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Materials and Methods:  
All procedures were approved by the California Institute of Technology, University of 

Southern California, and Rancho Los Amigos Internal Review Boards.  Informed consent was 
obtained from EGS after the nature of the study and possible risks were explained.  Study 
sessions occurred at Rancho Los Amigos National Rehabilitation Center. 

Behavioral Setup. All tasks were performed with EGS seated in his motorized wheel 
chair.  Tasks involved the use of an anthropomorphic robotic limb, a 47 in. LCD monitor, or a 
combination of both.   The robotic limb was bolted to a steel frame positioned in front of and 
offset to the right of the subject’s chair with the shoulder mount at approximately eye level.  The 
arm was always positioned 48 inches from the subject’s body to maintain a safety zone.  When 
the robotic limb was not needed for the task, it was moved outside the subject’s field of view.  
The LCD monitor was positioned approximately 184 cms from the subject’s eyes.  Stimulus 
presentation was controlled using the Psychophysics Toolbox (23) for MATLAB.     

We used the Modular Prosthetic Limb (MPL), a robotic arm designed through the Johns 
Hopkins University (JHU) Applied Physics Laboratory (APL). It was designed to approximate 
the function of a human arm, and its size and ranges of motion were specified to match those of a 
human arm as closely as possible.  The MPL has 17 degrees of freedom, and, fully extended, the 
MPL is approximately 79 cm long.  During prosthetic control, the full set of degrees of freedom 
were constrained to either 2d or 3d control of the position of the hand.  In some tasks, EGS was 
required to use the MPL to point to targets displayed on the LCD display.  A manual calibration 
session was used to register the coordinate frames of the display and MPL for these sessions. 

Neural Recordings. EGS was implanted with two 96-channel Neuroport arrays in 
putative homologues of area AIP and Brodmann’s Area 5d (Fig. S1B).  Neural activity was 
amplified, digitized, and recorded at 30KHz with the Neuroport neural signal processor (NSP) 
(Fig. 2).  The Neuroport System, comprising the arrays and NSP, has received FDA clearance for 
<30 days acute recordings; for purposes of this study we received FDA IDE clearance (IDE 
#G120096) for extending the duration of the implant.    

For online prosthetic control, we used the time of unsorted action potential threshold 
crossings.  In the Central software suite, thresholds for action potential detection were set at -4.5 
times the root-mean-square of the high-pass filtered (250Hz cut-off) full-bandwidth signal.  The 
time of threshold crossings were transmitted in real-time to MATLAB, counted in non-
overlapping 50ms time bins, and utilized by the decoding algorithm to drive the prosthetic 
device.  For online prosthetic control, a minimum firing rate of 2 Hz was enforced. For offline 
analysis, single and multiunit activity was sorted using Gaussian mixture modeling of the 2d 
principal component projection of waveforms detected via threshold crossing. 
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Task Descriptions. The purpose of the clinical study was to understand the relationship 
between neural activity recorded in human PPC as it relates to imagined movement of the arm 
and hand, and the utility of these signals for prosthetic control.  To this end, we utilized a variety 
of experimental paradigms, some designed to help characterize the nature of PPC tuning while 
accounting for possible confounds, and some designed to provide a simplified test bed for 
prosthetic control. 

Functional imaging task.  Following an initial fixation phase, the subject was cued to 
the type of imagined action to perform (precision grip, power grip, or reach without hand 
shaping) (Fig. S1A).  An object was then presented. If the object was “whole”, the subject 
performed the cued action (“Go” condition.) If the object was “broken,” the subject withheld the 
imagined movement (“NoGo” condition).  In the example provided, the subject would imagine 
reaching out toward and precision gripping the narrow part of the object.  The orientation of the 
object was pseudo-randomly selected from one of 6 possible orientations and the subject was 
allowed to freely choose whether they reached for the object using an overhand or underhand 
posture.  During fMRI training sessions, the subject was instructed to report the color of the 
portion of the object closest to their thumb allowing us to infer whether the subject reached with 
an overhand or underhand posture.  Behavioral analysis verified that EGS chose arm postures 
that followed biomechanical constraints suggesting an ability to imagine naturalistic arm 
movements (24). 

