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ABSTRACT

Quantifying the atmospheric mass loss during planet formation is crucial for

understanding the origin and evolution of planetary atmospheres. We examine

the contributions to atmospheric loss from both giant impacts and planetesimal

accretion. Giant impacts cause global motion of the ground. Using analytic

self-similar solutions and full numerical integrations we find (for isothermal at-

mospheres with adiabatic index γ = 5/3) that the local atmospheric mass loss

fraction for ground velocities vg . 0.25vesc is given by χloss = (1.71vg/vesc)
4.9,

where vesc is the escape velocity from the target. Yet, the global atmo-

spheric mass loss is a weaker function of the impactor velocity vImp and mass

mImp and given by Xloss ' 0.4x + 1.4x2 − 0.8x3 (isothermal atmosphere) and

Xloss ' 0.4x+ 1.8x2 − 1.2x3 (adiabatic atmosphere), where x = (vImpm/vescM).

Atmospheric mass loss due to planetesimal impacts proceeds in two different

regimes: 1) Large enough impactors m &
√

2ρ0(πhR)3/2 (25 km for the current

Earth), are able to eject all the atmosphere above the tangent plane of the im-

pact site, which is h/2R of the whole atmosphere, where h, R and ρ0 are the

atmospheric scale height, radius of the target, and its atmospheric density at

the ground. 2) Smaller impactors, but above m > 4πρ0h
3 (1 km for the current

Earth) are only able to eject a fraction of the atmospheric mass above the tangent

plane. We find that the most efficient impactors (per unit impactor mass) for at-

mospheric loss are planetesimals just above that lower limit (2 km for the current

Earth). For impactor flux size distributions parametrized by a single power law,

N(> r) ∝ r−q+1, with differential power law index q, we find that for 1 < q < 3

the atmospheric mass loss proceeds in regime 1) whereas for q > 3 the mass loss

is dominated by regime 2). Impactors with m . 4πρ0h
3 are not able to eject

any atmosphere. Despite being bombarded by the same planetesimal population,
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we find that the current differences in Earth’s and Venus’ atmospheric masses

can be explained by modest differences in their initial atmospheric masses and

that the current atmosphere of the Earth could have resulted from an equilib-

rium between atmospheric erosion and volatile delivery to the atmosphere from

planetesimal impacts. We conclude that planetesimal impacts are likely to have

played a major role in atmospheric mass loss over the formation history of the

terrestrial planets.

Subject headings: planetary systems: general — planets and satellites: formation

— solar system: formation

1. INTRODUCTION

Terrestrial planet formation is generally thought to have proceeded in two main stages:

The first consists of the accretion of planetesimals, which leads to the formation of several

dozens of roughly Mars-sized planetary embryos (e.g. Ida & Makino 1993; Weidenschilling

et al. 1997), and the second stage consists of a series of giant impacts between these embryos

that merge to form the Earth and other terrestrial planets (e.g. Agnor et al. 1999; Chambers

2001). Understanding how much of the planets’ primordial atmosphere is retained during

the giant impact phase is crucial for understanding the origin and evolution of planetary at-

mospheres. In addition, a planet’s or proptoplanet’s atmosphere cannot only be lost due to

a collision with a comparably sized body in a giant impact, but also due to much smaller im-

pacts by planetesimals. During planet formation giant impacts begin when the planetesimals

are no longer able to efficiently damp the eccentricities of the growing protoplanets. Order

of magnitude estimates that balance the stirring rates of the protoplanets with the damping

rates due to dynamical friction by the planetesimal population and numerical simulations

find that giant impacts set in when the total mass in protoplanets is comparable to the mass

in planetesimals (Goldreich et al. 2004; Kenyon & Bromley 2006). Therefore about 50%

of the total mass still resides in planetesimals when giant impacts begin and planetesimal

accretion continues throughout the giant impact phase. Furthermore, geochemical evidence

from highly siderophile element (HSE) abundance patterns inferred for the terrestrial planets

and the Moon suggest that a total of about 0.01 M⊕ of chondritic material was delivered as

‘late veneer’ by planetesimals to the terrestrial planets after the end of giant impacts (War-

ren et al. 1999; Walker et al. 2004; Walker 2009). This suggests that planetesimal accretion

did not only proceed throughout the giant impacts stage by continued beyond. Therefore,

in order to understand the origin and evolution of the terrestrial planets’ atmospheres one

needs to examine the contribution to atmospheric loss from both the giant impacts and from



– 3 –

planetesimal accretion.

Depending on impactor sizes, impact velocities and impact angles, volatiles may be

added to or removed from growing planetary embryos by impacts of other planetary embryos

and smaller planetesimals. The survival of primordial atmospheres through the stage of giant

impacts during terrestrial planet formation has been examined by Genda & Abe (2003) and

Genda & Abe (2005). These works numerically integrate the hydrodynamic equations of

motion of the planetary atmosphere to determine the amount of atmospheric loss for various

ground velocities. In contrast to giant impacts, smaller impactors cannot eject the planet’s

atmosphere globally but are limited to, at best, ejecting all the atmosphere above the tangent

plane of the impact site. Some of the first calculations of impact induced atmospheric erosion

were performed using the Zel’dovich & Raizer (1967) solution for the expansion of a vapor

plume and momentum balance between the expanding gas and the mass of the overlying

atmosphere (e.g. Melosh & Vickery 1989; Vickery & Melosh 1990; Ahrens 1993). The results

of these calculations were used to investigate the evolution of planetary atmospheres as

a result of planetesimal impacts (e.g. Zahnle et al. 1990, 1992). Newman et al. (1999)

investigated by analytical and computational means the effect of ∼ 10 km impactors on

terrestrial atmospheres using an analytical model based on the solutions of Kompaneets

(1960). Atmospheric erosion calculations were extended further by, for example, Svetsov

(2007) and Shuvalov (2009) who investigated numerically atmospheric loss and replenishment

and the role of oblique impacts, respectively. In the work presented here, we use order of

magnitude estimates and numerical simulations to calculate the atmospheric mass loss over

the entire range of impactor sizes, spanning impacts too small to eject significant amounts of

atmosphere to planetary-embryo scale giant impacts. Our results demonstrate that the most

efficient impactors (per impactor mass) for atmospheric loss are small planetesimals which,

for the current atmosphere of the Earth, are only about 2 km in radius. We show that these

small planetesimal impacts could have potentially totally dominated the atmospheric mass

loss over Earth’s history and during planet formation in general.

Our paper is structured as follows: In section 2 we use analytic self-similar solutions and

full numerical integrations to calculate the amount of atmosphere lost during giant impacts

for an isothermal and adiabatic atmosphere. We analytically calculate the atmospheric

mass loss due to planetesimal impacts in section 3. In section 4, we compare and contrast

the atmospheric mass loss due to giant impacts and planetesimal accretion and show that

planetesimal impacts likely played a more important role for atmospheric loss of terrestrial

planets than giant impacts. We discuss the implications of our results for terrestrial planet

formation and compare our findings with recent geochemical constraints on atmospheric loss

and the origin of Earth’s atmosphere in section 5. Discussion and conclusions follow in

section 6.
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2. Atmospheric Mass Loss Due to Giant Impacts

When an impact occurs the planet’s atmosphere can be lost in two distinct ways: First,

the expansion of plumes generated at the impact site can expel the atmosphere locally but

not globally. Atmospheric loss is therefore limited to at best h/(2R) of the total atmosphere,

where h is the atmospheric scale height and R the planetary radius (see section 3 for details).

Second, giant impacts create a strong shock that propagates through the planetary interior

causing a global ground motion of the proto-planet. This ground motion in turn launches a

strong shock into the planetary atmosphere, which can lead to loss of a significant fraction

of or even the entire atmosphere.

