New RR Lyrae variables in binary systems

G. Hajdu1,2*, M. Catelan1,2, J. Jurcsik3, I. Dékány2,1, A. J. Drake4 and J.-B. Marquette5
1 Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile
2 Millennium Institute of Astrophysics, Santiago, Chile
3 Konkoly Observatory, H-1525 Budapest, PO Box 67, Hungary
4 California Institute of Technology, 1200 East California Boulevard, CA 91225, USA
5 Institut d’Astrophysique de Paris, Université Pierre et Marie Curie, CNRS UMR7095, 98 bis Boulevard Arago, F-75014 Paris, France

Accepted xxx. Received yyy; in original form zzz

ABSTRACT

Despite their importance, very few RR Lyrae (RRL) stars have been known to reside in binary systems. We report on a search for binary RRL in the OGLE-III Galactic bulge data. Our approach consists in the search for evidence of the light-travel time effect in so-called observed minus calculated ($O-C$) diagrams. Analysis of 1952 well-observed fundamental-mode RRL in the OGLE-III data revealed an initial sample of 29 candidates. We used the recently released OGLE-IV data to extend the baselines up to 17 years, leading to a final sample of 12 firm binary candidates. We provide $O-C$ diagrams and binary parameters for this final sample, and also discuss the properties of 8 additional candidate binaries whose parameters cannot be firmly determined at present. We also estimate that $\gtrsim 4$ per cent of the RRL reside in binary systems.

Key words: binaries: general – methods: data analysis – stars: oscillations – stars: variables: RR Lyrae – techniques: photometric – stars: fundamental parameters.

1 INTRODUCTION

RR Lyrae (RRL) stars play a key role in astrophysics. They are important distance indicators, allowing us to determine the distance to the closest galaxies (e.g., Cacciari 2013, Dambis et al. 2013), and thus providing an important step in the calibration of the extragalactic distance scale. Their importance in the context of galaxy formation and evolution is also being increasingly recognized (e.g., Catelan 2009). Indeed, RRL stars being unmistakably old, their distribution in the Galactic halo provides evidence of the early Milky Way formation history (Drake et al. 2013, Sesar et al. 2012, Torrealba et al. 2013). In addition, RRL stars help trace the spatial distribution, and even the age, of some of the Milky Way’s oldest stellar populations (Lee 1992, Catelan & de Freitas Pacheco 1993, Dékány et al. 2013).

Despite their usefulness, there are still important uncertainties affecting the fundamental parameters and physical properties of these stars. Trigonometric parallaxes of even the closest RRL are notorious for their large error bars (Benedict et al. 2011). To complicate matters further, the exact evolutionary status of even RR Lyr itself is uncertain, with indications that it may be significantly overluminous, its metallicity (Catelan & Cortés 2008, Feast et al. 2008).

RRL variables occupy a fairly narrow strip – the so-called instability strip – at intermediate temperatures along the HB. As such, their exact mass value is crucial in establishing whether an HB star will ever become an RRL, or instead, a non-variable blue or red HB star. In this sense, theory predicts that the masses of RRL stars should decrease with increasing metallicity, with little scatter at any given [Fe/H] (e.g., Catelan 1992, Sandage 2006). Direct empirical confirmation of this important result is, however, still lacking. Most of the available information regarding RRL masses comes from the so-called Petersen diagram (Petersen 1973) of double-mode RRL (RRd) stars. RRd stars are observed to pulsate simultaneously in the fundamental and first overtone radial modes, and their distribution in the period ratio vs. period (Petersen) diagram is predicted to be a strong function of the pulsating star’s mass, in addition to other parameters, such as metallicity (e.g., Popielski et al. 2000). RRL star masses can thus be derived by comparing the observed positions of RRd stars in the Petersen diagram with those predicted according to stellar evolution and pulsation theory (e.g., Bono et al. 1994, Dékány et al. 2008). However, this method can only be trusted to provide accurate masses if the theoretical framework upon which it is based is itself accurate. To constrain the theories themselves, it is imperative to obtain a model-independent mass measurement.