Biofeedback. The biofeedback tasks were performed in a freeform manner.  EGS was 
shown a panel that provided basic visual feedback on the firing rate of an isolated single neuron 
while also listening to the broadband activity from the same channel (Movie S1, S2).  The 
experimenter and EGS then worked together to determine the type of imagined action that best 
modulated neural activity.  In some cases this involved the experimenter instructing EGS to 
imagine a variety of actions, in other cases, EGS was instructed to “play” with the neuron, trying 
different actions on his own to see if he could find the action that evoked or suppressed activity.  
If a unit seemed well tuned to a particular action, EGS was verbally cued to imagine said action 
along with a variety of similar and dissimilar actions to test the relative specificity of the unit to 
the action (Movie S1). 

Masked Memory Reach. The masked memory reach task was used to quantify goal and 
trajectory tuning in PPC while controlling for visual confounds related to target placement and 
visual motion of the cursor (Fig. 1A).  Following an inter-trial interval, a spatial cue was flashed 
at one of 4 spatial locations equally spaced along a circle centered at the fixation point.  At the 
same time, the effector (a circular cursor) was presented at the point of fixation.  The cursor was 
held at this location until after the go cue.  Sustained activity during the delay period was used to 
test for neural encoding of the goal of the movement. Following the delay period in which no 
target was visible, all possible targets appeared simultaneously to ensure that spatial tuning 
following the go cue could not be attributed to visual transients.  In the open-loop condition, 
following a 250 ms delay, the cursor would move automatically to the cued target with an 
approximately bell-shaped velocity profile.  In the closed-loop condition, following a 250 ms 
delay, control of the cursor was passed to the subject, and the subject, under neural control, 
would move the cursor to the target.  Transient spatially tuned activity during the movement 
period was used to test for neural encoding of the trajectory.  We tested trajectory tuning under 
two conditions.  In one condition, the subject could clearly see movement of the cursor.  In the 
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second condition, an annulus was used to mask motion of the cursor from its initial starting 
location to the inner edge of the target.   

Point-to-Point. The point-to-point task provided a simple environment that allowed EGS 
to test his ability to spatially position a prosthetic effector.  Under free gaze, targets were 
presented one at a time on the LCD display.  During open-loop decoder calibration sessions, 
following a 250 ms delay relative to target onset, the effector would move automatically to the 
cued target with an approximately bell-shaped velocity profile.  In the closed-loop condition, 
EGS guided the neurally controlled effector to the target (Movie S3).  A trial was considered 
successful if EGS was able to maintain the position of the effector over the target for 1s.  During 
some sessions, a simple cursor, rendered on the display, was used as the effector.  During other 
sessions, EGS used the MPL, constrained to move in a 2D plane, to point to the targets that 
appeared on the monitor.  Sometimes both the MPL and cursor were shown simultaneously.   

Goal Selection Task. The goal selection task provided a simple environment for testing 
the ability to directly select spatial targets in closed-loop (Fig. 3A).  Following an inter-trial 
interval, a fixation cue was presented at the center of the screen.  In addition to fixating the cue, 
EGS was instructed to imagine his right arm pointing at the fixation cue.  The location of a 
spatial goal was then flashed at one of six pseudo-randomly chosen peripheral locations.  EGS 
was instructed to intend a right arm reach to the cued location.  During calibration runs, data 
from the final 500 ms of the delay period was used to train a classification algorithm.  During 
brain control runs, data from the final 500ms of the delay period was used to decode the location 
of the spatial target.  Dependent on the relative location of the decoded and veridical target 
location, EGS was awarded points.  Following display of the awarded point total, the location of 
the decoded target location was presented. 

Symbolic Cue Task. The symbolic cue task provided a means of testing the response 
properties of the neural population without the presence of visual transients at the cued target 
locations (Fig. 3B).  The task was structured as follows:  Following an inter-trial interval, a target 
grid was presented on the monitor.  In addition to fixating the center target, EGS was instructed 
to imagine his right or left arm pointing to the center target during reach trials, or simply looked 
at the center target for saccade trials.  The location of a spatial goal was then indicated by a 
number presented at the point of fixation.  The numeric cue was removed during a delay period.  
After the delay, a beep indicated that EGS should initiate an imagined movement toward the 
cued location.  A second beep (1s after the initiation beep) was used to cue EGS when the 
movement should have ended in an effort to stereotype the imagined movement.  Approximately 
15% of trials were Catch trials.  During Catch trials, a distinct beep randomly chosen between .2 
and .8 seconds after movement initiation was followed by presentation of letters arrayed between 
the center and peripheral targets.  EGS reported the approximate position of his hand by verbally 
indicating the character closest to the position of his imagined hand.  This provided a means to 
ensure that EGS was, on average, engaged in the task by checking whether the reported letter 
was consistent with the cued target, and allowed us to verify the approximate timing of his reach 
trajectories as the reported letter was an approximate measure of movement distance. 

