U}(\mathcal{H})) \) gives rise to a cocycle \(g(\alpha) : \Gamma \times \text{Sub}(\Gamma) \to \text{Aut}(X, \mu) \) of \(\theta \) with values in the automorphism group \(\text{Aut}(X, \mu) \) of a non-atomic probability space \((X, \mu) \). We obtain a skew product action \(g(\alpha)(X, \mu) \bowtie g(\alpha) \theta \) on the measure space \((Y, \nu) = (X \times \text{Sub}(\Gamma), \mu \times \theta) \), which is an extension of \(\theta \). The action \(g(\lambda_\theta) \) is isomorphic to \(s_{\theta, \eta} \) (where \(\eta \) is non-atomic) and so the action \(g(\sigma) \) is isomorphic to \(s_{\theta, \eta} \cong s_{\theta, \eta} \) as well. Since \(\alpha \in Z^1_\lambda(\theta, \mathcal{U}(\mathcal{H})) \) we have \(g(\alpha) < s_{\theta, \eta} \) and thus the relatively independent joining \(g(\alpha) \bowtie \theta \alpha \) is weakly equivalent to \(\alpha \) by Theorem 1.5. The map \(\psi_\theta(\alpha) := \varphi \cdot (g(\alpha) \bowtie \theta \alpha) \) is then a homomorphism from the cohomology equivalence relation on \(Z^1_\lambda(\theta, \mathcal{U}(\mathcal{H})) \) to isomorphism on \([\alpha] \), where \(\varphi : Y \times X \to X \) is once again an isomorphism of measure spaces. The remaining ingredient that is needed is an analogue of the results from [KLP10].

Question 6.6. Let \(\theta \) be an ergodic IRS of \(\Gamma \) with infinite index. Is the action of \(\mathcal{U}(\mathcal{H}) \) on the space \(Z^1_\lambda(\theta, \mathcal{U}(\mathcal{H})) \) generically turbulent? Is the preimage under \(\psi_\theta \) of each \(\cong \mathcal{U}(\mathcal{H}) \)-class meager?

Two ergodic theoretic analogues of the space \(\text{Rep}_\mu (\Gamma, \mathcal{H}) \) are the spaces \(A_0(\Gamma, X, \mu) = \{ \alpha \in \text{Aut}(\Gamma, X, \mu) : \alpha \bowtie s_{\Gamma} \} \) and \(A_1(\Gamma, X, \mu) = \{ \alpha \in \text{Aut}(\Gamma, X, \mu) : \alpha \bowtie s_{\Gamma} \} \), where \((X, \mu) \) is non-atomic. When \(\Gamma \) is amenable it follows from [FW04] that these spaces both coincide with \(A(\Gamma, X, \mu) \) and the conjugacy action of \(\text{Aut}(X, \mu) \) on \(A(\Gamma, X, \mu) \) is generically...
turbulent. For non-amenable Γ, the spaces $A_0(\Gamma, X, \mu)$, $A_1(\Gamma, X, \mu)$ and $A(\Gamma, X, \mu)$ do not all coincide.

Question 6.7. Let Γ be a non-amenable group. Is conjugacy on either of $A_0(\Gamma, X, \mu)$ or $A_1(\Gamma, X, \mu)$ generically turbulent?

For all non-amenable Γ the set $A_0(\Gamma, X, \mu)$ is nowhere dense in $A_1(\Gamma, X, \mu)$ (by Theorem 1.3), so these two spaces may behave quite differently, generically (indeed, every action in $A_0(\Gamma, X, \mu)$ is ergodic, while the generic action in $A_1(\Gamma, X, \mu)$ has continuous ergodic decomposition). The question of generic turbulence of conjugacy on $\text{ERG}(\Gamma, X, \mu) = \{a \in A(\Gamma, X, \mu) : a \text{ is ergodic}\}$ is discussed in [Ke10, §§5 and 12].

7. Types and amenability

As noted in Remark 4.1, any two free measure preserving actions of an infinite amenable group Γ are weakly equivalent. In this section we prove Theorem 1.8, which extends this to actions that are not necessarily free.

7.1. The space $\text{COS}(\Gamma)$. Let $\text{COS}(\Gamma)$ be the space of all left cosets of all subgroups of Γ. Since $F \in \text{COS}(\Gamma) \Leftrightarrow \forall \delta \in \Gamma \ (\delta \in F \Rightarrow \delta^{-1}F \in \text{Sub}(\Gamma))$ it follows that $\text{COS}(\Gamma)$ is a closed subset of 2^Γ. As every left coset of a subgroup $H \leq \Gamma$ is equal to a right coset of a conjugate of H and vice versa, $\text{COS}(\Gamma)$ is also the space of all right cosets of subgroups of Γ and we have the equality $\text{COS}(\Gamma) = \{\gamma H\delta^{-1} : H \leq \Gamma, \gamma, \delta \in \Gamma\} \subseteq 2^\Gamma$. We let ℓ denote the continuous action of Γ on $\text{COS}(\Gamma)$ by left translation, $\gamma \cdot (H\delta) = \gamma H\delta$.

