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IT has  sometimes  been  suggested that  the wild-type allele  is not a single entity, 
but rather a population of different isoalleles that  are indistinguishable by 

any ordinary procedure. With- hundreds of nucleotides,  each presumably cap- 
able of base  substitutions and  with additional permutations possible through se- 
quence rearrangements, gains, and losses, the number of possible gene states 
becomes  astronomical. It is known that a single  nucleotide substitution can have 
the most drastic consequences, but  there are also mutations with  very  minute 
effects and  there is the possibility that  many  are so small as to be  undetectable. 

.It is not the purpose of this article to discuss the plausibility of such a system 
of isoalleles, or the evidence for and against. Instead, we  propose  to examine some 
of the population  consequences of such a system if it does exist. The probability 
seems great enough to warrant such an  inquiry. 

If a large number of different  states can arise by mutation, this doesn’t  neces- 
sarily mean that a large. fraction of these  would  coexist in a single  population. 
Some will be lost by random drift  and others may be selectively  disadvantageous. 
On the other hand, some may persist  by  being  beneficial in heterozygous 
combinations. 

We shall consider three possibilities: (1) A system of selectively neutral 
isoalleles  whose frequency in the population is determined by the mutation rate 
and  by  random drift. (2) A system of mutually heterotic  alleles. (3) A mixture 
of heterotic and  harmful  mutants. 

1.  Selectively Neutral Isoalleles 

To isolate the essential  problem,  we  consider an extreme situation in which 
the number of possible  isoallelic  states at a locus  is so large that each new mutant 
is a state not preexisting in the population. This provides an estimate of the-upper 
limit for the  number of different alleles maintained in the population. 

The distribution in successive  generations of the descendants of an individual 
mutant gene  was  solved by FISHER (1930) and  under less restricted conditions, 



though less exactly, by HALDANE (1939). An  approximate solution  to our prob- 
lem was in fact given by HALDANE, but we present  the following more elementary 
and  more exact procedure: 

Let u be the  average rate of mutation of the alleles existing in a diploid  popu- 
lation, so that  in a population of size N (  2N genes) there  will be 2Nu new  mutants 

I introduced  per  generation,  each  new  mutant being regarded as different from 
any allele preexisting in the population. 

In a  randomly  mating population of effective  size Ne,  the probability of two 
uniting gametes carrying alleles that  are  identical in  the sense of being  descended 
from the same allele in some common ancestor is 

where Ft is the inbreeding coefficient in generation t (WRIGHT 1931 ; MALECOT 
1948). 

since the previous generation. The probability  that  neither has mutated is 
(1 - u )  z. Thus we can generalize the  formula  (as MALECOT did) to include 
mutation by writing 

The two alleles will be in  identical states only if neither of them has mutated 

To specify the equilibrium condition when the loss of alleles by  random  drift 
exactly balances the  gain of new alleles by mutation,  let F ,  = Ft-, = F The 
solution, ignoring  terms  containing is 

In this context, F is the probability that  an individual  will be homozygous. If 
all  the alleles were  equally  frequent,  the proportion of homozygotes  would  be the 
reciprocal of the  number of alleles at this locus maintained in the  population. If 
there are variations in allele frequencies, the proportion of homozygotes will be 
greater than this. Therefore, n = l/F may be used  as a measure of the effective 
number of alleles maintained in the population, which in  general will be  less than 
the  actual  number. 

Some numerical values of F and n are given in Table 1 and the relations are 
shown graphically  in  Figure 1. If is much less than  the reciprocal of the 
mutation  rate, F approaches 1 and  all  the genes in  the population will usually 
be the descendants of a single mutant. If is larger  than l/u, more than one 
allele will usually be maintained  and as N e  gets larger more individuals will be 
heterozygous. 

The effective number, Ne,  is usually  smaller  than  the  actual  number. It is of 
course much  nearer  the  number of sexually  mature  individuals than the  number 
counted at  immature stages, particularly  if  there is heavy pre-adult  mortality 



(WRIGHT 1931; FISHER 1939; CROW and MORTON 1955). If the expectation of 
progeny is not the same for  all  individuals in  the population the effective number 
€or monoecious  diploids is given  by 

(KIMURA and CROW 1963) 

where = mean number of progeny per parent, V = variance in  number of 
progeny per parent,  and N = population number in the  parent  generation.  There 
is  a  slight modification for a bisexual population (see KIMURA and CROW 1963). 
The special case of a population of stable size, x = 2, was first given by WRIGHT 
(1938a). In this case (4) becomes 

HALDANE’S (1939)  approximate solution for  the  minimum  number of genes 
expected in a  stable sized population of N individuals is (in our terminology) 
16Nu/( V + 2), in-rough agreement with (3) and ( 5 )  when N is large compared 
with 

The general conclusion of this section  is that, for selectively neutral alleles, if 
the effective population number is much less than the reciprocal of the  mutation 
rate almost all  the genes in  the population at a given  locus will be descended 
from  a single mutant. 