Neuroimaging. Functional imaging was performed at the USC Keck Medical Center 
using a GE 3T scanner with an 8-channel head-coil.  Functional data was acquired using T2*- 
weighted single-shot echo-planar acquisition sequence (TR = 2000 ms; slice thickness = 3 mm; 
in-plane resolution = 3 x 3 mm; TE = 30 ms; flip angle = 80; fov= 192 x 192 mm; matrix size = 
64 x 64; 33 slices (no-gap) oriented 20 degrees relative to ACPC line). The anatomical was 
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acquired using the GE T1 Bravo sequence (TR = 1590 ms; TE = 2.7 ms; fov =176 x 256 x 256 
mm; 1 mm isotropic voxels). 

General linear model (GLM) analysis was performed using Analysis of Functional 
NeuroImages (AFNI) (25).  Functional runs were slice scan-time corrected, 3D motion corrected, 
spatially smoothed (3mm full-width half-max), masked to only include voxels within the 
superior parietal lobule, converted to percent signal change, and detrended.  Regressors aligned 
to stimulus onset were generated with AFNI's BLOCK function with two second duration to 
model the expected hemodynamic response.  Motion correction parameters were included in the 
regression model.  Significance was determined at a false discovery rate (FDR) q of 0.05.  
Freesurfer (http://surfer.nmr.mgh.harvard.edu/) was used for cortical surface reconstructions.  
Regressors of interest included “Reach-Go”, “Reach-NoGo”, “Grasp-Go”, and “Grasp-NoGo”.  
Reach-related areas were identified by the contrast “Reach-Go”>“Reach-NoGo.”  Grasp related 
areas were defined by the conjunction of contrasts “Grasp-Go”>“Grasp-NoGo” and “Grasp-
Go”>“Reach-Go.” 

Discrete Classification. Classification was performed using linear discriminate analysis.  
The classifier took as input a vector comprised of the number of spikes occurring within a 
specified time epoch for each recording channel (for online use) or sorted unit (for offline 
analysis).  The following assumptions were made for the classification model: one, the prior 
probability across the classes was uniform, two, the conditional probability distribution of each 
feature on any given class was normal, three, only the mean firing rates differ for each class (the 
covariance of the normal distributions were the same for each class), and, four, the firing rates of 
each input are independent (covariance of the normal distribution was diagonal).  Reported 
performance accuracy was based on leave-one out cross-validation.  Features that demonstrated 
non-significant tuning based on a preliminary ANOVA test were excluded from the input vector 
to reduce the total number of features.  For purposes of cross-validation, the ANOVA test 
exclusion criteria was calculated on the training set and applied to the test set to avoid “peaking” 
affects.   

Classification accuracy through time. To compute the temporal dynamics of classification 
accuracy, the neural data was first aligned to a behavioral epoch (e.g. cue onset).  Spike counts 
were then computed in 300ms windows spaced at 10 ms intervals.  The 300ms window was 
chosen to balance the need to have a sufficient spike count within the window to allow accurate 
decoding while being short enough to see how the dynamics of decode accuracy evolved in time.  

For offline goal decoding analysis, trials from the open-loop (training) and closed-loop 
(brain control) conditions were combined in order to increase the total number of trials and 
therefore improve model estimation when constructing the classifier.  This approach is 
reasonable given that task requirements and visual feedback were identical during the cue and 
delay period of the tasks for the open and closed loop sessions.  Analysis was performed on 
open-loop and closed-loop sessions separately and resulted in qualitatively similar results.  
Comparison of open-loop and closed-loop responses, and the implication for decoder calibration 
methods, will be addressed in future work. 

Trajectory Decoding.  The instantaneous velocity of the cursor in the MMR task was 
reconstructed using the movement portion of each trial plus a 500 ms window surrounding the 
movement period (when cursor velocity was zero).  Data taken before and after movement were 
included to ensure that the decoder training data captured periods when EGS intended to remain 
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stationary as well as periods when EGS intended to move.  In constructing the decoder, we 
collapsed across the masked and unmasked trials.  This both increased the total number of trials 
that were used for calibration and ensured that the resulting performance measure reflected the 
ability to generalize across the two contexts.   