Lemma 7.1. Let Γ be a countable amenable group and let $a = \Gamma \curvearrowright_a (X, \mu)$ be a measure preserving action of Γ. Then for any finite $F \subseteq \Gamma$ and $\delta > 0$ there exists a measurable map $J : X \to \text{COS}(\Gamma)$ such that

$$
\mu(\{x \in X : \forall \gamma \in F \ J(\gamma^a x) = \gamma^\ell \cdot J(x)\}) \geq 1 - \delta
$$

and $J(x) \in \Gamma_x \setminus \Gamma$ for all x.

Proof. We note that this is a generalized version of [BT-D13, Theorem 3.1] which applies to the case in which a is free and which is an immediate consequence of the Rokhlin lemma for free actions of amenable groups. For the general case we use the Ornstein–Weiss theorem [OW80, Theorem 6] which implies that the orbit equivalence relation E_a generated by a is hyperfinite when restricted to an invariant conull Borel set $X' \subseteq X$. We may assume without loss of generality that $X' = X$ and E_a is hyperfinite. Then there exists an increasing sequence $E_0 \subseteq E_1 \subseteq \cdots$ of finite Borel sub-equivalence relations of E_a such that $E_a = \bigcup_{n=0}^\infty E_n$. Let F and $\delta > 0$ be given and find $N \in \mathbb{N}$ large enough so that $\mu(X_N) > 1 - \delta$ where $X_N = \{x : \gamma^a x \in [x]_{E_N}\}$ for all $\gamma \in F$. Fix a Borel selector $s : X \to E_N$, that is, for all $x, x E_N s(x)$ and $x E_N y \Rightarrow s(x) = s(y)$, and let $x \mapsto \gamma x \in \Gamma$ be any Borel map such that $\gamma^a x \cdot s(x) = x$ for all $x \in X$. Define $J : X \to \text{COS}(\Gamma)$ by $J(x) = \gamma_x \Gamma_s(x)$. Then $J(x) \in \Gamma_{x} \setminus \Gamma$ since $\Gamma_{x} = \Gamma_{\gamma^a x, s(x)} = \gamma_{x} \Gamma_{s(x)} \gamma_{y^{-1}}$. For each $x \in X_N$ and $\gamma \in F$ we have $\gamma^a x \in [x]_{E_N}$ so that $s(\gamma^a x) = s(x)$ and thus $(\gamma^a x)^a \cdot s(x) = \gamma^a x = (\gamma x)^a \cdot s(x)$. It follows that

$$
J(\gamma^a x) = \gamma x \Gamma_s(x) = \gamma x \Gamma_{s(x)} = \gamma^\ell \cdot J(x).
$$

\[\square\]
7.2. Proof of Theorem 1.8.

Proof of Theorem 1.8(1). Since type(\(a\)) is an invariant of stable weak equivalence (see Remark 5.8), it remains to show the following statement.

\((\dagger)\) If \(\theta \in \text{IRS}(\Gamma)\) and \(a\) and \(d\) are measure preserving actions of \(\Gamma\), both of type \(\theta\), then

\[a \sim \theta d.\]

We first show that \((\dagger)\) holds under the assumption that \(a\) and \(d\) are both ergodic. For this, by Theorem 1.5 it suffices to show that for any ergodic measure preserving action \(a = \Gamma / \sim a (X, \mu)\) of \(\Gamma\), if type\((a) = \theta\) then \(a \prec s_{\theta, \eta}\) for some standard probability space \((Z, \eta)\).

We will define a measure preserving action \(b\) containing \(\theta\) as a factor, and show that the relatively independent joining \(b \otimes_\theta s_{\theta, \eta}\) weakly contains \(a\) when \(\eta\) is a standard non-atomic probability measure. Then we will be done once we show that \(b \otimes_\theta s_{\theta, \eta} \equiv s_{\theta, \eta}\).

