Forum

To: THE WORLD
From: SPELLED OUT
Re: NAME GAME

PAGE 1342

How far will things go in the spellings of my name? I calculate \((26)^N\), where \(N\) is the number of characters arbitrarily assigned to my name. In the September 30, 1986, issue of Eos in which awards of the Union are announced, my name is misspelled both in the description of the Hess Medal and also as a recipient. AGU is to be congratulated for spelling it correctly on the medal! AGU recently asked me to serve on its Nominations Committee, and in the letter of appointment and in the published list of committee members in Eos, my name is also misspelled. Claude Allègre and I have just received the 1986 Gustafson Prize from the Royal Swedish Academy. However, on the diploma presented to me, my name is also misspelled ("Wassburg"). Is this a pilot? I am more than willing to change the spelling of my name, but there does not seem to be any unique convergence in the series of alternatives. I submit to you a copy of a poem written about this matter by the late E. M. P. Lovejoy (a most imaginative and creative geologist and an old and dear friend of mine), which best describes the situation.

Wasserburg, A Poem
In writing to Wasserburg, in matters of note,
One must be quite careful on how it is wrote
Wasserburg. In places there seem to be spaces for eaz,
In others there seem to rest spaces for these
Which are ewes. In matters of note the ewes and the eaz
Must not be confused.
This tends to displease Wasserburg. The doctor which stands in front of his name
Is based upon work, on study. In fame
It is wrote, Wasserburg.
So note, when wrote, the name,
If you please, must not contain eaz and ewes just the same.
Not too easy, not too ewesy, but just pleazy between.
One ee, one ewe should only be seen.
But Wasserburg iared is Wasserburg dired,

All red and incensed and unpleasantly fired.
So when writing his name in fame don't you see,
For shame don't put eaz where ewes ought to be:
It ires His Majesty until he can't see.

Earl M. P. Lovejoy
(Url M. P. Lovejoy)

G. J. Wasserburg etc.
John D. MacArthur Professor of Geology
California Institute of Technology
Pasadena, Calif.

The above letter was addressed to AGU President Peter S. Eagleson, who responded as follows:
Mr. Watertown:
Your plea has been filed and our membership list recompiled.
In doing the screening, we kept just the meaning.
Your obedient servant,
Birdchild

News

Space Science Setbacks Discussed

PAGE 1342

Making the best of a difficult situation seemed to be the recurring theme of a forum on the future of U.S. space science held earlier this month at the meeting of the American Physical Society’s Division of Plasma Physics in Baltimore, Md. The loss of the space shuttle Challenger has had “immediate and very substantial” effects on space science, according to Jeffrey D. Rosendhal of the Office of Space Science and Applications at the National Aeronautics and Space Administration (NASA), one of four speakers at the forum.

Rosendhal reminded the audience that 1986 was to have been a key year for space science at NASA, with launches planned for the Hubble Space Telescope, the Galileo mission to Jupiter, the Ulysses mission around the poles of the sun, the Astro 1 mission to observe Comet Halley, the Earth Observation Mission, and others. The biggest problem now facing these missions is the limited number of launch opportunities, he said. Before the Challenger accident, payloads had already been assigned for a total of 145 space shuttle launches between 1986 and 1999. The latest NASA shuttle manifest calls for 50 to 60 launches during the same period, and even that may be optimistic. Maintaining the space telescope alone during the present 2-year hiatus in launches costs $7 million each month, Rosendhal said. ($4 million per month is presently taken from the funds that were budgeted to operate the telescope had it been launched on time; $3 million per month is “new money,” Rosendhal told Eos.)

Working in favor of space science, however, is the policy decision made after the accident to remove commercial satellite launches from the space shuttle manifest. Thomas M. Donahue of the University of Michigan and the National Academy of Sciences Science Space Board pointed out that this decision means that space science has become NASA’s only important civilian “customer.” Richard G. Johnson of the White House Office of Science and Technology Policy predicted that because of this decision and also because the Department of Defense plans gradually to meet more of its own launch needs, “they [NASA] are going to return to their more traditional role of being a research and development organization and not a transportation organization.” Johnson said that he is confident that U.S. space science will be strongly supported because good space science advances the nation’s goals of being at the forefront in technology, industry, and defense.

Two of the speakers stressed that the problems of U.S. space science do not stem from the Challenger accident alone. Radford Byerly, Jr., a staffer for the House Committee on Science and Technology, said that he felt that NASA had scheduled too many shuttle missions for the agency to handle in terms of space parts, mission planning, and crew training. “If the accident hadn’t occurred, things would have just broken down . . . maybe by now,” he said. Donahue said that it now takes many more years than it once did to organize and carry out space science missions; this state of affairs is incompatible with the needs of academic scientists and is “a fix we got into even before Challenger [was destroyed].”

To sustain space science until the space shuttle flies again, Rosendhal said that NASA is trying to enhance its data analysis programs, as well as suborbital programs that use aircraft, balloons, and sounding rockets. In addition, funds seem to have been provided by Congress to begin building a new orbiter to replace Challenger. While an appropriations bill has been signed with $2.1 billion designated for a new orbiter, President Ronald Reagan vetoed NASA’s authorization bill, and it remains unclear what impact that action will have, if any. For his part, Donahue endorsed the importance of enhancing data analysis and suborbital programs but also stressed that a “reasonable” space science program will need expendable launch vehicles (ELVs) in addition to the space shuttle, especially given the “traffic jam” of planetary missions that is now expected to occur around.