Fig. 1.— Illustration of a giant impact. 1) The giant impact ejects atmosphere and ejecta

close to the impact point and launches a strong shock. 2) The shock front propagates through

the target causing a global ground motion. 3) This ground motion in turn launches a strong

shock into the planetary atmosphere, which can lead to loss of a significant fraction of or

even the entire atmosphere.

It was realized several decades ago that self-similar solutions provide an excellent de-
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scription for a shock propagating in adiabatic and isothermal atmospheres (e.g. Raizer 1964;

Grover & Hardy 1966). Here, we take advantage of these self-similar solutions and use them

together with full numerical integrations to calculate the atmospheric mass loss due to giant

impacts.

2.1. Self-Similar Solutions to the Hydrodynamic Equations for an Isothermal

Atmosphere

Terrestrial planet’s atmospheres, like the Earth’s, are to first order isothermal, giving

rise to an exponential density profile. We therefore solve the hydrodynamic equations for a

shock propagating in an atmosphere with an exponential density profile given by

ρ = ρ0 exp[−z/h], (1)

where ρ0 is the density on the ground, z the height in the atmosphere measured from the

ground and h the atmospheric scale height. The atmosphere is assumed to be planar, which

is valid for the terrestrial planets since their atmospheric scale heights are small compared

to their radii. We further assume that radiative losses can be neglected such that the flow

is adiabatic. The adiabatic hydrodynamic equations are given by

1

ρ

Dρ

Dt
+
∂u

∂z
= 0 (2)

Du

Dt
+

1

ρ

∂p

∂z
= 0 (3)

1

p

Dp

Dt
− γ

ρ

Dρ

Dt
= 0, (4)

where γ is the adiabatic index and D/Dt the ordinary Stokes time derivative.

Thanks to the self-similar behavior of the flow, the solutions to hydrodynamic equations

above can be separated into their time-dependent and spatial parts and can be written as

ρ(z, t) = ρ0 exp[−Z(t)/h]G(ζ), u(z, t) = ŻU(ζ), p(z, t) = ρ0 exp[−Z(t)/h]Ż2P (ζ) (5)

where Z(t) is the position of the shock front and ζ = (z − Z(t))/h. The similarity variables

for the density, velocity and pressure are given by G(ζ), U(ζ) and P (ζ), respectively. Using

the expressions in Equation (5) and substituting them into the hydrodynamic Equations

(2)-(4) yields for the spatial parts

1

G

dG

dζ
(U − 1) +

dU

dζ
= 1 (6)
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(U − 1)
dU

dζ
+

1

G

dP

dζ
= −U

α
(7)

(U − 1)

(
1

P

dP

dζ
− γ

G

dG

dζ

)
= − 2

α
− γ + 1, (8)

and a time dependent part given by
Ż2

Z̈
= αh. (9)

Using the strong shock conditions we have

G(0) =
γ + 1

γ − 1
, U(0) =

2

γ + 1
, P (0) =

2

γ + 1
. (10)

Having separated the hydrodynamic equations into their time-dependent and spatial

parts and we now obtain their self-similar solution. The solution to Equation (9) yields the

position of the shock front as a function of time and is given by

Z(t) = −αh ln [1− (t/t0)] (11)

where t0 = 2αh/[vg(γ+ 1)] and vg is the ground velocity at the interface between the ground

the atmosphere. Equation (11) shows that the shock accelerates fast enough such that it

arrives at infinity in time t0. The ground in contrast only transverses a distance 2αh/(γ+1),

which is a few scale heights, in the same time.

Although various solutions to Equations (6)-(8) exist for different values of α, the phys-

ically relevant solution corresponds to a unique value of α which allows passage through a

critical point, ζc. This critical point corresponds to the sonic point in the time-dependent

flow. Self-smilar solutions that include passage trough the sonic point are generally referred

to as type II self-similar solutions. For example, we find, consistent with previous works

(Grover & Hardy 1966; Chevalier 1990), that for γ = 4/3, α = 5.669 and the critical point

is located at ζc = −0.356 and similarly, for γ = 5/3, α = 4.892 and ζc = −0.447. Since

the self-similar solutions have to pass through the sonic point, only the region between the

shock front and the sonic point are in communication and the part of the flow beyond the

sonic point is cut off. The beauty of this is that the solution of the hydrodynamic equations

becomes independent of the detailed nature of the initial shock conditions, such that the ve-

locity of the ground motion that launches the shock only enters in the form of multiplicative

constants in the asymptotic self-similar solution. Figure 2 displays the solutions for G(ζ),

U(ζ) and P (ζ) for an adiabatic index γ = 4/3 for an isothermal atmospheric density profile

and adiabatic atmospheric density profile (see section 2.2).

The atmospheric mass loss fraction for an exponential atmosphere is

χloss = exp[−zesc/h] (12)
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Fig. 2.— Solutions for G(ζ), U(ζ) and P (ζ) for an adiabatic index γ = 4/3 for an adiabatic

atmospheric density profile, ρ = ρ0(1 − z/z0)n with n = 1.5, (solid line) and an isothermal

atmospheric density profile, ρ = ρ0 exp[−z/h], (dashed line).
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where zesc is the initial height in the atmosphere of the fluid element that has a velocity equal

to the escape velocity at a time long after the shock has passed, such that the atmosphere at

z ≥ zesc will be lost. From Equation (11) we have that the shock velocity grows exponentially

with height in the atmosphere just as the density deceases exponentially. The shock velocity

is given by

Ż =
γ + 1

2
vg exp[z/αh]. (13)

zesc can therefore be written as vesc = vgβ exp[zesc/αh] where vesc is the escape velocity of

the impacted body and β is a numerical constant that relates the velocity of a given fluid

element at a time long after the shock has passed, u∞, to the velocity of the same fluid

element at the shock, u0. The final atmospheric mass loss fraction is therefore

χloss =

(
βvg
vesc

)α
, (14)

where the only quantity left to calculate numerically is the acceleration factor β given by

β =
u∞
u0
. (15)

It is convenient to write β as the product of the acceleration factor until the shock has reached

infinity (ut0/u0), which happens at time t0, and the acceleration factor from the time that

the shock reached ∞ to a long time after that (u∞/ut0), such that β = (u∞/ut0)(ut0/u0).

The latter is important because a given fluid element continues to accelerate after t0. The

two parts of the acceleration factor can be written as

ut0
u0

=
U(ζ → −∞)Ż(ζ → −∞)

U(ζ = 0)Ż(ζ = 0)
,

u∞
ut0

=
U(ζ → +∞)Ż(ζ → +∞)

U(ζ → −∞)Ż(ζ → −∞)
. (16)

Equations (16) required that we take the limit for ζ and t together. This is accomplished by

rewriting Ż as d ln Ż/dζ = (α(U(ζ)− 1))−1 and solving it together with Equations (6) - (8).

Figure 3 displays the two components of the acceleration factor and we find that β = 2.07

for γ = 4/3 and 1.90 for γ = 5/3.

Because the shock is not immediately self-similar from the very moment that it is

launched into the atmosphere, the actual acceleration factor, β, is less than the value of

β obtained from the self-similar solutions. Furthermore, the atmosphere close to the ground

is not accelerated as much as fluid elements with initial positions significantly above the

ground. Therefore, in order to obtain the actual value of β and an accurate atmospheric

mass loss for the part of the atmosphere that resides close to the ground, we performed full

numerical integrations of the hydrodynamic equations. The simulations were performed us-

ing the one dimensional version of RICH (Yalinewich et al., in preparation), a Godunov type
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Fig. 3.— Left: u/u0 as a function of distance form the shock front, ζ, for an isothermal (thin

lines) and adiabatic density profile (thick lines). The solid and dashed lines correspond to

γ = 4/3 and γ = 5/3, respectively. The value of acceleration factor until the shock reached

∞, ut0/u0, can be read of the left side of the figure corresponding to large distances from

the shock front. Right: u/ut0 as a function of ζ. The value of acceleration factor from the

time the shock reached ∞ until a long time after that, u∞/ut0 , can be read of the right

side on the figure corresponding to late times long after the shock front reached ∞. The

total acceleration factor, β, is the product of the ut0/u0 shown in the left Figure and u∞/ut0
shown in the right Figure.
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hydro-code on a moving Lagrangian mesh. We used a grid with a total of 1000 elements

and as boundary conditions we used a piston moving at a constant velocity on one side

and assumed a vacuum on the other. Due to numerical reasons, we couldn’t set the initial

upstream pressure to zero, so we used a small value of 10−9. We verified that the results

converged by running the same simulation with half as many grid points. Figure 4 shows the

atmospheric mass loss fraction, χloss, as a function of vg/vesc from our self-similar solutions

(thin lines) with β = 1 (lower curves) and β = 2.07 (γ = 4/3, dashed upper curve) and

β = 1.90 (γ = 5/3, solid upper curve). The numerical solution for γ = 5/3 is represented by

the thick line. As expected, the full numerical solution for γ = 5/3 falls between the β = 1

and β = 1.90 lines and we find that the actual value of β is 1.71.