Let \(\mu = \int_H \mu_H \, d\theta\) be the disintegration of \(\mu\) via \(x \mapsto \text{stab}_a(x)\), and define the measure \(v\) on the space \(Y = \bigsqcup_{H \in \text{Sub}(\Gamma)} \{f \in X^{H\Gamma} : \text{stab}_a(f(H\delta)) = H \text{ for all } \delta \in \Gamma\} \subseteq X^{\leq \Gamma}\) by the equation \(v = \int_H \mu_H \, d\theta\). Let \(a \leq \Gamma\) be the action on \(X^{\leq \Gamma}\) that is equal to \(a^{H\Gamma}\) on \(X^{H\Gamma}\). Then \(a \leq \Gamma\) commutes with the shift action \(s\) on \(X^{\leq \Gamma}\) and since \((\gamma^s) \ast (\gamma^a) = (\gamma^a) \ast (\gamma^s)|_{H^\Gamma}\) it follows from invariance of \(\theta\) that the action \(\gamma^b = \gamma^s \gamma^a \leq \Gamma\) preserves the measure \(v\). We let \(b = \Gamma \wedge^b (Y, v)\). Then \(\theta\) is a factor of \(b\) via the map \(f \mapsto H_f\). Let \((Z, \eta)\) be a standard non-atomic probability space, and let \(b \otimes_\theta s_{\theta, \eta}\) denote the relatively independent joining of \(b\) and \(s_{\theta, \eta}\) over \(\theta\).

We now apply Lemma 7.1 to \(s_{\theta, \eta}\). Given \(F \subseteq \Gamma\) finite and \(\epsilon > 0\) there exists a measurable \(J : Z^{\leq \Gamma} \to \text{COS}(\Gamma)\) such that \(\eta^{\leq \Gamma}(Z_0) \geq 1 - \epsilon\) where \(Z_0 = \{g \in Z^{\leq \Gamma} : J(\gamma^s \cdot g) = \gamma^s \cdot J(g) \text{ for all } \gamma \in F\}\), and with \(J(g) \in \Gamma_g\backslash \Gamma = H_g\backslash \Gamma\) for all \(g \in Z^{\leq \Gamma}\). We let \(\varphi : Y \times Z^{\leq \Gamma} \to X\) be the map defined \((v \otimes_\theta \eta^{\leq \Gamma})\)-almost everywhere by \(\varphi((f, g)) = f(J(g))\). Then for all \(g \in Z_0\) and \(\gamma \in F\) we have

\[\varphi(\gamma^b \times s (f, g)) = \gamma^a((\gamma^s f)(J(\gamma^s g))) = \gamma^a(f(J(g))) = \gamma^a \varphi((f, g))\]

and

\[\varphi_* (v \otimes_\theta \eta^{\leq \Gamma}) = \int_H \int_G \int_J \delta_f(J(g)) \, d\mu^H_J \, d\eta^H_J \, d\theta = \int_H \mu_H \, d\eta^H_J \, d\theta = \int_H \mu_H \, d\mu = \mu.\]

It then follows that \(a \prec b \otimes_\theta s_{\theta, \eta}\) since for any measurable partition \(A_0, \ldots, A_{k-1} \subseteq X\) of \(X\), the sets \(B_0 = \varphi^{-1}(A_0), \ldots, B_{k-1} = \varphi^{-1}(A_{k-1})\) form a measurable partition of \(Y \times X^{\leq \Gamma}\) satisfying \(|\mu(\gamma^a A_i \cap A_j) - (v \otimes_\theta \eta^{\leq \Gamma})(\gamma^b \times s B_i \cap B_j)| < \epsilon\) for all \(\gamma \in F\). By the Rokhlin skew-product theorem there exist a standard probability space \((Z_1, \eta_1)\) and an isomorphism \(\Psi\) of \(a\) with a skew product action \(d = (Z_1, \eta_1) \times \theta\) on the space \((Z_1 \times \text{Sub}(H), \eta_1 \times \theta)\). The isomorphism \(\Psi\) is of the form \(\Psi(x) = (\Psi_0(x), \Gamma_x)\) and so the restriction \(\Psi_H\) of \(\Psi_0\) to \(X_H = \{x : \Gamma_x = H\}\) is an isomorphism of \((X_H, \mu_H)\) with \((Z_1, \eta_1)\) almost surely. We now define an isomorphism \(\Phi : Y \to Z_1^{\leq \Gamma}\) of \(b\) with \(s_{\theta, \eta}\) by taking \(H_{\Phi(f)} = H_f\) and \(\Phi(f)(H\gamma) = \Psi^{-1}_H \gamma ((H^{-1})^a(f(H\gamma)))\), where \(H = H_f\). This is almost everywhere well defined.
since $f(H\gamma) \in X_H$ almost surely, which ensures that $(\gamma^{-1})^a(f(H\gamma))$ is independent of our choice of representative for the coset $H\gamma$, and $(\gamma^{-1})^a(f(H\gamma)) \in X_{\gamma^{-1}H\gamma}$ so that we may apply $\Psi_{\gamma^{-1}H\gamma}$. The map Φ is equivariant since if $H_f = H$ then $H_\delta f = H_\delta \delta^{-1}$ and $\Phi(\delta f) (\delta H_\delta \delta^{-1}\gamma) = \Psi_{\gamma^{-1}H_\delta \delta^{-1}\gamma}((\gamma^{-1})^a(\delta f (\delta H_\delta \delta^{-1}\gamma))) = \Psi_{\gamma^{-1}\delta(H_\delta \delta^{-1}\gamma)}((\gamma^{-1})^a(\delta f (\delta H_\delta \delta^{-1}\gamma))) = \Phi(f)(H\delta^{-1}\gamma) = (\delta^s \Phi(f))(\delta H\delta^{-1}\gamma)$. Finally, $\Phi_{a\theta} = \eta_1^\theta|\Gamma$ since