Trajectories were reconstructed using a L1-constrained linear least squares regression 
(lasso) between smoothed neural features binned into 50ms windows and cursor velocity after 
identifying an optimized lag.  Neural data was smoothed by convolving an 800 ms duration 
minimum jerk velocity profile with the neural response. Lags were tested in the range of 300 ms 
and 0 ms, in 100 ms intervals, with neural features preceding kinematics.  Similar to 
classification analysis, features that demonstrated non-significant tuning based on a preliminary 
per-unit regression analysis were excluded from trajectory reconstructions.  This was done to 
minimize the likelihood of over-fitting training data which in turn would lead to poor 
generalization as measured by cross-validation.  Importantly, in the cross-validation analysis, the 
feature selection criteria was calculated on the training set and applied to the test set to avoid 
“peaking” effects artificially inflating cross-validated R2 estimates.     

Our trajectory analysis for the neuron dropping curves combined the activity of units 
across days.  For reconstruction of trajectory, data was collected from the open-loop/decoder 
training session of the MMR task (Fig. 1A).  The open-loop session was used because, for a 
given target, the kinematic response of the effector was the same regardless of the day, allowing 
different neurons’ firing activities from different days to be fitted to the same kinematic output. 

 

Neuron Dropping Curves. To construct the greedy neuron-dropping curves of Fig. 2 
B&D and Fig. 3D, a greedy algorithm was used in which features were added one at a time to the 
growing pool of features based on the relevant performance measure (cross-validated accuracy 
for discrete classification; cross-validated R2 for continuous decoding).  In the first iteration, 
each feature was processed independently to derive the performance measure.  The feature with 
the highest measure was removed from the pool of available features and placed in the pool of 
used features.  Next, each of the remaining features was combined with the previously selected 
feature, and a second feature was selected.  This process – combining each available feature with 
the used-feature set, constructing a decoder, and moving the feature corresponding to the highest 
measure from the available to the used list – was repeated until the available feature list was 
empty. The performance saturation point of the greedy curve represents the optimal subset of 
features that should be used to optimize generalization performance.  The inclusion of additional 
features decreases generalization performance by over-fitting training data, a phenomena known 
to hurt online control (26).  

Random neuron-dropping curves were constructed to test expected performance as a 
function of the size of the recorded neural population.  To construct the random neuron-dropping 
curves of Fig. 3C and Fig. S3, we computed cross-validated decode accuracy (classification) or 
cross-validated R2 (trajectory reconstruction) for test populations of neurons ranging in size from 
1 to 100 units.  Each test population was generated by randomly sub-selecting, without 
replacement, the specified number of units from the entire ensemble of recorded units.  For each 
population size, units were randomly drawn and cross-validated accuracy was computed 100 
times to allow estimation of the variability in accuracy.  As discussed in the “Discrete 
classification” and “Trajectory decoding” sections above, we included feature selection as part of 
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the decoder calibration process.  As a result, the actual decoding algorithm was trained on a 
subset of the total number of units as determined by a per-unit significance test calculated on the 
training data (not including the test data) used for cross-validation analysis.  

Combining data across days. Our offline decoding analysis relied on combining data 
across days. All offline decoding analysis was performed using sorted units.  Sorted units were 
retained for analysis only if they included at least 8 trials per target and met a minimum firing 
rate of 2Hz. Each session’s neural data was sorted independently, and neurons present on the 
same channel were assumed to be different if they appeared on different days (i.e., no attempt 
was made to equate a neuron on day 1 with a neuron on day 2 – they were assumed to be 
different neurons).  This was driven by the fact that waveforms changed from day to day and 
methods to determine whether waveforms resulted from the same unit tended to indicate that 
units were independent (see also Fig. S2).  

We used the following scheme for combining neurons across days: An “observation” of a 
given trial type (e.g. movement to the right) was created by randomly sampling without 
replacement, the activity of each unit in the recorded population of the same trial type, regardless 
of the day.  By repeating this process, a synthetic dataset composed of observations that included 
units recorded on separate days was generated.  Importantly, because this process was done 
without replacement, no two observations in the synthetic dataset contained the same data, thus 
preventing potential “twinning” effects in our cross-validation analysis. 

