Molecular Evolution Activities
 

This is a comprehensive bibliography (under construction) of primary and secondary sources on the neutral theory of molecular evolution. It currently covers the period 1973-2001.

Author :

Sikorski, J.;Jahr, H.;Wackernagel, W.

Year :

2001

Title :

The structure of a local population of phytopathogenic Pseudomonas brassicacearum from agricultural soil indicates development under purifying selection pressure

Journal :

Environmental Microbiology

Volume :

3

Issue :

3

Pages :

176-186

Date :

Mar

Short Title :

The structure of a local population of phytopathogenic Pseudomonas brassicacearum from agricultural

Alternate Journal :

Environ. Microbiol.

Custom 2 :

ISI:000167829500003

Abstract :

Among the isolates of a bacterial community from a soil sample taken from an agricultural plot in northern Germany, a population consisting of 119 strains was obtained that was identified by 16S rDNA sequencing and genomic fingerprinting as belonging to the recently described species Pseudomonas brassicacearum. Analysis of the population structure by allozyme electrophoresis (11 loci) and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR; four primers) showed higher resolution with the latter method. Both methods indicated the presence of three lineages, one of which dominated strongly. Stochastic tests derived from the neutral theory of evolution (including Slatkin's exact test, Watterson's homozygosity test and the Tajima test) indicated that the population had developed under strong purifying selection pressure. The presence of strains clearly divergent from the majority of the population can be explained by in situ evolution or by influx of strains as a result of migration or both. Phytopathogenicity of a P. brassicacearum strain determined with tomato plants reached the level obtained with the type strain of the known pathogen Pseudomonas corrugata. The results show that a selective sweep was identified in a local population. Previously, a local selective sweep had not been seen in several populations of different bacterial species from a variety of environmental habitats.

Notes :

Times Cited: 0 417HL ENVIRON MICROBIOL
 -- contributed by John Beatty, March 29, 2002