$$
\Phi_{a\theta} = \int_H \Phi_{a\theta} \mu_H^{|\Gamma} d\theta = \int_H \prod_{H\gamma \in H \setminus \Gamma} (\Psi_{\gamma^{-1}H\gamma})^a(\gamma^{-1})_a^\theta \mu_H d\theta = \int_H \prod_{H\gamma \in H \setminus \Gamma} (\Psi_{\gamma^{-1}H\gamma})^a(\gamma^{-1})_a^\theta \mu_{H\gamma} d\theta = \int_H \eta_1^{H \setminus \Gamma} d\theta = \eta_1^{\theta \setminus \Gamma}
$$

and so $b \cong s_\theta,\eta_1$. Since $H_f = H_{\Phi(f)}$, this extends to an isomorphism of $b \otimes_{\theta} s_\theta,\mu$ with $s_\theta,\eta_1 \otimes_{\theta} s_\theta,\eta \cong s_{\theta,\eta_1 \times \eta} \cong s_\theta,\eta$, as was to be shown.

We next show that (\ast) holds under the assumption that θ is ergodic. Let $i \in \mathbb{N} \cup \{\infty\}$ be the index of θ. If i is finite then the orbit of almost every $H \in \text{Sub}(\Gamma)$ is finite so by ergodicity of θ there exists $H_0 \leq \Gamma$ of index i such that θ concentrates on the conjugates of H_0. Then for some spaces (Z_1, η_1) and (Z_2, η_2) we have $a \cong t_{\eta_1} \times a_{\Gamma/H_0}$ and $d \cong t_{\eta_2} \times a_{\Gamma/H_0}$, where a_{Γ/H_0} denotes the action of Γ on the left cosets of H_0 with normalized counting measure. Thus $a \sim_s d$. If $i = \infty$ then we let $a = \int_{\Gamma} a_z d\eta$ and $d = \int_{W} d_w d\rho$ be the ergodic decompositions of a and d respectively. By Proposition 3.9, type$(a_z) = \theta$ and type$(d_w) = \theta$ almost surely, and a_z and d_w are non-atomic almost surely since θ is infinite index. Letting b be any non-atomic ergodic action of type θ the above case implies that $a \sim_s b \sim_s d$.

Finally, we show that (\ast) holds in general. Let $\theta = \int_{W} \theta_w d\rho$ be the ergodic decomposition of θ. We then obtain corresponding decompositions $a = \int_{W} a_w d\rho$ and $d = \int_{W} d_w d\rho$ of a and d with type$(a_w) = \theta_w = \theta$ almost surely. The above cases imply that $a_w \sim_s d_w$ almost surely. Theorem 3.13 then implies $a \sim_s d$. □

Proof of Theorem 1.8(2). Let $\theta = \text{type}(a) = \text{type}(b)$. If θ is ergodic then by Proposition 3.9 almost every ergodic component of a and almost every ergodic component of b have type θ and so Theorem 1.8(1) and Corollary 4.4 imply that $a \sim t_{\eta_1} \times d$ and $b \sim t_{\eta_2} \times d$ for some ergodic d of type θ and some spaces $(Z_1, \eta_1), (Z_2, \eta_2)$. Since Γ is amenable, d is not strongly ergodic, and since θ is infinite index, d is non-atomic, so by [AW13, Theorem 3] $d \sim t \times d$ and thus $a \sim b$. The general case now follows by considering the ergodic decomposition of θ. □

Acknowledgements. I would like to thank my advisor Alexander Kechris for his encouragement and support and for many valuable discussions related to this paper. I would also like to thank Miklos Abér for very useful feedback and discussions. The research of the author was partially supported by NSF Grant DMS-0968710.