Goal versus trajectory analysis. The masked memory reach task (Fig. 1A) was used to 
determine whether units were goal-tuned, trajectory-tuned, or both.  Analysis to determine a 
unit’s preference was performed as follows.  For units that exceeded a minimum firing rate of 2 
Hz, a multiple linear regression model was constructed that explained each unit’s firing rate as a 
function of an initial visual transient, a sustained goal response, and a transient representation of 
movement velocity (Fig. 1B). The transient activations were modeled as minimum jerk velocity 
profiles (similar in shape to a truncated Gaussian) of 500 and 750 ms duration for the visual and 
trajectory components, each starting at the beginning of their respective phases.  The goal related 
activity was modeled as a smoothed step function rising 250ms after cue onset, peaking around 
500ms after cue onset, and sustaining its peak value through the movement period.  The potential 
for maintaining the representation of the goal through the movement period forms the basis for 
why the analysis was done as described in contrast to e.g. picking non-overlapping temporal 
epochs during the cue, delay, and go periods and checking for spatial tuning.  By allowing a 
model with overlapping temporal representations we were able to partial out the variance 
attributable to each component.  

The regression resulted in a set of beta coefficients along with associated p-values for 
each of these possible components.  The reported results were restricted to units exhibiting 
significant tuning to at least goal or trajectory. To determine tuning, the p-values associated with 
trajectory and goal were tested for significance using the Holm-Bonferroni method to correct for 
multiple comparisons (N=698; 2 parameters per unit, 349 units).  124 units had a significant beta 
coefficient for either trajectory or goal.  The significance of the beta values of these units was 
then used to classify each unit.  24 of 124 units were significant for the goal component but not 
the trajectory component, 67 of 124 units were significant for the trajectory component but not 
the goal component. 33 of 124 units were significant for both goal and trajectory. 
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Effector specificity. Effector specificity was tested in the context of the symbolic cue 
task (Fig. 4B).  Effectors were tested in interleaved blocks of 6 repetitions to each target.  Target 
order was randomized within a block.  Two or three blocks per effector and two or three 
effectors were tested during each session.  Neural data was analyzed using the average neural 
response between 200 and 800 ms following the go cue as this epoch showed the largest 
directionally tuned response. 

The degree to which neural activity showed a preference for an effector was quantified 
using an effector specificity index (ESI) based on the relative depth of modulation (DM) for each 
effector: 

 

 �𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1−𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2

𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1+𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2
� 

 

DM was defined as the difference between the mean firing rate for movements in the 
preferred direction (the direction evoking maximum neural activation) and the anti-preferred 
direction (the direction opposite the preferred direction.)  ESI is a value ranging between 1 and -
1.  An ESI of 1 indicates exclusive tuning to effector 1, an ESI of -1 indicates exclusive tuning to 
effector 2, and an ESI of 0 indicates that the tuning, as measured by DM, is identical between the 
two effectors.  ESI was only computed for units with a significant DM for at least one effector as 
determine by a t-test between the evoked neural response to the preferred and anti-preferred 
directions.  We used a shuffle test to determine if differences in DM were significant.  A 
veridical estimate of the difference in DM was computed between effectors (i.e.  𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1 −
𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2).  An empirical null distribution was then computed by randomly assigning trials to 
each effector and recomputing the difference in DM.  This shuffle procedure was repeated 10000 
times.  A p-value was generated using a rank test, e.g. by counting the number of shuffles greater 
than or less than the veridical estimate.   

To decode whether EGS made a saccade or imagined a right arm movement or imagined 
a right arm or left arm movement (Fig. 4F) we used the following procedure:  First, the 
positional tuning of each unit was regressed out by subtracting the mean neural response for each 
target regardless of effector. The resulting residual responses for each unit were than subjected to 
boot-strapped cross-validated classification of effector type.  Each day was analyzed 
independently and the mean classification accuracy and mean confidence intervals are displayed 
(Fig. 4F). 