2. Mutually Heterotic Alleles 

It has been known since the  early work of FISHER (1922)  that, in  an infinite 
population, heterozygote superiority  in fitness for  a  pair of alleles leads to a stable 
polymorphism. With  more  than two alleles the necessary and sufficient conditions 
for maintaining  a stable equilibrium  are more delicate. The conditions were given 
by KIMURA (1956)  and confirmed for  a discontinuous model  by MANDEL ( 1959). 
The complexity of the conditions,  however, does not change the  general conclusion 
that overdominance is a potent factor for  maintaining  a polymorphism in  a large 
population. 

Recently the behavior of overdominant genes in a  finite population has been 
investigated by ROBERTSON (1962)  utilizing some mathematical  results of 
MILLER (19.62). ROBERTSON showed that  when  the  equilibrium  allele  frequency 
is outside the  range 0.2 to  0.8 there  are some circumstances where heterozygote 
advantage  actually accelerates the  rate of fixation and loss of alleles by random 
drift,  rather  than  retarding it as might have been  expected. This suggests that 
if there are  a large  number of mutually heterotic alleles, they  may  under some 
circumstances be lost by random  drift more rapidly  than if they were neutral. 

In a system of mutually heterotic alleles, the population fitness will be greatest 
when  the  number of heterozygotes is maximized. In general, the  larger  the 
number of alleles the  greater  the proportion of heterozygotes. Hence, if the 
requisite  mutations occur the population can reduce the segregation load (CROW 
1958)  by  increasing  the  number of alleles that  are  maintained. On the  other 
hand,  the effect of random  drift  in  reducing  the  number of alleles increases greatly 
with  increase in the  number of alleles in  the population, being roughly propor- 
tional to square of the  number of alleles (KIMURA 1955). A larger  number can 
be maintained if the homozygotes are more disadvantageous, but this increases 
the segregation load. 

Therefore,  with  a population of a  certain size and  mutation rate there  must be, 
for  a given pattern of homozygote disadvantage, a  maximum  number of alleles 
that can be maintained.  This will correspond to the  minimum segregation load. 

We  are interested in considering such an extreme  situation  where  the’ segre- 
gation load is minimum. To make the mathematics more manageable, we assume 
that each homozygote has the  same disadvantage, s, with respect to the heterozy- 
gotes, all of which are assumed to have the  same fitness. In  an infinite population 
each allele would be of equal  frequency at equilibrium; in  a finite population 
there  will be departures because of random  drift. We need to obtain the distri- 
bution of allele frequencies at equilibrium  under  the joint influence of mutation, 
selection, and  random  drift. 

As in Section 1, we assume that the  number of possible mutant alleles is so 
large that no mutation is repeated in  a finite population. Using WRIGHT’S (1937) 
general  distribution  formula  and  incorporating some of FISHER’S (1958)  inven- 
tive methods the average homozygosity and  the effective number of alleles can 
be expressed in terms of s, u, and Ne.  

Mathematical methods: In  a randomly  mating population of effective  size N e ,  



let be the expected number of alleles whose frequency is in the  range x to 
x + dx. The value of x may change  from generation to generation by mutation, 
selection, and  random  drift,  but at equilibrium a stable distribution will be 
reached, the  formula  for 'which can be obtained from  an equation given by 
WRIGHT (1 938b) : 

where C is a constant, and  are respectively the  mean and variance of 
the  rate of change of x per generation. 