A. Appendix. Ultraproducts of measure preserving actions

In this appendix we establish some properties of ultraproducts of measure spaces and actions.
Notation. We refer to [CKT-D13] for background on ultraproducts of measure preserving actions and also [ES08] for background on ultraproducts of measure spaces. Our notation has some changes from that of [CKT-D13] and is as follows. Given a sequence $a_n = \Gamma \cap a_n^0 (X_n, \mu_n)$, $n \in \mathbb{N}$, of measure preserving actions of Γ and a non-principal ultrafilter \mathcal{U} on \mathbb{N}, we denote by $\Gamma = \Gamma \cap (\prod_n a_n^0 \mathcal{U}) ((\prod_n X_n)/\mathcal{U}, (\prod_n \mu_n))/\mathcal{U}$, or simply $a_\mathcal{U} = \Gamma \cap a_\mathcal{U} (X_\mathcal{U}, \mu_\mathcal{U})$ when there is no danger of confusion, the corresponding ultraproduct of the sequence (a_n). We let $[x_n]$ denote the equivalence class of the sequence $(x_n) \in \prod_n X_n$ in $X_\mathcal{U}$ and we let $[B_n]$ denote the subset of $X_\mathcal{U}$ determined by the sequence $(B_n) \in \prod_n B(X_n)$ of Borel sets. When $x_n = x$ for all n, we write $[x]$ for $[x_n]$, and when $B_n = B$ for all n, we write $[B]$ for $[B_n]$. Then $A_\mathcal{U} = A_\mathcal{U}(X_\mathcal{U}) = ([B_n] : (B_n) \in \prod_n B(X_n))$ is an algebra of subsets of $X_\mathcal{U}$ and $\mu_\mathcal{U}$ is the unique measure on the σ-algebra $B_\mathcal{U}(X_\mathcal{U}) = \sigma (A_\mathcal{U})$ whose value on $[A_n] \in A_\mathcal{U}$ is $\mu_\mathcal{U}(A_n) = \lim_{n \to \mathcal{U}} \mu_n(A_n)$. We note that every element of $B_\mathcal{U}$ is within a $\mu_\mathcal{U}$-null set of an element of $A_\mathcal{U}$.

The following proposition deals with lifting measure disintegrations to ultraproducts.

Proposition A.1. Suppose that for each $n \in \mathbb{N}$ the Borel map $\pi_n : (Y_n, \nu_n) \to (Z_n, \eta_n)$ factors $b_n = \Gamma \cap b_n (X_n, \nu_n)$ onto $d_n \cap d (Z_n, \eta_n)$, and let $\nu_n = \int z \in Z_n \nu_n^z d\eta_n(z)$ be the disintegration of ν_n over η_n with respect to π_n. Let $b_\mathcal{U} = \Gamma \cap b_\mathcal{U} (Y_\mathcal{U}, \nu_\mathcal{U})$ and $d_\mathcal{U} = \Gamma \cap d_\mathcal{U} (Z_\mathcal{U}, \eta_\mathcal{U})$ be the ultraproducts of the sequences (b_n) and (d_n) respectively. Then the map $\pi_\mathcal{U} : Y_\mathcal{U} \to Z_\mathcal{U}$ given by $\pi_\mathcal{U}([y_n]) = [\pi_n(y_n)]$ factors $b_\mathcal{U}$ onto $d_\mathcal{U}$. If for $[z_n] \in Z_\mathcal{U}$ we let $\nu_{[z_n]} = (\prod_n \nu_n^z)/\mathcal{U}$ then:

(I) each of the measures $\nu_{[z_n]}$ is a probability measure on $(Y_\mathcal{U}, B_\mathcal{U}(Y_\mathcal{U}))$ and almost surely $\nu_{[z_n]}([z_n])$ concentrates on $\pi_\mathcal{U}^{-1}([z_n])$;

(II) for each $D \in B_\mathcal{U}(Y_\mathcal{U})$ the map $(Z_\mathcal{U}, \mu_\mathcal{U}([z_n])) \to ([0, 1], B([0, 1]))$ sending $[z_n] \mapsto \nu_{[z_n]}(D)$ is measurable and $\nu_{[z_n]}(D) = \int [z_n] \in Z_\mathcal{U} \nu_{[z_n]}(D) d\eta_\mathcal{U}([z_n])$;

(III) if $[z_n] \mapsto \mu_{[z_n]}$ is another assignment satisfying (I) and (II) then for all $D \in B_\mathcal{U}(Y_\mathcal{U})$ almost surely $\mu_{[z_n]}(D) = \nu_{[z_n]}(D)$.

Additionally, for almost all $[z_n] \in Z_\mathcal{U}$ and every $\gamma \in \Gamma$ we have $(\gamma b_\mathcal{U})_* \nu_{[z_n]} = \nu_{[z_n]}^{\gamma b_\mathcal{U}([z_n])}$.