Binary systems allow the derivation of the masses of its components, if the orbital parameters are known. In the case of binary systems containing classical Cepheids, analysis of their orbital parameters has played a crucial

* E-mail: ghajdu@astro.puc.cl; mcatelan@astro.puc.cl

© 2015 RAS
role in accurately establishing their physical properties, including their masses (Pietrzyński et al. 2010). Furthermore, Cepheid-bearing binary systems are relatively common (Szabados 2003), and even systems in which both components are Cepheids are now known to exist (Gieren et al. 2014).

The situation regarding RRL stars could hardly be more different, as for long only one RRL, TU UMa, has been known to reside in a binary system (see Saha & White 1990 and Wade et al. 1999, for very detailed analyses of this star). Recently, eclipsing binary RRL candidates have been found by the OGLE project in the Galactic bulge (Soszyński et al. 2011), as well as in the LMC (Soszyński et al. 2009). However, follow-up observations and modeling of the bulge candidate have shown that the pulsating component of this system has too low a mass to be a bona-fide RRL star (Pietrzyński et al. 2012; Smolec et al. 2013). Other candidate eclipsing RRL found by the OGLE-II project in the LMC (Soszyński et al. 2003) have turned out to be optical blends (Prša et al. 2008). Careful analyses of the RRL LCs of the Kepler mission have uncovered only three possible binary candidates (Li & Qian 2014; Guggenberger & Steixner 2014).

Recently, a number of metal-poor, carbon-rich RRLs have been identified via spectroscopy (e.g., Kennedy et al. 2014). The anomalous C abundance of these stars can be explained by mass accretion from a more massive companion, which has evolved through the asymptotic giant phase (Stancliffe et al. 2013), suggesting that these RRLs might be members of binary systems in which the other component has already evolved to the white dwarf stage. However, the binary nature of these RRLs has not yet been directly established.

In this Letter, we describe our search for periodic phase variations caused by the light-travel time effect (Irwin 1952) in the LCs of a subsample of well-observed RRL stars from the OGLE-III survey towards the Galactic bulge (Soszyński et al. 2011). We augment the LCs of the binary candidates thus obtained with newly published photometry from the OGLE-IV survey (Soszyński et al. 2014), in order to increase the observational baseline. We derive binary parameters for the best candidates. Furthermore, we discuss the RRL binary fraction, as well as the detectability of such systems through the light-travel time effect.

\section{Data and Analysis}

Our initial analysis is based on the I-band OGLE-III LCs for bulge RRL (Soszyński et al. 2011). We analyze stars with fundamental-mode pulsation (RRab subtype), as well as having an observational baseline covering more than 10 yr. These criteria define a subsample of 1952 RRab variables. For these, we have utilized the so-called observed minus calculated ($O-C$) diagrams (e.g., Sterken 2003), adopting a linear ephemeris (C) for the variables:

$$C(t) = t_0 + P_{\text{puls}} E,$$ \hspace{1cm} (1)

where t_0 is the initial epoch, P_{puls} is the pulsation period, and E is the epoch number, corresponding to the number of elapsed pulsation cycles since t_0. Times have been transformed into Barycentric Julian Dates (BJD) in the Barycentric Dynamical Time standard (Eastman et al. 2010).