Given the resulting distribution of ground velocities, vg, from a giant impact (see section

2.3), Equation (14) can be used to determine the global atmospheric mass loss fraction for

an isothermal atmosphere.

2.2. Self-Similar Solutions to the Hydrodynamic Equations for an Adiabatic

Atmosphere

The heat transport in many of the close-in exoplanet atmosphere may be dominated by

convection rather than radiation, resulting in adiabatic atmospheres. Unlike an isothermal

atmosphere, an adiabatic atmosphere has a density profile that reaches ρ = 0 at a finite

distance from the planet. Similar to the isothermal density profile considered above, we can

repeat our calculation for an atmosphere with an adiabatic density profile given by

ρ = ρ0(1− z/z0)n, (17)

where z0 is the edge of the atmosphere where ρ = 0 and P = 0 and n is the polytropic

index. We again assume that the atmosphere is planar and that radiative losses can be

neglected such that the flow is adiabatic. For the adiabatic density profile the solutions to

hydrodynamic equations above can again be separated into their time-dependent and spatial

parts and are given by

ρ(z, t) = ρ0(1−Z(t)/z0)
nG(ζ), u(z, t) = ŻU(ζ), p(z, t) = ρ0(1−Z(t)/z0)

nŻ2P (ζ) (18)

where Z(t) is the position of the shock front and ζ = (z − Z(t))/(z0 − Z(t)).

Using the expressions in Equation (18) and substituting them into the hydrodynamic

Equations (2)-(4) yields for the spatial parts

1

G

dG

dζ
(U − 1 + ζ) +

dU

dζ
= n (19)
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Fig. 4.— Mass Loss Fraction, χloss, as a function of vg/vesc for an isothermal atmosphere.
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(U − 1 + ζ)
dU

dζ
+

1

G

dP

dζ
= −U

α
(20)

(U − 1 + ζ)

(
1

P

dP

dζ
− γ

G

dG

dζ

)
= − 2

α
− (γ − 1)n, (21)

and a time dependent part given by

Ż2

Z̈(1− Z/z0)
= αz0. (22)

Solving Equation (22) using the same strong shock initial conditions given in Equation (10)

yields for the position of the shock front as a function of time

Z(t) = z0

[
1−

(
1− t

t0

) α
1+α

]
(23)

where t0 = 2z0α/(vg(1 + α)(1 + γ)) is the time at which the shock reaches the edge of the

atmosphere at z = z0.

Just like for the exponential atmosphere, the physically relevant solution to Equations

(19) - (21) for the adiabatic atmosphere density profile corresponds to a unique value of

α which allows passage through the critical point. We find, for γ = 4/3, α = 1.796 and

ζC = −0.083 and for γ = 5/3, α = 3.029 and ζC = −0.156. Figure 2 shows the solutions

for G(ζ), U(ζ) and P (ζ) for γ = 4/3 for an adiabatic atmospheric density profile (solid line)

and an isothermal atmospheric density profile (dashed line).

The atmospheric mass loss fraction for an adiabatic atmosphere is

χloss =

(
1− zesc

z0

)n+1

(24)

where zesc is the initial height in the atmosphere of the fluid element that has a velocity

equal to the escape velocity at a time long after the schlock has passed. From Equation (23)

we have that the shock accelerates with height in the atmosphere and the shock velocity is

given by

Ż =
γ + 1

2
vg

(
1− z

z0

)−1/α
. (25)

zesc can therefore be written as vesc = vgβ(1− zesc/z0)−1/α. β is again a numerical constant

that relates the velocity of a given fluid element at a time long after the shock has passed,

u∞, to the velocity of the same fluid element at the shock, u0. The final atmospheric mass

loss fraction is therefore

χloss =

(
βvg
vesc

)α(n+1)

. (26)
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Calculating β using an analogous procedure to one employed for the isothermal atmosphere

in section 2.1 with the main difference that Ż is now given by d ln Ż/dζ = (α(U(ζ)−1+ζ))−1,

we find β = 2.38 and β = 2.27 for for γ = 4/3 and γ = 5/3, respectively. Figure 3 shows the

two components of the acceleration as a function of the distance from the shock front, ζ, for

an exponential and adiabatic atmospheric density profile.

Therefore, the exponent of βvg/vesc for an adiabatic atmosphere is, for example, 7.2

for n = 3 and γ = 4/3 and 7.6 for n = 1.5 and γ = 5/3 compared to 5.7 (γ = 4/3) and

4.9 (γ = 5/3) for an isothermal atmosphere, respectively. Figure 5 shows the fractional

atmospheric mass loss as a function of the ground velocity, vg, as obtained from our analytic

self-similar solutions and full numerical integrations.

Equation (26) gives the local atmospheric mass loss fraction for an adiabatic atmosphere

as a function of ground velocity. To obtain the global atmospheric mass loss due to a giant

impact, one needs to obtain the resulting distribution of ground velocities, vg, across the

planet from a giant impact and use these to calculate the local atmospheric mass loss and

sum the results over the whole planet. In the following subsection (section 2.3) we use a

simple impact model to obtain the global atmospheric mass loss as a function of the impactor

mass and velocity.

2.3. Global Atmospheric Mass Loss

2.3.1. Relating the Global Ground Motion to Impactor Mass and Velocity

To obtain the total atmospheric mass lost in a given impact we need to relate the im-

pactor mass, m, and impact velocity, vImp, to the resulting ground motion at the various

locations of the protoplanet and use these together with Equations (14) and (26) to obtain

the local atmospheric mass loss and sum the results over the surface of the planet. When an

impactor hits a protoplanet, it initially transfers most of its energy to a volume comparable

to its own size at the impact site. A significant fraction of this energy will escape from the

site via a small amount of impact ejecta, but some of the energy will propagate through the

protoplanet as a shock. Using a very simple impact model, we approximate the impacts as

point like explosions on a sphere. This is similar to the treatment of point like explosions on

a planar surface between a vacuum and a half-infinite space filled with matter. Such an ex-

plosion results again in a self-similar solution of the second type (Zel’dovich & Raizer 1967).

As the shock propagates it must lose energy because some of the shocked material flows

into vacuum, but its momentum is increased by the nonzero pressure in the protoplanet.