We let u be the  rate of mutation from the allele under consideration to  all other 
allelic states. As stated before,  we  assume that each  new mutation is unique. For 
simplicity, we  assume that u is the same for  all alleles. We designate by F the 
sum of the squares of the allele frequencies; i.e. 

where is the  frequency of the  ith allele, Ai, in  the population. 

x by mutation is -ux and by selection is 
Since the  rate of change in  the frequency of a' particular allele with  frequency 

As stated before, s is the selective advantage of a heterozygote over a homozy- 
gote. This is most  Conveniently  measured in MALTHUSIAN parameters (FISHER 
1930, 1958).  With discrete,  nonoverlapping generations  the change in x caused 
by selection is 

Since we are considering circumstances where SF is  very small, this is  not appreci- 
ably different from (7). The variance of the  rate of change in x is given by 

A great  mathematical simplification is  possible if we replace this by 

which introduces no significant error, since we are  mainly concerned with large 
numbers of alleles, which  have individually low frequencies. Substituting (8) 
and (1 1) into  the distribution formula (6) leads to 



In deriving  equation (12), F, was  assumed to be a constant, and is interpreted 
as the expected' value of the sum of squares of the  allele frequencies, or more 
simply as the reciprocal of the effective number of alleles maintained in  the 
population. The  treatment of F as a constant will be  shown later to  be satisfactory 
as an approximation. 

The constant C is  determined by the condition that  the  allele frequencies add 
UP to unity, 1, or 

= 

Note that this  is  different  from  the  usual  way by which C in WRIGHT'S formula 
is evaluated. The reason is that  in the  present  instance is related  to  the 
number of different genes in  a population rather  than the probability of a  certain 
gene frequency in a population. 

From (14) we obtain 

At equilibrium,  when  the  random  extinction of alleles is exactly balanced by 
new mutations,  we have the following condition at  the subterminal class (cf. 
WRIGHT 1931; FISHER 1958): 

In any population, the expected number of alleles maintained is much smaller 
than the  total  number of individuals;  thus 1/22!' is  very small compared to F and, 
since u is very small, (1 8) is simplified to 

4M = C 
Thus, from the two relations (16) and (19), F may be determined as a function 
of M and S. 

In equation (12), F was  used as  the expected value of the sum of squares of the 
allele frequencies. This  can be demonstrated by evaluating 

which turns  out  to be very  nearly F.  
It is only necessary that 



The  effective number of alleles maintained: If all alleles were of equal f r e  
quency, the  number of alleles, n, would  be given by 

Therefore, we  define n as the effective number of alleles. The segregation load will 
be  given bv 

In order to  get a solution for F, we first  eliminate C from (16) and (19). This 
leads to 

- 

For any given value of M and S, the corresponding value of Z may be obtained 
from (23) and  then F is calculated from 

The relation between and is given in Table for various equally 
spaced values of Z between -3 and + 3  Numerical calculation is facilitated by 
the fact that, as  seen from (23), r is  the  ratio of the  ordinate of the normal  curve 
with zero mean and unit variance at Z to the area  under  the  curve  from -Z to 

Z .  Since IO or more in most  cases of interest,  the  area is practically 
equivalent to integration  from -Z to + . 

For example, with N e  = s and u we have S and 
M 1, so that r'= 0.2. Table 2 gives 1.35 or n = 13.5. 

For values of r outside the range  tabulated, the following approximations  are 
satisfactory: 

1. Small  values of r. For this, use 

- 

For example, with N e  = s = 0.1, and u = 0.5 X we have 100, 
2M = 1, so that r = 0.01. From (26), P = 0.0136 and n = 73.6, as compared with 
73.8 from  Table 2. 

8. Large  values of r. For this, use 

When s = 0, r = , leading to n = 4M = 4Neu. This is in approximate agree- 
ment  with  the more exact value derived in Section 1, n = 4Neu + 1.  can 
also  be verified directly by integrating (20) for the case 



Equation (27) shows  that  when r is large, the number of alleles  is determined 
almost entirely by  effective  population  size and  mutation rate, since  overdomi- 
nance increases the number of alleles only by the fraction 

Results of the calculations: Figures 1 to 5 show the values of F (the proportion 
of homozygous loci), n (the effective number of alleles maintained),  and (the 
segregation load) for a number of values of effective  population number,  muta- 
tion rate,  and selective  disadvantage of homozygotes.  Corresponding  to  each 
selection  coefficient,  population  size, and  mutation rate there is a certain average 
homozygosity and a corresponding  segregation  load. 

For example, with u = and s = .001, a population of effective number 
10,000 has an effective number of alleles of less than five and a segregation  load 
somewhat larger than ,0002 per locus (Figure 2). If s is  increased the  number of 
alleles maintained is  increased, but so is the load. If s = .01, n = 8, and = .0012 
(Figure 3) ; if s = 0.1, n = 22, and = .0045 (Figure 4) ; if s = 1, a balanced 



lethal condition, the  number of alleles  is  almost 60 but  the load  has  increased  to 
.016 per locus (Figure 5 ) .  