In the case of variable stars, the $O-C$ diagram is most commonly constructed by subtracting the ephemeris (C) from timing observations (O) of particular features of the LCs, such as maxima or minima, and plotting this quantity as a function of time. Hertzsprung (1919) proposed utilizing the whole LC for deriving $O-C$ points of a variable by fitting the phase of a LC template to the observations. Due to the generally sparse sampling of OGLE observations, determining the times of individual maxima at different epochs is unfeasible, making Hertzsprung's method vastly superior for obtaining the required $O-C$ measurements. We thus adopt the latter method in our analysis.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{$O-C$ analysis of the OGLE-III observations. (a) The original LC folded with the pulsation period (grey dots), its Fourier fit (red line), one section of the LC (black dots), and the least-squares template fit (blue dashed line). (b) The resulting $O-C$ diagram (dots), and the corresponding binary-model fit (blue line). The point corresponding to the measurement shown in (b) is indicated by an arrow. (c) The folded LC, after correcting the times of observations for the binary motion (panel [b]). The Fourier fit (blue dashed line) now follows the real LC shape much more closely than the original fit (red line).}
\end{figure}
The light-travel time effect manifests itself as a strictly periodic modulation of the LC of a variable star, caused by its orbital motion around the common center of mass in a binary system. The change in the observed times of particular features of the LC, and consequently in the corresponding $O-C$ values, have the form:

$$z(t) = a \sin i \left(1 - e^2 \right) \sin(\nu + \omega),$$

where a is the semi-major axis, i is the inclination, e is the eccentricity, and ω is the argument of the periastron. The true anomaly ν is a function of the time t, the orbital period P_{orb}, the time of periastron passage T_{peri}, and e.

We have visually inspected the $O-C$ diagrams constructed as described previously, in search of $O-C$ shapes allowed by Eq. 2 (e.g., Irwin 1952). In some cases, particularly when the period values found by Soszyński et al. (2011) have turned out to be inadequate, we have constructed the $O-C$ diagrams with several different pulsation periods.

Figure 1 illustrates the procedure for one of the binary candidates. First we created a LC template by fitting the original LC with a Fourier series using lcfit (Sódor 2012), as shown in Figure 1. The LCs were divided into short sections corresponding to different observing seasons. Sections longer than 160 days were split in two, in order to achieve better time resolution. We have derived the $O-C$ points by least-squares fitting the LC templates in phase to each of these segments. These phase shifts were then used to construct the $O-C$ diagrams (Fig. 1).

2.1 Selection of binary candidates

The light-travel time effect manifests itself as a strictly periodic phase modulation of the LC of a variable star, caused by its orbital motion around the common center of mass in a binary system. The change in the observed times of particular features of the LC, and consequently in the corresponding $O-C$ values, have the form:

$$z(t) = a \sin i \left(1 - e^2 \right) \sin(\nu + \omega),$$

where a is the semi-major axis, i is the inclination, e is the eccentricity, and ω is the argument of the periastron.

We have visually inspected the $O-C$ diagrams constructed as described previously, in search of $O-C$ shapes allowed by Eq. 2 (e.g., Irwin 1952). In some cases, particularly when the period values found by Soszyński et al. (2011) have turned out to be inadequate, we have constructed the $O-C$ diagrams with several different pulsation periods.

Figure 1 illustrates the procedure for one of the binary candidates. First we created a LC template by fitting the original LC with a Fourier series using lcfit (Sódor 2012), as shown in Figure 1. The LCs were divided into short sections corresponding to different observing seasons. Sections longer than 160 days were split in two, in order to achieve better time resolution. We have derived the $O-C$ points by least-squares fitting the LC templates in phase to each of these segments. These phase shifts were then used to construct the $O-C$ diagrams (Fig. 1).

2.2 Analysis of the candidates

Following the above procedure, we have selected 29 potential binary candidates. In order to clarify the status of the stars in this sample, and also to refine the binary parameters of the candidates, we next combined the OGLE-III and IV datasets for these stars, thus increasing the baselines of their $O-C$ diagrams. The full analysis of the combined OGLE-III and IV datasets will be reported in a future paper.