Proof. It is clear that $\pi_\mathcal{U}$ factors $b_\mathcal{U}$ onto $d_\mathcal{U}$. Property (I) follows from the fact that for each n and $z \in Z_n$, each ν_n^z is a Borel probability measure on Y_n and almost surely ν_n^z concentrates on $\pi_n^{-1}([z])$. Now let D be the collection of all subsets of $Y_\mathcal{U}$ satisfying (II). Given $[A_n] \in A_\mathcal{U}$ and $V \subseteq [0, 1]$ open we have $\nu_{[z_n]}([A_n]) \in V$ if and only if $[z_n] \in \{ z \in Z_n : \nu_n^{\gamma z_n}([A_n]) \in V \}$, so that $[z_n] \mapsto \nu_{[z_n]}([A_n])$ is measurable. As in [ES08, Lemma 2.2] we have

$$\int_{[z_n]} \nu_{[z_n]}([A_n]) d\eta_\mathcal{U} = \int_{[z_n]} \lim_{n \to \mathcal{U}} \nu_n^{\gamma z_n}([A_n]) d\eta_\mathcal{U} = \lim_{n \to \mathcal{U}} \int_{z_n \in Z_n} \nu_n^{\gamma z_n}([A_n]) d\eta_n = \lim_{n \to \mathcal{U}} \nu_n([A_n]) = \nu_{[z_n]}([A_n]),$$

which shows that $[A_n] \in D$. Thus $A_\mathcal{U} \subseteq D$, and it is clear that D is a monotone class so $B_\mathcal{U} \subseteq D$, which shows (II). Suppose now that $[z_n] \mapsto \mu_{[z_n]}$ satisfies (I) and (II). Then for each $[B_n] \in A_\mathcal{U}(Z_\mathcal{U})$ and $D \in B_\mathcal{U}(Y_\mathcal{U})$ we have

$$\int_{[B_n]} \mu_{[z_n]}(D) d\eta_\mathcal{U} = \nu_{[z_n]}(D \cap \pi_\mathcal{U}^{-1}([B_n])) = \int_{[B_n]} \nu_{[z_n]}(D) d\eta_\mathcal{U}$$

so that $\mu_{[z_n]}(D) = \nu_{[z_n]}(D)$ almost surely, so that (III) holds.
For the last statement let $B_n \subseteq Z$ be an invariant η_n-conull set on which $(\gamma^{d_n})_*v_{z_n}^n = \nu_{\gamma_{d_n} z}$ for all $\gamma \in \Gamma$. Then for all $[z_n]$ in the $\eta(U)$-conull set $[B_n] \subseteq Z_U$ we have for all $\gamma \in \Gamma$ and $[A_n] \in A_U(Y_U)$ that

$$(\gamma^{d_U})_*v_{[z_n]}(A_n) = \lim_{n \to U} (\gamma^{d_n})_*v_{z_n}^n(A_n) = \lim_{n \to U} v_{\gamma_{d_n} z}(A_n) = v_{\gamma^{d_U}[z_n]}([A_n])$$

so that $(\gamma^{d_U})_*v_{[z_n]} = v_{\gamma^{d_U}[z_n]}$. \qed

The next proposition describes the ultrapower of a standard probability space with atoms.

Proposition A.2. Let (Z, η) be a standard probability space and let $A \subseteq Z$ be the set of atoms of (Z, η).

1. If (Z, η) is discrete then $(\text{MALG}_\eta, d_\eta)$ is a compact metric space homeomorphic to 2^A with the product topology, and the map $I_U : \text{MALG}_{\eta_U} \to \text{MALG}_\eta$ given by $I_U([B_n]) = \lim_{n \to U} B_n = \{ z \in A : \{ n : z \in B_n \} \in U \}$ is a measure algebra isomorphism.

2. In general, $[A] = \{ [z] : z \in A \} \subseteq Z_U$ is the set of all atoms of η_U and the restriction $\eta|A$ of η to A is isomorphic as a measure space to the restriction $\eta_U([A]$ of η_U to $[A]$ via the map $z \mapsto [z]$. Under this isomorphism, letting $C = Z \setminus A$, we may identify (Z_U, η_U) with $([C] \sqcup A, (\eta|C)_U + \eta|A)$.