With  lethal homozygotes the situation is almost the same as with self-sterility 
alleles, a situation thoroughly investigated  by WRIGHT (1939,.1960) and FISHER 
(1958). 

WRIGHT'S (1939) graph shows  some 80 to 90 self-sterility  alleles maintained 
by a mutation rate of 1 0-5 in a population of compared with our effective 
number of about 60 for the same situation. This is  as  expected:  because the alleles 
will drift away from equal frequencies, the effective number of alleles is smaller 
than the actual number, the former being and the  latter being where 

is the mean frequency of an allele. For example, with three alleles with  fre- 
quencies 2/3, 1/6, and = 1/3 and = 1/2. Thus the  number of alleles 
is three, but the effective number is two;  i.e. two alleles of equal frequency would 
produce the same proportion of heterozygotes. 

For estimating the actual  number of different  alleles in the population, the 
average number as used by WRIGHT is appropriate. For assessing such things 
as the fraction of incompatible  pollinations, the effective number is the  quantity 
needed, This is the quantity that is  estimated  by the ordinary procedure of 
allelism  tests. 

- 

Mixed Heterotic and  Harmful Mutants 

The model that  we have discussed  is artificial in assuming only overdominant 
mutants  with  equal homozygote  fitness. Under this system, it would  be advan- 
tageous for the mutation rate to be  high, for this would  lower the segregation 
load.  On the other hand, if there are both overdominant mutants  and deleterious 
mutants  the situation would be different. 

Consider first a situation where some  loci produce only over dominant  mutants 
of the  type we have discussed and  the  remainder of the loci  produce mutants 
that  are deleterious in both  homozygous and heterozygous  state. If we let  the 
proportion of heterotic  loci be P and  the proportion of loci  producing  deleterious 
mutants be Q, the average total  load per locus will be 

= + 
where r = and b = F.  The values of r and b are given by  the first 
and third columns of Table 2. 

Given P and Q, values of r and b can be determined to minimize the total load. 
For example, if P = Q = inspection of Table 2 shows that  the average of 
columns 1 and 3 is minimum  when r is approximately 0.2. The average is .47 
and therefore the 'load per locus is The segregation  load  is about 7 / 2  
the mutation load. For N e  = and s = the mutation rate  that minimizes 

is 10-5. 
It is  probable that  any locus that produces  heterotic mutants also  gives rise to 

deleterious mutants as  well. If a fraction p of the mutants are deleterious and a 

(28) 





fraction q =I - p are heterotic, then  the  total load per locus  is 

where P’ is the  same  function of QU as F is of u. Equations (28) and (29) can of 
course be combined, if the  total load is to be determined  for  a  number of loci, 
some  which are giving rise only  to deleterious mutants  and  others are mixed. 

=z PU + F’s (29)  

DISCUSSION 

The model  chosen for discussion is unrealistic, except for  very special cases. 
Yet it can help to provide some insight  as to what  situations are possible or likely 
in a  natural population. The first case  discussed, s = 0, shows the  maximum 
heterozygosity per locus that can be maintained in a population by mutation 
alone, in  the absence of any selective advantage of heterozygotes or  other selective 
mechanism that maintains  intermediate  allele frequencies. The critical  quantity 
is If this  quantity is larger than one,  less than half the  individuals in the 
population will be  homozygous for  this locus; if less than one, more than half 
will be homozygous. Of course, if some of the  mutants are selectively disadvan- 
tageous, if the  mutation  rates  to different alleles are different, or if some mutants 
are duplicates of preexisting alleles, the  proportion of homozygosity will be 
higher; hence these calculations represent an upper limit for heterozygosity in ‘a 
population of given  effective size with no selection favoring heterozygotes. 

The second  model  discussed, the  rather  artificial  one  where each mutant is 
equally deleterious when homozygous and  with  all heterozygotes equal  in fitness, 
provides  some insight  into  the  minimum genetic load required to maintain such 
a polymorphism. For example, when s = .01 and u = a population of effec- 



tive  size will have a segregation  load of about .0012 (Figure 3) .  Under this 
circumstance the effective number of alleles maintained is  about eight. If the selec- 
tion intensity were increased to .I (Figure 4) the number of alleles  is  raised  to 
about 22, but  the segregation  load  is .0045, about four times  as large. Correspond- 
ing to a given value of s, N e  and u there is a certain load required to maintain 
the alleles in  the population, as given by the graphs. 