We have combined the OGLE-III and IV datasets for each of our 29 candidates by correcting for the difference between their average magnitudes, as given by Soszyński et al. (2009) and Soszyński et al. (2014). We then repeated the analysis on the combined LCs, and found strong evidence that 6 of the candidates do in fact show the Blazhko effect, which was not evident from the relatively sparse OGLE-III data alone. The $O-C$ variations of two additional candidates appear to be caused completely by their linear period changes, while for a third star, it is probably caused by irregular period changes. These discarded candidates are listed in the second column of Table 1, leaving us with a refined sample of 20 binary candidates.

Eq. 2 does not take possible changes in the pulsation periods of the RRL stars into account. Such changes can significantly alter the $O-C$ diagram. Therefore, we have combined the OGLE-III and IV datasets for each of our 29 candidates by correcting for the difference between their average magnitudes, as given by Soszyński et al. (2009) and Soszyński et al. (2014). We then repeated the previous analysis on the data thus combined. We have inspected the new $O-C$ diagrams and the combined LCs, and found strong evidence that 6 of the candidates do in fact show the Blazhko effect, which was not evident from the relatively sparse OGLE-III data alone. The $O-C$ variations of two additional candidates appear to be caused completely by their linear period changes, while for a third star, it is probably caused by irregular period changes. These discarded candidates are listed in the second column of Table 1, leaving us with a refined sample of 20 binary candidates.

In order to derive the best possible parameters for this 12-star sample, we fit the $O-C$ diagrams of the 20 remaining candidates with the sum of Eqs. 2 and 3, and find that reliable parameters can be derived for 12 of them. The other 8 variables either have orbital periods that are considerably shorter than the baseline of the available observations (therefore the parameters of the fit are degenerate), or have very small $O-C$ amplitudes. These stars, which may still be bona-fide binaries and thus merit continued monitoring, are also listed in Table 2.

Table 1. OGLE IDs of Uncertain RRL Binary Candidates

<table>
<thead>
<tr>
<th>Symptom</th>
<th>ID</th>
<th>Likely non-binaries</th>
<th>Likely binaries with poor fits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blazhko effect</td>
<td>05775</td>
<td>$P_{\text{orb}} > 6000$ d</td>
<td>04522</td>
</tr>
<tr>
<td></td>
<td>07773</td>
<td></td>
<td>05135</td>
</tr>
<tr>
<td></td>
<td>10519</td>
<td></td>
<td>05152</td>
</tr>
<tr>
<td></td>
<td>12027</td>
<td></td>
<td>10891</td>
</tr>
<tr>
<td></td>
<td>13260</td>
<td></td>
<td>11683</td>
</tr>
<tr>
<td></td>
<td>13698</td>
<td></td>
<td>12611</td>
</tr>
<tr>
<td></td>
<td>12698</td>
<td></td>
<td>12698</td>
</tr>
<tr>
<td>Period changes</td>
<td>05778</td>
<td>Very small amplitude</td>
<td>14852</td>
</tr>
<tr>
<td></td>
<td>06876</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12195</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aOGLE-BLG-RRLYR

In order to derive the best possible parameters for this 12-star sample, we fit the $O-C$ solution once, by means of an improved Fourier fit to a ($O-C$)-subtracted LC. We also 3σ-clipped the LCs, discarding the worst-quality (typically ~ 1 per cent) observations for each star. The final $O-C$ points are determined by fitting these templates to the LC segments. The final diagrams, together with their fits, are shown in Figure 2. Table 2 gives the fitted binary parameters for each star, as well as other relevant parameters of the fit.
3 DISCUSSION

We have completed the first systematic search for binaries in a subsample of OGLE Galactic bulge RRL stars utilizing the light-travel time effect. Twenty probable binaries have been found analyzing the $O-C$ diagrams and LCs of 1952 OGLE-III bulge RRab variables, which represents about 1 per cent of this particular subsample (fundamental-mode pulsation, >10 yr observational baseline). This allows us to very roughly constrain the RRL binary fraction, as follows.