As a result, the shock’s velocity should fall off faster than dictated by energy conservation
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Fig. 5.— Same is in Figure 4 but for an adiabatic atmosphere. The dotted line represent

the atmospheric mass loss results from Genda & Abe (2003).
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but slower than required by momentum conservation. Numerical simulations of catastrophic

impacts find scaling laws that are close to the ones derived by assuming momentum conser-

vation (Love & Ahrens 1996; Benz & Asphaug 1999). For example, Love & Ahrens (1996)

find that the catastrophic destruction threshold, defined as the impact energy per unit target

mass required to eject 50% of the target, scales as R1.1, which is close to the linear scaling

with R predicted from momentum conservation for fixed impactor velocity. We therefore

assume momentum conservation of the shock, mvimp = Mvs, as it propagates through the

target and use it to calculate the resulting ground velocity across the protoplanet (see Figure

6). This treatment is similar to the ‘snowplow’ phase of an expanding supernova remnant

during which the matter of the ambient intersteller medium is swept up by the expanding

shock and momentum is conserved. The volume of the protoplanet that a spherical shock,

originating from an impact point on the protoplanet’s surface, transversed as a function of

distance from the impact point, l, is given by V = πl3(4 − 3(l/2R))/6 and shown as light

blue region in Figure 6. This volume is equivalent to the volume of two intersecting spheres

with radii R and l where the center of sphere corresponding to the shock co-insides with

the surface of the protoplanet of radius, R. Assuming a constant density of the target and

momentum conservation the velocity of the shocked fluid traveling through the protoplanet

is given by

vs = vImp

(m
M

) 1

(l/2R)3(4− 3(l/2R))
, (27)

where l is the distance of the shock travelled from the impact point, such that l = 2R when

the shock reaches the antipode (see Figure 6). The ground velocity with which the shock is

launched into the atmosphere is due to the component of the shocked fluid velocity that is

perpendicular to the planet’s surface, such that vg = vsl/(2R), which yields

vg = vImp

(m
M

) 1

(l/2R)2(4− 3(l/2R))
. (28)

Figure 7 shows the shocked fluid velocity, vs, and the ground velocity, vg, as a function of

distance travelled by the shock through the planet. vg has a minimum at l/2R = 8/9. Our

simple impact model assumes that the target has a constant density and neglects any impact

angle dependence. The latter is a reasonable assumption as long as the impactor mass is

significantly less than the target mass. The former is a reasonable first order approximation

given our general ignorance concerning the interior structure of planetary embryos during

their formation.

Equations (27) and (28) assume momentum conservation within the target. For compar-

ison, if we instead assume momentum conservation in a uniform density half-infinite sphere

and compare it to Equations (27) and (28), we find average shocked fluid velocities and
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ground velocities that are about a factor of 2 smaller. This implies that we may somewhat

overestimate the global atmospheric loss due to giant impacts.

Fig. 6.— Illustration of the impact geometry. An impactor of mass, m, and impact velocity,

vimp, impacts a target with mass, M , and radius, R. Assuming momentum conservation, we

calculate the shocked fluid velocity, vs, and the component of the ground velocity normal to

the surface, vg, as a function of the distance from the impact point.

2.3.2. Global Atmospheric Mass Loss Results

To ensure the entire atmosphere is lost we required that vg(l/2R = 8/9) ≥ vesc (see

Equations (14), (26) and (28)), where we set β = 1 to account for the fact that if we want to

eject all of the atmosphere, we do have to lose also the part of the atmosphere immediately

above the ground for which β = 1. Substituting for vg and rearranging yields that all of the

atmosphere is lost provided that (
vImp
vesc

)(m
M

) 243

256
≥ 1. (29)

Only part of the global atmosphere is lost for(
vImp
vesc

)(m
M

) 243

256
< 1. (30)



– 17 –

0.0 0.2 0.4 0.6 0.8 1.0

1

2

5

10

20

50

100

l�2R

Hv
�v

Im
p
LH

M
�m
L

vg

vs

Fig. 7.— Shocked fluid velocity vs and the ground velocity vg as a function of distance

travelled by the shock, l, from the impact point to the other side of the planet, l = 2R.

The atmospheric mass loss as a function of (vImp/vesc)(m/M) is shown in Figure 8. When

only a fraction of the atmosphere is lost, it is interesting to note that the total atmospheric

loss consists of two components: The first is from the area of the planet’s surface where the

ground motion is large enough such that locally all the atmosphere is lost (dashed line in

Figure 8), the second component corresponds to the region of the planet where the local

ground velocity is small enough such that only part of the atmosphere is lost (thin solid line

in Figure 8). In the latter case, the local fractional mass loss is given by Equation (14) for

an isothermal and Equation (26) for an adiabatic atmosphere, respectively.

In the limit that (vImp/vesc)(m/M)� 1, Equation (28) simplifies to vesc = vImp(m/4M)(2R/l)2

such that in the limit of small total atmospheric mass loss we have

Xloss =

(
l

2R

)2

'
( m

4M

)(vImp
vesc

)
. (31)

In addition to the regions undergoing total atmospheric loss, we also have a contribution form

parts of the planet undergoing partial loss, yielding a total atmospheric mass loss fraction

Xloss = 0.4(m/M)(vImp/vesc). We note here that this formalism is less accurate for small

impactor masses with vImp ∼ vesc, since it does not include any atmosphere ejected directly

at the impact site (see Section 3).
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More generally, we find that the global mass loss fraction for an isothermal atmosphere

is, independent of the exact value of the adiabatic index, well approximated by

Xloss = 0.4

(
vImpm

vescM

)
+ 1.4

(
vImpm

vescM

)2

− 0.8

(
vImpm

vescM

)3

(32)

and is plotted as dotted line, which is barely distinguishable from the thick solid line, in

Figure 8.

Similarly, for an adiabatic atmosphere we find

Xloss = 0.4

(
vImpm

vescM

)
+ 1.8

(
vImpm

vescM

)2

− 1.2

(
vImpm

vescM

)3

. (33)

Figure 9 shows the total atmospheric mass loss fraction for an isothermal (solid lines)

and adiabatic atmosphere (dotted line) as a function of impactor to target mass ratio for

various impact velocities. For a Mars-sized impactor hitting an 0.9 M⊕ protoplanet with

vImp ∼ vesc, we find Xloss = 6%. This is about a factor of 2 lower than estimates by Genda

& Abe (2003) who assumed an average ground velocity of 4 − 5 km/s across the whole

protoplanet and used this velocity together with their local atmospheric mass loss results

(similar to the ones shown in Figure 5) to estimate a global atmospheric mass loss of 10%.

We show here, however, that the global atmospheric mass loss consists of two components,

where the first component is from parts of the planet where the ground motion is large

enough such that locally all the atmosphere is lost (dashed line in Figure 8) and the second

component corresponds to the region of the planet where the local ground velocity is small

enough such that only part of the atmosphere is lost (thin solid line in Figure 8). This makes

the average ground velocity inadequate for determining the global atmospheric mass loss.

In the atmospheric mass loss calculations presented in this section, we assume that ratio

of specific heats, γ, is constant throughout the flow. However, the temperatures reached

during the shock propagation are high enough to lead to ionization of the atmosphere, which

in turn will decrease the value of γ and consequently result in reduced atmospheric mass

loss. The atmospheric mass loss due to giant impacts calculated in this section is therefore

an overestimate.

3. Atmospheric Mass Loss Due to Planetesimal Accretion and the Late Veneer

Although smaller impactors cannot individually eject a large fraction of the planetary

atmosphere, they collectively can play an important role in atmospheric erosion and, as we

show in section 4, may easily dominate atmospheric mass loss during planet formation.
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Fig. 9.— Global mass loss fraction for an isothermal atmosphere (solid lines) and an adia-

batic atmosphere (dashed lines) as a function of impactor mass to target mass ratio, m/M ,

calculated by taking into account the different ground velocities across the planet’s surface.
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3.1. Planetesimal Impacts

Unlike giant impacts which can create a strong shock propagating through the plane-

tary interior that in turn can launch a strong shock into the planetary atmosphere, smaller

planetesimal collisions can only eject the atmosphere locally. When a high-velocity impactor

hits the surface of the protoplanet, its velocity is sharply decelerated and its kinetic energy

is rapidly converted into heat and pressure resulting in something analogous to an explosion

(Zel’dovich & Raizer 1967). Similar to Vickery & Melosh (1990), we model the impact as

a point explosion on the surface, where a mass equal to the mass of the impactor, mImp,

propagates isotropically into a half-sphere with velocity of order, vesc. Atmosphere is ejected

only where its mass per unit solid angle, as measured from the impact point, is less than

that of the ejecta, mImp/2π. We can then relate the impactor mass, mImp, to the ejected

atmospheric mass Meject (see following Equations (34), (36) and (39)). These two masses

are not equal because the planetesimal impact launches a point-like isotropic explosion into

a half-sphere on the planetary surface, but the atmospheric mass above the tangent plane is

not isotropically distributed around the impact site (see Figure 10), but is more concentrated

towards the horizon. Specifically, the atmospheric mass close to the tangent plane of the

impact site is hardest to eject due to its larger column density.