Proof. First suppose that (Z, η) is discrete. Without loss of generality we may assume that $Z = A$. As sets we may identify MALG_η with 2^A. Let B_0, B_1, \ldots be a sequence in 2^A converging in the product topology to some set $B \subseteq 2^A$. Given $\epsilon > 0$, let $F \subseteq A$ be a finite set such that $\eta(A \setminus F) < \epsilon$. For all large enough n, B_n and B agree on F, so that $\eta(B_n \Delta B) < \eta(A \setminus F) < \epsilon$ and thus $d_\eta(B_n, B) \to 0$. This shows that the map $2^A \to \text{MALG}_\eta$ is a continuous bijection from the compact Hausdorff space 2^A (with the product topology) to $(\text{MALG}_\eta, d_\eta)$, so it is a homeomorphism. It is clear that the map φ taking $B \subseteq A$ to $[B] \subseteq [A]$ is an isometric embedding of MALG_η to MALG_{η_U} that preserves all Boolean operations. If now $[B_n] \subseteq [A]$ and $\lim_{n \to U} B_n = B$ then $d_{\eta_U}([B_n], [B]) = \lim_{n \to U} d_\eta(B_n, B) = 0$ so that $[B_n] = [B]$ and thus $\varphi^{-1} = I_U$, which completes the proof of (1). Part (2) follows since (Z_U, η_U) decomposes as $([C] \sqcup A, (\eta|C)_U + (\eta|A)_U)$ and part (1) shows that $([A], (\eta|A)_U) \cong (A, \eta)$. \qed

Theorem A.3. Let a_0, a_1, \ldots be a sequence of measure preserving actions of Γ on the standard probability space (X, μ) and let $a_\mu = \Gamma \rtimes a_{\mu_U} (X_U, \mu_U)$ be their ultraproduct. Let $M_0 \subseteq \text{MALG}_{\mu_U}$ be any subset such that $(M_0, d_{\mu_U}|M_0)$ is separable. Then there exists an invariant measure sub-algebra M of MALG_{μ_U} containing M_0 that is isomorphic as a measure algebra to MALG_μ.

Proof. Let $A \subseteq X$ be the collection of atoms of X and let $C = X \setminus A$. By Proposition A.2(2), $[A] \subseteq X$ is the discrete part of μ_U and $x \mapsto [x]$ is an isomorphism $\mu|A \cong \mu_U|[A]$. Define a function $S_U : \text{MALG}_{\mu_U} \to \text{MALG}_{\mu_U}$ first on subsets $D \subseteq [C]$ by taking $S_U(D)$ to be any subset of D satisfying $\mu_U(S_U(D)) = \frac{1}{2} \mu_U(D)$, and then extending this to all of MALG_{μ_U} by taking $S_U(D) = S_U(D \cap [C]) \cup (D \cap [A])$. Fix a countable dense subset M_1 of M_0 and let $B_0 \subseteq \text{MALG}_{\mu_U}$ be a countable Boolean algebra.
containing $M_1 \cup \{\{x\} : x \in A\}$ and closed under the functions S_U and γ^{μ_U} for all $\gamma \in \Gamma$. Then the σ-algebra $M = \sigma(B_0)$ equipped with μ_U is an invariant countably generated measure sub-algebra of MALG_{μ_U} containing M_0. Since B_0 is closed under S_U, the atoms of B_0, and hence also those of M, must be contained in $[A]$, and as M contains $\{[B] : B \subseteq A\}$, the discrete part of M is isomorphic to the discrete part of MALG_{μ}. It follows that $M \cong \text{MALG}_{\mu}$.

Proposition A.4. Let $a = \Gamma \bowtie (X, \mu)$ and $b = \Gamma \bowtie (Y, v)$ be measure preserving actions of Γ. If a is weakly contained in b then then the measure space (X, μ) is a quotient of the measure space (Y, v). If a and b are weakly equivalent then (X, μ) is isomorphic to (Y, v). In particular, the identity actions ι_{η_1} and ι_{η_2} are weakly equivalent if and only if (Z_1, η_1) and (Z_2, η_2) are isomorphic measure spaces.

Proof. Suppose first that $a \bowtie b$. Let $\phi : X \to K = 2^\mathbb{N}$ be any Borel isomorphism and let $\lambda = (\phi^{a,b})_*\mu$. Then $\alpha \cong \Gamma \bowtie (K^\Gamma, \lambda)$ and as $a \bowtie b$ there exists $\lambda_n = (\phi^{b_n,b})_*\mu \in E(b, K)$ with $\alpha_n \to \lambda$. By Proposition 3.11 $\Gamma \bowtie (K^\Gamma, \lambda)$ is a factor of the ultrapower b_U of b via ϕ^{b_U}, where ϕ is the ultralimit of the ϕ_n. Thus a is also a factor of b_U so by Theorem A.3 this implies (X, μ) is a factor of (Y, v).