It has frequently been  pointed out by WRIGHT and others that  the total amount 
of selection that  can be effectively applied to a population is limited. The fact 
that a certain  amount of selection is required- to maintain a polymorphism  is 
shown by  the calculation of these  segregation  loads. A large population can 
maintain a great many segregating  loci, perhaps hundreds or thousands,  provided 
these are of the type (if such exist) where there are  many possible mutants, each 
slightly deleterious as a homozygote, but  which are mutually heterotic in all 
combinations.  On the other  hand, any departure  from these  conditions  reduces 
the  number of heterozygotes. 

Although these  calculations,  based as, they are on a rather artificial model 
that favors the development of polymorphisms,  do not place very severe limita- 
tions on  the number of segregating  loci -they do  cast  doubt  on  some  suggested 
models of population structure. One of the most extreme possibilities is that sug- 
gested by WALLACE  (1958) who tentatively concluded that "on the average 
an individual member of the Drosophila  population  studied  is  heterozygous 
for genes at 50 percent or more of all loci". We suspect that the effective popu- 
lation  number in Drosophila may well  be or less. A mutation in order to 
be  detected in WALLACE'S experiment would have to have had a substantial via- 
bility effect. If s is as small as .01, on our model  would be 1.2 X If there 
are 10,000 loci, and half are segregating, the load  would  be 5000 or 6, and 
with independently acting loci the average fitness of the population  would  be 
only or .002, compared with a hypothetical Drosophila  heterozygous at all loci. 

These calculations make  the unlikely assumption that the requisite number of 
heterotic mutants for minimum load  exist at all  relevant loci. If the assumption 
is not true, the necessary reduction in fitness  would be greater. For these  reasons 
we think it is more likely that  the typical Drosophila  is  homozygous for the 
majority of its genes, though the segregating minority  may still  be hundreds of 
loci. Furthermore,  the segregation  load although it probably  depends  on a minor- 
ity of loci, may still exceed the mutation load  as  has  been repeatedly suggested 
(e.g. CROW 1952). That  the absolute number of polymorphisms may be large is 
indicated by the  many new ones that  are being discovered in man as  new  tech- 
niques are introduced. In very  large populations, the possibility of many very 
nearly  neutral, highly mutable multiple isoalleles cannot be ruled out, although 
there is no experimental evidence  for the existence of such  systems. 

The present analysis is obviously unsatisfactory because of the various  approxi- 
mations and  the restrictive nature of the assumptions. We have not been able to 
handle mathematically the situation when s is  different  for  different  alleles. In 
an infinite population it is  sufficient  to replace s by  the harmonic mean of the s's 
in determining the segregation  load, but  the situation' in finite populations  is  not 



clear, 'nor is the effect of different  fitnesses of different heterozygotes. We hope 
that a more general and accurate treatment  will be  possible. 

We should like to thank ETAN MARKOWITZ and JOSEPH FELSeNSTEIN for aid in computer 
programming and calculations. 

SUMMARY 

For a locus where two or more  alleles are  maintained by  selective superiority 
of the heterozygotes the average fitness of the population is  increased with a 
larger number of alleles.  On the other hand, the effect of random  drift in reducing 
the number of alleles  increases greatly as the number of alleles  increases,  being 
roughly proportional to the square of the  allele number. Therefore, with a  popu- 
lation of a certain effective number  and  mutation rate there  must be, for a  given 
level of heterozygote  advantage, a maximum  number of alleles maintained. This 
will correspond-to the  minimum segregation  load. 

The effective number of alleles maintained in the population ( n )  , the proba- 
bility that a randomly chosen individual will be homozygous for this locus ( F ) ,  
and the segregation  load ( L )  are given graphically for various  population  sizes 
and selection  coefficients. It is assumed that  all homozygotes are equally dele- 
terious, and that each new mutant is an allele that does not  already exist in the 
population. 

When there is no selection at all, the  number of isoalleles maintained in  the 
population  is approximately + 1, where Ne is the effective  population num- 
ber and u is the  mutation rate. Thus, if is much less than  the reciprocal of 
the mutation rate, most individuals in  the population  will  be  homozygous  for 
this  locus. 
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