In order to distinguish between the impactor mass and the mass ejected from the at-

mosphere we use M for the mass in the atmosphere that is ejected and, as in section 2, m

and r to describe the mass and radius of the impactor. Assuming an isothermal atmosphere,

which is a good approximation for the current Earth, the atmospheric mass inside a cone

defined by angle θ measured from the normal of the impact site (see Figure 10) is given by

MEject,θ = 2πρ0

∫ a=∞

a=0

∫ θ′=θ

θ′=0

exp[−z/h] sin θ′a2dθ′da (34)

where ρ0 is the atmospheric density at the surface of the planet and z is the height in the

atmosphere above the ground and is related to a, the distance from the impact site to the

top of the atmosphere (see Figure 10), by z = (a2 + 2aR cos θ′)/2R. Integrating over the

whole cap, i.e. from θ = 0 to θ = π/2, yields a total cap mass of

Mcap = 2πρ0h
2R, (35)

in the limit that R � h, which applies for the terrestrial planets. This is the maximum

atmospheric mass that a single planetesimal impact can eject and is given by all the mass

above the tangent plane of the impact site. The ratio of the mass in the cap compared to

the total atmospheric mass is thereforeMcap/Matmos = h/2R. Atmospheric loss is therefore

limited to at best h/2R of the total atmosphere.
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Fig. 10.— Illustration of the impact geometry. Planetesimal impacts can only eject atmo-

sphere locally. Treating their impact as a point-like explosion leading to an isotropic shock

at the impact site, the maximum atmospheric mass that they can eject in a single impact

is given by all the mass above the tangent plane, which is h/2R of the total atmosphere.

However, since smaller impactors are more numerous than larger ones required for giant

impacts, smaller impactors may actually dominate the atmospheric mass loss during planet

formation.
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For impact velocities comparable to the escape velocity, the impactor mass needed to

eject all the mass in the section of the cap subtended by θ is

mImp,θ = 2πρ0

∫ ∞
0

exp[−(a2 + 2aR cos θ)/2Rh]a2da. (36)

Note, the integration in Equation (36) is only over a and not θ since the explosion at the

impact site is assumed to be isotropic (see Figure 10). Therefore the impactor mass needed

to eject all the atmospheric mass above the tangent plane, mImp,π/2 = mcap, is

mcap

Mcap

=

(
πR

2h

)1/2

, (37)

where we again assume that R � h. The impactor mass needed to eject all the mass

above the tangent plane is about
√
R/h larger than the mass in the cap. This is because

the atmospheric mass close to the tangent plane is harder to eject due to its higher column

density. Hence, in order to eject the entire cap an impactor of mass mcap = (πh/8R)1/2Matmos

is needed. Evaluating this for the current Earth yields mcap =
√

2ρ0(πhR)3/2 ∼ 3×10−8M⊕,

which corresponds to impactor radii of rcap = (3
√

2πρ0/4ρ)1/3(hR)1/2 ∼ 25 km for impactor

bulk densities of ρ = 2 g/cm2.

Integrating and evaluating Equation (36) for θ = 0, yields mmin = mimp,0 = 4πρ0h
3.

For the current Earth this evaluates to rmin = (3ρ0/ρ)1/3h ∼ 1 km. Impactors have to be

larger than rmin to be able to eject any atmosphere. For θ not too close to π/2, specifically

π/2 − θ �
√
h/R (i.e., for r/rmin �

√
R/h), the ratio between the ejected mass and the

impactor mass is given by
MEject,θ

mImp,θ

=
sin2 θ cos θ

2
(38)

and is shown in Figure 11. MEject,θ/mImp,θ has a maximum at intermediate values of θ,

this is because for small θ the ejection efficiency is low because only a small fraction of

the isotropic shock at the impact site is in the direction of θ for which the atmosphere can

be ejected. In addition, for large θ the ejection efficiency is also low because significantly

larger impactors are needed to eject the atmospheric mass along the tangent plane of the

impact site due to its higher atmospheric column density. For small θ, MEject,θ/mImp,θ can

be approximated as
MEject,θ

mImp,θ

' rmin
2r

(
1−

(rmin
r

)2)
. (39)

In summary, atmospheric erosion due to planetesimals therefore occurs in two different

regimes. In the first regime, which was previously studied by Melosh & Vickery (1989), the

planetesimals have masses large enough such that they can eject all the atmosphere above the
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The solid lines correspond to an Earth-like planet, i.e.
√

2R/h = 40, and an example of a

close-in exoplanet with a scale height that is about 10% of its radius,
√

2R/h = 4. Close

to the tangent plane (i.e., large θ) larger impactor masses are needed because of the higher

atmospheric column densities close to the tangent plane. The dashed line gives the analytic

limit for θ � π/2−
√
h/R.
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tangent plane, in this case the planetesimal masses must satisfy m ≥ mcap =
√

2ρ0(πhR)3/2.

In the second regime, planetesimal impacts can only eject a fraction of the atmosphere above

the tangent plane and their masses must satisfy 4πρ0h
3 < m <

√
2ρ0(πhR)3/2. As we discuss

in section 5 and show in Figure 16, these small planetesimals are the most efficient impactors

(per unit mass) for removing planetary atmospheres and may actually dominate the mass

loss. Planetesimals with masses less than mmin = mimp,0 = 4πρ0h
3 do not contribute to the

atmospheric mass loss. Figure 12 shows the atmospheric mass that can be ejected in a single

planetesimal impact as a function of planetesimal size.
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Fig. 12.— Mass ejected in a single impact,MEject, as a function of impactor radius, r. Only

impactors with r ≥ rcap are able to eject the whole cap. For the Earth this corresponds

to impactors with r & 25 km. Impactors with rmin < r < rcap only eject a fraction of the

atmospheric mass above the tangent plane of the impact site. For the Earth this corresponds

to impactors with 1 km< r < 25 km. Impactors smaller than rmin (i.e., r . 1 km) cannot

eject any atmosphere. The dotted line that is close to the solid black curve corresponds to

the small impactor limit derived in Equation (39).

Our simple planetesimal impact model assumes an isotropic expansion of the vapor

from the impact site. However, numerical simulations of planetesimal impacts show a strong

preference for vertical expansion velocities (e.g. Shuvalov 2009) and find significantly lower



– 26 –

atmospheric mass loss for vertical impacts (Svetsov 2007) compared to oblique ones (Shuvalov

2009). In contrast, in oblique impacts, the plume expands more isotropically and hence

accelerates and ejects more atmospheric mass (Shuvalov 2009). Comparing the results of

our simple planetesimal impact model with the numerical results, averaged over all impact

angles, obtained by Shuvalov (2009)1, we find that we overestimateMEject/mImp by a factor

of 10, 3 and 1 for impact velocities of 15 km/s, 20 km/s and 30 km/s, respectively. In deriving

Equation (36), we assume that impact velocities comparable to vesc are sufficient to result in a

point like explosion, where a mass equal to the mass of the impactor propagates isotropically

with velocity of order vesc, but comparison with numerical impact simulations above suggests

that impactor velocities of about 3vesc are needed to produce such an explosion. We did

not investigate the dependence of MEject/mImp on the impact velocity. Previous works of

numerical impact simulations find that bigger impact velocities lead to larger atmospheric

mass loss, smaller values for rmin and r∗ (Svetsov 2007; Shuvalov 2009). From Equation (39)

we find thatMEject/mImp has a maximum at r∗ =
√

3rmin, which corresponds to about 2 km

for the current Earth. This compares well the values of r∗ found by Shuvalov (2009) which

are 2 km, 1 km, and 1 km for impact velocities of 15 km/s, 20 km/s and 30 km/s, respectively.