Now suppose that a and b are weakly equivalent. Then the measure spaces (X, μ) and (Y, v) are factors of each other, say $\pi : (Y, v) \to (X, \mu)$ and $\varphi : (X, \mu) \to (Y, v)$. Let $A \subseteq X$ be the set of atoms of X and let $B \subseteq Y$ be the set of atoms of Y. If $\mu(A) = 0$ then we are done since this implies both (X, μ) and (Y, v) are non-atomic. So suppose that $\mu(A) > 0$. It is clear that $A \subseteq \varphi^{-1}(B)$ and $B \subseteq \pi^{-1}(A)$, hence $\mu(A) = v(B)$. Additionally, $\mu(\varphi^{-1}(B) \setminus A) = 0$, otherwise $v(B) = \mu(\varphi^{-1}(B)) > \mu(A)$. Similarly, $v(\pi^{-1}(A) \setminus B) = 0$. Thus $\varphi^{-1} : \text{MALG}_{v_B} \to \text{MALG}_{\mu_A}$ and $\pi^{-1} : \text{MALG}_{\mu_A} \to \text{MALG}_{v_B}$ are isometric embeddings of compact metric spaces (Proposition A.2), so it follows that both π^{-1} and φ^{-1} are in fact isometric isomorphisms. Since these maps are also Boolean algebra homomorphisms it follows that both are measure algebra isomorphisms. This shows that the discrete parts of (X, μ) and (Y, v) are isomorphic, from which it follows that (X, μ) and (Y, v) are isomorphic.

B. Appendix. Stable weak containment

In this appendix we establish some basic properties of stable weak containment of measure preserving actions. Our development mirrors our development of weak containment of measure preserving actions.

Definition B.1. Let A and B be two sets of measure preserving actions of Γ. We say that A is stably weakly contained in B, written $A \bowtie \bowtie B$, if for every $\Gamma \bowtie (X, \mu)$ then there exist non-negative reals $\alpha_0, \ldots, \alpha_{m-1}$ with $\sum_{i < m} \alpha_i = 1$ along with actions $\Gamma \bowtie (Y_i, v_i) = b_i \in B$, $i < m$, and a Borel partition B_0, \ldots, B_{k-1} of $\sum_{i < m} Y_i$ such that

$$|\mu(\gamma^a A_j \cap A_j) - \sum_{i < m} \alpha_i \tilde{v}_i(\gamma^{\sum_{i < m} b_i} B_i \cap B_j)| < \epsilon$$

for all $i, j < k$ and $\gamma \in F$. (See §3.2 for notation.)
The relation \(\prec_s \) is a reflexive and transitive relation on sets of measure preserving actions. We call \(\mathcal{A} \) and \(\mathcal{B} \) stably weakly equivalent, written \(\mathcal{A} \sim_s \mathcal{B} \), if both \(\mathcal{A} \prec_s \mathcal{B} \) and \(\mathcal{B} \prec_s \mathcal{A} \). We write \(a \prec_s B \), \(A \prec_s B \), and \(a \prec_s b \) for \(\{a\} \prec_s B \), \(A \prec_s \{b\} \), and \(\{a\} \prec_s \{b\} \) respectively, and similarly with \(\sim_s \) in place of \(\prec_s \).

It is clear that \(a \prec_s b \) if and only if \(a \prec \{\eta_a \times b : \alpha = (\alpha_0, \ldots, \alpha_{m-1}) \in [0, 1]^m, \sum_{i=0}^{m-1} \alpha_i = 1, m \in \mathbb{N} \} \), so by Lemma 3.8 we have \(a \prec_s b \) if and only if \(a \prec t \times b \) if and only if \(t \prec a \prec t \times b \). From this point of view, Theorem 1.2 says that if \(a \) is ergodic then \(a \prec_s b \) if and only if \(a \prec b \). Theorem 1.1 implies that \(a \prec_s b \) if and only if \(E(a, K) \subseteq \varnothing E(b, K) \) for every compact Polish space \(K \), and \(a \sim_s b \) if and only if \(\varnothing E(a, K) = \varnothing E(b, K) \) for every compact Polish space \(K \). More generally, we have the following analogue of Proposition 3.6, which can be proved directly by using the same methods.

Proposition B.2. Let \(\mathcal{A} \) and \(\mathcal{B} \) be sets of measure preserving actions of \(\Gamma \). Then the following are equivalent:

1. \(\mathcal{A} \prec_s \mathcal{B} \);
2. \(\bigcup_{d \in A} E(d, K) \subseteq \varnothing \bigcup_{b \in B} E(b, K) \) for every finite \(K \);
3. \(\bigcup_{d \in A} E(d, K) \subseteq \varnothing \bigcup_{b \in B} E(b, K) \) for every compact Polish \(K \);
4. \(\bigcup_{d \in A} E(d, 2^N) \subseteq \varnothing \bigcup_{b \in B} E(b, 2^N) \).

References