Whereas M1 neurons are primarily active for movements of the contralateral limb, PPC 
neurons have activity related to both the contralateral and ipsilateral limbs.  Furthermore, we 
have shown that individual neurons in PPC can selectively code movements of the (contralateral) 
limb or left (ipsilateral) limb.  The population response allowed us to decode which of the two 
effectors EGS imagined moving.  These results suggest the possibility of independently 
controlling two robotic limbs with recordings made from one hemisphere.  Many neurons 
showed comparable activity to either effector and thus may not be useful for independent 
control.  One possibility is that these units could be used for coordinating the motion of two arms 
by providing an information pathway that chains motion of one arm to the other.  The 
importance of both independent and coordinated control can be illustrated in a simple example of 
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pouring coffee into a mug.  When pouring, independence of control is needed as one limb must 
hold the cup steady while the other performs a pouring motion.  Coordination is also needed to 
ensure that movement of one limb is compensated for by the other limb, e.g. if the hand holding 
the mug is moved, the pouring hand must also be moved to prevent coffee from being spilled 
onto the floor.  Given the true complexity inherent in controlling two limbs across the spectrum 
of human behavior, future work demonstrating the ability to perform coordinated and 
independent motion of both limbs simultaneously will be necessary in order to fully test the 
potential for controlling two limbs from PPC. 

 
 
 

 
Fig. S1.  Functional Localization of Implant Sites.  Functional magnetic resonance imaging was used to identify 
candidate implant sites based on the BOLD response to imagined reaching and grasping actions.  (A) Task design.  
Following an initial fixation phase, the subject was cued to the type of imagined action to perform (precision grip, 
power grip, or reach without hand shaping).  An object was then presented. If the object was “whole”, the subject 
was instructed to imagine performing the cued action (“Go” condition.) If the object was “broken,” the subject 
withheld the imagined movement (“NoGo” condition).  The orientation of the object was pseudo-randomly selected 
from one of 6 possible orientations and the subject was allowed to freely choose whether they reached for the object 
using an overhand or underhand posture.  Behavioral analysis of choice preferences of arm posture verified that 
EGS chose arm postures that followed biomechanical constraints suggesting an ability to imagine naturalistic arm 
movements.  (B) Functional results rendered on a reconstructed cortical surface.  Areas with significantly greater 
activation for the Reach “Go” condition as compared to the “No-Go” condition are shown in Red.  Areas showing 
greater activation for the Grasping “Go” condition compared to the “No-Go” condition and showing greater 
activation for the Grasping “Go” condition compared to the Reach “Go” condition are shown in blue.  Statistical 
analysis was restricted to the superior parietal lobule to increase statistical power.  Implant sites as shown (Talairach 
coordinates: AIP = [-38 lateral, -53 posterior, 46 superior], BA5 = [-18 lateral , -68 posterior, 48 superior]).  
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Fig. S2.  Neural recordings.  A. The quality of neural recordings varied substantially day-to-day with as few as 13 
units to as many as 105 units recorded across the two arrays.  Greater than 90% of sessions resulted in a total neural 
yield between 20 and 50 sorted units.  B-E. The electrodes on which neural activity was recorded varied day-to-day 
resulting in our ability to sample the activity of a large population of neurons across sessions.  To illustrate, a 
composite array that plots sorted waveforms at their respective electrode positions on the recording array is shown 
(B,C).  The composite array was constructed by independently checking the number of waveforms at each electrode 
for each study session, and plotting the waveforms for the study session that contained the greatest number of 
differentiable units at the electrode.  This provides a lower bound on the total number of independent units that were 
tested on each array (174 for AIP and 40 for Area 5).  D&E shows an example of the neural yield recorded during a 
single study session. 
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Fig. S3.  Cross-validated R2 for the reconstruction of instantaneous velocity of the cursor in the MMR task (mean 
with 95% confidence interval) for variable neural population sizes.  Populations were constructed using units 
randomly sampled from the ensemble of recorded units with data taken from the movement period of the task plus a 
500 ms window surrounding the movement period (when cursor velocity was zero).  
 
 
 
Movies S1-S3 

Movie S1.  Encoding of high-level behaviorally meaningful actions in human PPC.  
Example biofeedback session illustrating the activity of a single neuron that shows selectivity for 
imagined movement of either hand to the mouth.  Movements with similar gross properties such 
as movement of the hand to the ear evoke a minimal response.  Units tuned to behaviorally 
meaningful high-level intentions could be used to command a smart robotic limb to e.g. bring the 
hand to the mouth for purposes of self-feeding without the need to control the moment-to-
moment position of the limb.  

Movie S2.  Example biofeedback session illustrating the ability of the subject to control 
the activity of a single unit using imagined actions.  EGS was able to evoke robust activity in this 
unit by imagining rotation of his right shoulder.  EGS was able to silence the unit by imagining 
movement of his hand to his nose.  

Movie S3.  Example of continuous neural control of the robotic limb in two dimensions. 
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