Finally, the scaling ofMEject/mImp shown in Figure 3 of Shuvalov (2009) is consistent with

the MEject/mImp ∝ m
−1/3
Imp scaling we find from Equation (39) for r∗ < r < rcap and the

MEject/mImp ∝ m−1Imp scaling we find for rcap < r (see also Figure 16).

3.2. Impactor Size Distributions

Similar to Melosh & Vickery (1989), we can now calculate the atmospheric mass loss

rate due to planetesimal impacts for a given impactor flux. Parameterizing the cumulative

impactor flux with a single power law given by N(> r) = N0(r/r0)
−q+1, where q is the

differential power law index, N0 is the impactor flux (number per unit time per unit area)

normalized to impactors with radii r0, we can write the atmospheric mass loss rate as

dMatmos

dt
= −πR2N0(q − 1)

r0

∫ rmax

rmin

(
r

r0

)−q
MEject(r)dr. (40)

1The dimensionless erosional efficiency given in Equation (2) of Shuvalov (2009) seems to contain a typo,

since in its printed form it is not dimensionless. When comparing our results with Shuvalov (2009) we

assume that the author intended to have ρ2 in denominator rather than just ρ, where ρ is the density of the

impactor.



– 27 –

If the planetesimal size distribution is dominated by the smallest bodies such that q > 3

then
dMatmos

dt
= −πR2N0(q − 1)mmin

2r0

∫ rmax

rmin

(
r

r0

)−q((
r

rmin

)2

− 1

)
dr (41)

where we substituted for Meject from Equation (39). Integrating over r gives

dMatmos

dt
= −πR2N0mmin

q − 3

(
rmin
r0

)−q+1

(42)

where rmin = (3ρ0/ρ)1/3h and mmin = 4πρ0h
3. Evaluating Equation (42) for q = 4 yields

dMatmos/dt = −πR2N0
4π
3
ρr30.

If q < 3 then the atmospheric mass loss is dominated by impactors whose mass is around

the smallest mass that can eject the entire cap. For this case we find for 3 > q > 1

dMatmos

dt
= −πR2CN0Mcap

(
rcap
r0

)−q+1

, (43)

where rcap = (3
√

2πρ0/4ρ)1/3(hR)1/2 is the impactor radius that can eject all the atmosphere

above the tangent plane andMcap = 2πρ0h
2R is the mass of the atmosphere above the tan-

gent plane. C is a constant that accounts for the additional contribution to the atmospheric

mass loss from bodies that can only eject a fraction of the atmosphere above the tangent

plane. C = 1 implies that bodies smaller than rcap do not contribute to the atmospheric

mass loss for 3 > q > 1. The numerical value of C depends on the impactor size distribution

because it is the bodies that are just a little bit smaller than rcap that can still contribute

significantly to the atmospheric mass loss. We find that the values for C range from 2.8 for

q = 2.8, 1.9 for q = 2.5, 1.3 for q = 2.0, to 1.1 for q = 1.5. As expected, the value of C is

largest for q close to 3 because the larger q, the more numerous are the smaller bodies.

The time it takes to lose the entire atmosphere is finite, i.e. the mass in the atmosphere

does not simply decline exponentially towards zero but reaches zero in a finite time (Melosh

& Vickery 1989). This is because as some of the atmosphere is lost, its density declines and

even smaller impactors can now contribute to the atmospheric mass loss. This accelerates

the mass loss process, because smaller impactors are more numerous and dominate the mass

loss (see Equations (42) and (43)). From Equations (42) and (43) we find that for both q > 3

and 1 < q < 3 impactor size distributions that the rate of atmospheric mass loss scales as

Matmos/dt ∝ −M (−q+4)/3
atmos and has a solution given by

Matmos(t) = M0

(
1− t

t∗

)3/(q−1)

, (44)
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where M0 is the initial atmospheric mass at t = 0 and t∗ is the time it takes to lose the entire

atmosphere. Interestingly the solutions to Equation (44) for both q > 3 and 1 < q < 3 only

differ by the value of t∗. For 1 < q < 3

t∗q<3 =
6

π(q − 1)CRhN0

(√
πh

8R

M0

m0

)(q−1)/3

(45)

and for q > 3 the time for complete atmospheric loss is

t∗q>3 =
3(q − 3)

π(q − 1)h2N0

((
h

R

)2
M0

m0

)(q−1)/3

, (46)

where m0 = 4πρr30/3 and r0 is the radius to which the size distribution is normalized. The

expression in Equation (45) differs from the one derived by Melosh & Vickery (1989) because

they assumed Mcap = mcap, whereas we find that Mcap = mcap(2h/πR)1/2 (see Equation

(37)), and they neglected the numerical coefficient C.

4. Comparison of Atmospheric Mass Loss due to Giant Impacts and

Planetesimal Accretion

Having derived the atmospheric mass loss due to giant impacts and smaller planetesimal

impacts, we are now in the position to compare these different mass loss regimes.

Assuming that all impactors have the same size, we find for rmin < r < rcap that the

number of impactors needed to remove the atmosphere is

N =
Matmos

MEject

= 6
ρ0h

ρrmin

(
R

r

)2(
1−

(rmin
r

)2)−1
(47)

and that this corresponds to a total mass in impactors given by

MT =
MatmosmImp

MEject

=
2r

rmin

(
1−

(rmin
r

)2)−1
Matmos. (48)

Strictly speaking the Equations (47) and (48) overestimate N and MT , because as a fraction

of the remaining atmosphere is removed a given sized impactor is able to eject a larger

fraction of the atmosphere above the tangent plane. In deriving Equations (47) and (48) we

used Equation (39) for the relationship between the ejected mass and the impactor mass,

which is only valid for r/rmin �
√
R/h. Equations (47) and (48) are therefore not accurate

for r ∼ rcap but should still give a reasonable estimate for Earth-like atmospheres since the
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deviation between the approximation and full solution is small and only occurs in the vicinity

around r ∼ rcap (see Figure 12).

Similarly, for impactors large enough to remove the entire cap but not too large to be

in the giant impact regime (i.e., rcap < r < rgi), we have

N =
Matmos

MEject

=
2R

h
(49)

and

MT =
MatmosmImp

MEject

=
4π

3
ρr3

2R

h
. (50)

In contrast to the previous regime, rmin < r < rcap, impactors with rcap < r < rgi are

always limited to ejecting the whole cap, so an impactor of a given size cannot eject more

atmosphere as the total atmospheric mass declines with time.

We estimate the impactor radius at which giant impacts are more efficient than smaller

impacts in ejecting the atmosphere, by equating the atmospheric mass loss due to giant

impacts to the atmospheric cap mass. Assuming that vImp ∼ vesc, we find by equating

Equation (31) to the fraction of the atmosphere above the tangent plane that rgi ' (2hR2)1/3,

which corresponds to impactors with radii of about 900 km for the current Earth. Finally,

from Equation (31) we have that in the giant impact regime (i.e., r > rgi)

N =
Matmos

MEject

= X−1loss '
3R3

r3
(51)

and

MT =
MatmosmImp

MEject

' 4M = constant. (52)

Equations (51) and (52) were derived in the limit that Xloss � 1 in a single giant impact.