Approximately 50 per cent of RRab stars show the Blazhko effect (Jurcsik et al. 2009; Kolenberg et al. 2010). Due to their LC phase and shape changes, determining their binarity through the $O-C$ method is impossible. Therefore, all of the Blazhko binaries have necessarily been missed, and so the total binary fraction must be closer to 2 per cent than to 1 per cent. We assume that the fraction of stars whose binarity was missed due to erratic pulsation period changes is small in comparison. Binaries with very low inclinations and very long periods are also missed. As we have no information about the fraction of long-period binaries in the sample, and as our method is more sensitive to stars with high inclination (because the $O-C$ amplitude is proportional to $a \sin i$), we conservatively assume that at least half of the binaries are still missed due to these two selection effects. Based on these arguments, presumably at least 4 per cent of RRL variables reside in binary systems in the sample. The recovery rate using the $O-C$ method is thus ~ 25 per cent, or perhaps lower.

Very few RR Lyrae stars have been reported to reside in binary systems yet (see Sect. 1). The current sample allows us to assess the observational requirements to discover additional such systems. The period distribution of the binary candidates is highly skewed: we find no binaries with orbital periods shorter than ~ 3.5 yr, and there is a clus-
Table 2. Fitted and derived parameters of the RRL binary candidates

<table>
<thead>
<tr>
<th>ID</th>
<th>P_{orb} (d)</th>
<th>T_{peri} (d)</th>
<th>e</th>
<th>ω (deg)</th>
<th>$a \sin i$ (AU)</th>
<th>σ (AU)</th>
<th>β (d Myr$^{-1}$)</th>
<th>K (km s$^{-1}$)</th>
<th>$f(m)$ (M_\odot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07640</td>
<td>1255 ± 4</td>
<td>9598 ± 54</td>
<td>0.16 ± 0.04</td>
<td>$-30 ± 15$</td>
<td>0.97 ± 0.02</td>
<td>0.16</td>
<td>0.05 ± 0.01</td>
<td>8.5</td>
<td>0.0774</td>
</tr>
<tr>
<td>14408</td>
<td>2734 ± 38</td>
<td>8871 ± 78</td>
<td>0.60 ± 0.12</td>
<td>162 ± 8</td>
<td>0.30 ± 0.03</td>
<td>0.11</td>
<td>0.16 ± 0.01</td>
<td>1.5</td>
<td>0.0005</td>
</tr>
<tr>
<td>04376</td>
<td>2782 ± 19</td>
<td>8147 ± 53</td>
<td>0.79 ± 0.11</td>
<td>$-92 ± 6$</td>
<td>0.74 ± 0.06</td>
<td>0.11</td>
<td>0.04 ± 0.01</td>
<td>4.7</td>
<td>0.0070</td>
</tr>
<tr>
<td>06498</td>
<td>2789 ± 18</td>
<td>8137 ± 134</td>
<td>0.12 ± 0.04</td>
<td>$-82 ± 16$</td>
<td>2.35 ± 0.05</td>
<td>0.16</td>
<td>$-0.11 ± 0.03$</td>
<td>9.2</td>
<td>0.2228</td>
</tr>
<tr>
<td>07566</td>
<td>3485 ± 15</td>
<td>8612 ± 33</td>
<td>0.54 ± 0.03</td>
<td>$-178 ± 3$</td>
<td>1.72 ± 0.04</td>
<td>0.14</td>
<td>$-0.03 ± 0.02$</td>
<td>6.4</td>
<td>0.0556</td>
</tr>
<tr>
<td>09789</td>
<td>3674 ± 30</td>
<td>7221 ± 81</td>
<td>0.18 ± 0.04</td>
<td>78 ± 10</td>
<td>2.80 ± 0.06</td>
<td>0.23</td>
<td>0.24 ± 0.03</td>
<td>8.4</td>
<td>0.2102</td>
</tr>
<tr>
<td>13534</td>
<td>3715 ± 27</td>
<td>6327 ± 73</td>
<td>0.26 ± 0.03</td>
<td>20 ± 5</td>
<td>1.00 ± 0.02</td>
<td>0.22</td>
<td>0.02 ± 0.01</td>
<td>3.0</td>
<td>0.0096</td>
</tr>
<tr>
<td>07943</td>
<td>3726 ± 40</td>
<td>9273 ± 150</td>
<td>0.14 ± 0.03</td>
<td>$-15 ± 13$</td>
<td>1.28 ± 0.03</td>
<td>0.20</td>
<td>$-0.05 ± 0.02$</td>
<td>3.8</td>
<td>0.0200</td>
</tr>
<tr>
<td>11522</td>
<td>3894 ± 153</td>
<td>8751 ± 411</td>
<td>0.30 ± 0.14</td>
<td>$-61 ± 24$</td>
<td>0.57 ± 0.08</td>
<td>0.12</td>
<td>0.37 ± 0.04</td>
<td>1.7</td>
<td>0.0017</td>
</tr>
<tr>
<td>06081</td>
<td>4014 ± 85</td>
<td>7349 ± 206</td>
<td>0.25 ± 0.06</td>
<td>$-150 ± 11$</td>
<td>0.82 ± 0.04</td>
<td>0.14</td>
<td>$-0.08 ± 0.03$</td>
<td>2.3</td>
<td>0.0046</td>
</tr>
<tr>
<td>14145</td>
<td>4045 ± 100</td>
<td>9255 ± 88</td>
<td>0.41 ± 0.04</td>
<td>$-3 ± 7$</td>
<td>1.88 ± 0.08</td>
<td>0.11</td>
<td>0.10 ± 0.02</td>
<td>5.5</td>
<td>0.0541</td>
</tr>
<tr>
<td>05691</td>
<td>4640 ± 119</td>
<td>6010 ± 314</td>
<td>0.35 ± 0.06</td>
<td>46 ± 12</td>
<td>2.54 ± 0.17</td>
<td>0.32</td>
<td>$-0.90 ± 0.14$</td>
<td>6.3</td>
<td>0.1011</td>
</tr>
</tbody>
</table>