Figure 13 shows the number of impactors needed, defined here as N = Matoms/MEject,

to erode the atmosphere as a function of impactor radius. Figure 14 shows the total mass in

impactors needed, defined here as MT = MatomsmImp/MEject, to erode the atmosphere as a

function of impactor radius. Figure 15 is the same as Figure 14 but for atmospheric mass

that is 100 times enhanced compared to that of the current Earth. The plots in all three

figures assume that all impactors are identical and have a single size, r. Figures 13, 14 and

15 clearly display the three distinct ejection regimes. Figures 14 and 15 impressively show

that small impactors with rmin < r < rcap are the most effective impactors per unit mass in

ejecting the atmosphere. The best impactor size for atmospheric mass loss is r∗ =
√

3rmin
for which mImp/MEject = 33/2 ' 5. For the current Earth this corresponds to bodies with

r ∼ 2 km and implies that a total mass in such impactors only needs to be about 5Matoms
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to eject the planetary atmosphere. This is an absolutely tiny amount compared to estimates

of the mass in planetesimals during and even at the end of the giant impact phase. The

implications of our findings for terrestrial planet formation are discussed in section 5.
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Fig. 13.— Number of impactors needed, N , as a function of impactor radius, r, to eject

the atmosphere, scaled to values of the current Earth. Three distinct ejection regimes are

apparent: 1) For small rmin < r < rcap (i.e., 1 km . r . 25 km), the number of bodies

needed scales roughly as r−2. 2) For intermediate impactor sizes (i.e. 25 km< r <1000 km),

N is constant, because each impact ejects the whole atmospheric cap, and to eject the entire

atmosphere one needs N = Matoms/Mcap = (2R/h) number of impacts. 3) For larger

impactor radii (i.e., r > 1000 km) the impactors are large enough to initiate a shock wave

traveling through the entire Earth and launching a shock into the atmosphere globally such

that N tends to 1 as r tends to REarth. In the giant impact regime, N ∼ (R/r)3. Impactors

with r < rmin ∼ 1 km are not able to eject any atmosphere.
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Fig. 14.— Total impactor mass, MT , needed to eject the atmosphere as a function of

impactor radius, r. Several distinct ejection regimes are apparent, see caption of Figure 13

for details. For comparison, the upper, middle, and lower dashed lines correspond to the

mass ratio of the late veneer to the Earth’s mass, the Earth’s oceans to its total mass, and

the Earth’s atmosphere to its total mass, respectively. Small impactors with r∗ =
√

3rmin are

the most efficient impactors per unit mass in ejecting the atmosphere (see Equation (39)).

For the current Earth this corresponds to bodies with r ∼ 2 km. The ratio between the

impactor mass to the atmospheric mass ejected for r = r∗ is mImp/MEject = 33/2 ' 5 (see

Equation (39)). This implies that a planetesimal population comprised of bodies with r ∼ r∗
would only need to contain about 5Matmos in mass to eject the planetary atmosphere. This

is an absolute tiny amount compared to estimates of the mass in planetesimals during and

even at the end of the giant impact phase of terrestrial planet formation. Impactors with

r < rmin ∼ 1 km are not able to eject any atmosphere.
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Fig. 15.— Same as in Figure 14 but for an atmospheric mass that is 100 times enhanced

compared to that of the current Earth. For comparison, the upper and lower dashed lines

correspond to the mass ratio of the late veneer to the Earth’s mass and 100 times the Earth’s

current atmosphere to its total mass, respectively.
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5. Application & Importance for the Formation of the Terrestrial Planets

Earth, Venus and Mars all display similar geochemical abundance patterns of near

chondritic light noble gasses, but relative depletion of in Xe, C and N (e.g. Halliday 2013).

This suggests that all three planets may not only have lost major volatiles, but also accreted

similar veneers from chondritic material. In addition, all three planets have similar noble

gas patterns, but whereas the budgets for Venus are near chondritic, the budgets for Earth

and Mars are depleted by two and four orders of magnitude, respectively. This suggests that

Earth and Mars lost the vast majority of their noble gasses relative to Venus during the

process of planet formation (Halliday 2013).

Recent work suggests that the Earth went through at least two separate periods during

which its atmosphere was lost (Tucker & Mukhopadhyay 2014). The evidence for several

atmospheric loss events is inferred from the mantle 3He/22Ne, which is higher than the

primordial solar abundance by at least a factor of 6 and which is thought to have been

increased to its current value by multiple magma ocean degassing episodes and atmospheric

loss events. In addition, Tucker & Mukhopadhyay (2014) suggest that the preservation of low
3He/22Ne ratio in a primitive reservoir sampled by plumes implies that later giant impacts

did not generate a global magma ocean.

Previous works usually appeal to giant impacts to explain Earth’s atmospheric mass

loss episodes (e.g. Genda & Abe 2003, 2005). Figure 14, however, demonstrates clearly that

small planetesimals with sizes rmin < r < rcap are the most efficient impactors per unit

mass in ejecting the atmosphere. For the current Earth this corresponds to bodies with

1km . r . 25 km. Furthermore, atmospheric mass loss due to small impactors will proceed

without generating a global magma ocean, which is supported by recent interpretations of

low 3He/22Ne ratios in a primitive reservoir sampled by plumes (Tucker & Mukhopadhyay

2014).

Whether or not planetesimal impacts will lead to a net loss of planetary atmospheres or

simply an alteration of the current atmosphere depends on the planetesimal sizes distribution

as well as the volatile content of the planetesimals. Zahnle et al. (1992) investigated impact

erosion and replenishment of planetary atmospheres and suggest that the competition of

these two processes can explain the present distributions of atmospheres between Ganymede,

Callisto, and Titan. de Niem et al. (2012) performed a similar study with a focus on Earth

and Mars during a heavy bombardment and find a dominance of accumulation over erosion.

Figure 16 shows the ratio of atmospheric mass ejected to impactor mass as a function of

planetesimal size. If the impactors are not dominated by a single size, as assumed in Figure

16, but instead follow a power-law size distribution, N(> r) = N0(r/r0)
−q+1, then the ratio



– 34 –

of the atmospheric mass lost to the impactor mass is, for 3 < q < 4, given by

dMatmos

dmImp

= − 4− q
(q − 1)(q − 3)

(
rmin
rmax

)−q+4

+ f, (53)

where rmax is the maximum size of the planetesimal size distribution and rmin = (3ρ0/ρ)1/3h

is the smallest planetesimal size that can contribute to the atmospheric mass loss as derived

in section 2 and f is the volatile fraction of the planetesimals. Similarly, for 1 < q < 3 we

have
dMatmos

dmImp

= −C
(

2h

πR

)1/2
4− q
q − 1

(
rcap
rmax

)−q+4

+ f, (54)

where rcap = (3
√

2πρ0/4ρ)1/3(hR)1/2 and corresponds to the impactor radius that can eject

all the atmospheric mass above the tangent plane. Evaluating the first term in Equations

(53) and (54) for a planetesimal population ranging from r < rmin ∼ 1 km to 1000 km

and assuming values of the current Earth we find dMatmos/dmImp = −0.01 + f for q = 3.5

and dMatmos/dmImp = −0.0003 + f for q = 2.5, respectively 2. These results have two

important implications: First, we can estimate how massive initial planetary atmospheres

must have been in order to avoid erosion due to planetesimal impacts. Estimates of the mass

in planetesimals during the giant impact phase range from a few percent to several tens of

percent of the total mass in terrestrial planets (e.g. Schlichting et al. 2012). Assuming a total

mass in planetesimals of about 0.1 M⊕ yields that initial atmospheres must have contained

Matmos & 10−3M⊕ and Matmos & 3×10−5M⊕ for q = 3.5 and q = 2.5, respectively, in order to

avoid erosion due to planetesimal impacts. The latter result is particular interesting since it

implies that for q = 2.5 Venus, which has Matmos ∼ 8×10−5M⊕, will not undergo atmospheric

erosion due to planetesimal impacts whereas the Earth could have lost most of its atmosphere

due to planetesimal impacts if its initial atmosphere was less than 3 × 10−5M⊕. Second,

Equations (53) and (54) permit an equilibrium solution, where the atmospheric erosion is

balanced by the volatiles delivered to the planet’s atmosphere in a given planetesimal impact.

It may therefore be that the Earth’s atmosphere was eroded by planetesimal impacts until an

equilibrium was established between atmospheric loss and volatile gain. The current Earth’s

atmosphere could be the result of such an equilibrium if the fraction of the planetesimal

mass that ends up as volatiles in the atmosphere, f , was 0.01 and 3× 10−4 for q = 3.5 and

q = 2.5, respectively. These finding are consistent with results by de Niem et al. (2012) who

find that atmospheric erosion is balanced by volatile delivery from an asteroidal population

of impactors if f = 2× 10−3.

2For comparison, the lunar craters can be modeled with a power-law size distribution with q ∼ 2.8 and

q ∼ 3.2 for crater diameters ranging from 1 km to 64 km and larger than 64 km, respectively (e.g. Neukum

et al. 2001).
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Fig. 16.— Ratio of atmospheric mass ejected to impactor mass, MEject/mImp. Numerical

values are scaled to the current Earth. Small impactors with r∗ =
√

3rmin are the most

efficient impactors per unit mass in ejecting the atmosphere (see Equation (39)). For the

current Earth this corresponds to bodies with r ∼ 2 km. The ratio between the impactor

mass to the atmospheric mass ejected for r = r∗ is mImp/MEject = 33/2 ' 5 (see Equation

(39)). The value of MEject/mImp decreases rapidly for larger planetesimals. Whether or

not planetesimal impacts will lead to a net loss of planetary atmospheres depends on the

impactor sizes distribution as well as their volatile budget. The three dotted horizontal

lines correspond to volatile contents of 5 wt.% (representative of some of the most water

rich carbonaceous chondrites), 0.05 wt.% (representative of the average water content in the

bulk Earth excluding the hydrosphere) and 0.0005 wt.% corresponding to an estimate of the

minimum water content of the bulk moon (McCubbin et al. 2010).
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To summarize, we have shown that planetesimals can be very efficient in atmospheric

erosion and that the amount of atmospheric loss depends on the total mass in planetesimals,

on their size distribution and their volatile content. The total planetesimal mass needed for

significant atmospheric loss is small and it is therefore likely that planetesimal impacts played

a major role in atmospheric mass loss over the formation history of the terrestrial planets.

We have shown that the current differences in Earth’s and Venus’ atmospheric masses can

be explained by modest differences in their initial atmospheric masses and that the current

atmosphere of the Earth could have resulted from an equilibrium between atmospheric ero-

sion and volatile delivery to the atmosphere by planetesimal impacts. Furthermore, if the

Earth’s hydrosphere was dissolved in its atmosphere, as it may have been immediately after

a giant impact, then planetesimal impacts can also have contributed significantly to loss of

the Earth’s oceans. We have shown above that planetesimals can be very efficient in atmo-

spheric erosion and that the amount of atmospheric loss depends both on the total mass in

planetesimals, on their size distribution and their volatile content. One way for planetesimals

to not participate significantly in the atmospheric erosion of some, or all, of the terrestrial

planets is for most of their mass to reside in bodies smaller than rmin = (3ρ0/ρ)1/3h, since

such bodies are too small to contribute to atmospheric loss. Finally, planetesimal impacts

may not only have played a major role in atmospheric erosion of the terrestrial planets but

may also have contributed significantly to the current terrestrial planet atmospheres.

6. Discussion & Conclusions

We investigated the atmospheric mass loss during planet formation and found that it

can proceed in three different regimes.

1) In the first regime (r & rgi = (2hR2)1/3), giant impacts create strong shocks that

propagate through the planetary interior causing a global ground motion of the protoplanet.

This ground motion in turn launches a strong shock into the planetary atmosphere, which

can lead to loss of a significant fraction or even the entire atmosphere. We find that the local

atmospheric mass loss fraction due to giant impacts for ground velocities vg . 0.25vesc is

given by χloss = (βvg/vesc)
p where β and p are constants equal to β = 1.71, p=4.9 (isothermal

atmosphere and an adiabatic index γ = 5/3) and β = 2.11, p=7.6 (adiabatic atmosphere

with polytropic index n = 1.5, adiabatic index γ = 5/3). In addition, using a simple model

of a spherical shock propagating through the target, we find that the global atmospheric

mass loss fraction is well characterized by Xloss ' 0.4x + 1.2x2 − 0.8x3 (isothermal) and

Xloss ' 0.4x + 1.8x2 − 1.2x3 (adiabatic), where x = (vImpm/vescM), independent of the

precise value of the adiabatic index.
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2) In the second regime (rcap = (3
√

2πρ0/4ρ)1/3(hR)1/2 . r . (2hR2)1/3 = rgi), im-

pactors cannot eject the atmosphere globally, but are large enough, i.e., r > rcap, to eject all

the atmosphere above the tangent plane of the impact site. A single impactor is therefore

limited to ejecting h/2R of the total atmosphere in a given impact. For the current Earth

this corresponds to impactor sizes satisfying 25 km . r . 900 km.

3) In the third regime (rmin = (3ρ0/ρ)1/3h . r . (3
√

2πρ0/4ρ)1/3(hR)1/2 = rcap),

impactors are only able to eject a fraction of the atmospheric mass above the tangent plane

of the impact site. For the current Earth this corresponds to 1 km . r . 25 km. Impactors

with r . rmin are not able to eject any atmosphere.

Comparing these three atmospheric mass loss regimes, we find that the most efficient

impactors (per unit impactor mass) for atmospheric loss are small planetesimals. For the

current atmosphere of the Earth this corresponds to impactor radii of about 2 km. For such

impactors, the ejected mass to impactor mass ratio is only ∼ 5, implying that one only

needs about 5 times the total atmospheric mass in such small impactors to active complete

loss. More realistically, planetesimal sizes were probably not constrained to a single size,

but spanned by a range of sizes. For impactor flux size distributions parametrized by a

power law, N > r ∝ r−q+1, with differential power law index q we find that for 1 < q < 3 the

atmospheric mass loss is dominated by bodies that eject all the atmosphere above the tangent

plane (r > rcap) and that for q > 3 the mass loss is dominated by impactors that only erode a

fraction of the atmospheric mass above the tangent plane in a single impact (rmin < r < rcap).

Assuming that the planetesimal population ranged in size from r < rmin ∼ 1 km to 1000 km,

we find for, parameters corresponding to the current Earth, an atmospheric mass loss rate

to impactor mass rate ratio of 0.01 and 0.0003 for q = 3.5 and q = 2.5, respectively. Despite

being bombarded by the same planetesimal population, we find that the current differences

in Earth’s and Venus’ atmospheric masses can be explained by modest differences in their

initial atmospheric masses and that the current atmosphere of the Earth could have resulted

from an equilibrium between atmospheric erosion and volatile delivery to the atmosphere

from planetesimal impacts.

Recent work suggests that the Earth went through at least two separate periods dur-

ing which its atmosphere was lost and that later giant impacts did not generate a global

magma ocean (Tucker & Mukhopadhyay 2014). Such a scenario is challenging to explain

if atmospheric mass loss was a byproduct of giant impacts, because a combination of large

impactor masses and large impact velocities is needed to achieve complete atmospheric loss

(see Figure 8). Furthermore, giant impacts that could accomplish complete atmospheric loss,

almost certainly will generate a global magma ocean. Since atmospheric mass loss due to

small planetesimal impacts will proceeded without generating a global magma ocean they
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offer a solution to this conundrum.

To conclude, we have shown that planetesimals can be very efficient in atmospheric

erosion and that the amount of atmospheric loss depends on the total mass in planetesimals,

on their size distribution and their volatile content. The total planetesimal mass needed

for significant atmospheric loss is small and it is therefore likely that planetesimal impacts

played a major role in the atmospheric mass loss history of the Earth and during planet

formation in general. In addition, small planetesimal impacts may also have contributed

significantly to the current terrestrial planet atmospheres.
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