Notes: (a) The columns, in order, correspond to the following quantities: (1) OGLE ID, in the usual form OGLE-BLG-RRLYR plus the catalogue entry number; (2) orbital period; (3) time of periastron passage, in units of BJD = 2449000; (4) eccentricity; (5) argument of the periastron; (6) projected semi-major axis; (7) standard deviation of the fit $\sqrt{SSR}/[M - N]$; where SSR is the sum of squared residuals, N is the number of data points and M is the number of free parameters; (8) rate of change of the pulsation period; (9) semi-amplitude of the radial velocity $K = 2\pi a \sin i/P_{\text{orb}} \sqrt{1 - e^2}$; (10) mass function $f(m) = a^3 \sin^3 i/2P_{\text{orb}}^2$, which is connected to the stellar masses through $f(m) = m_1^3 \sin^3 i/(m_{\text{RR}} + m_2)^2$, where m_{RR} is the mass of the RRL, and m_1 is the mass of the secondary.
Hertzsprung E., 1919, AN, 210, 17
Irwin J. B., 1959, AJ, 64, 149
Pietrzyński G. et al., 2010, Nature, 468, 542
Pietrzyński G. et al., 2012, Nature, 484, 75
Popielski B. L., Dziembowski W. A., Cassisi S., 2000, AcA, 50, 491
Sesar B. et al., 2013, AJ, 146, 21
Sódotó A., 2012, Konkoly Observatory Occasional Technical Notes, 15, 1
Soszyński I. et al., 2003, AcA, 53, 93
Soszyński I. et al., 2009, AcA, 59, 1
Soszyński I. et al., 2011, AcA, 61, 1
Soszyński I. et al., 2014, AcA, 64, 177
Szabados L., 2003, IBVS, 5394, 1