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The study is proposed of a group of phenomena so
far not systematically treated. The term cooperative
phenomena is adopted because of the fact that these
phenomena are caused by interactions of a great number
of elementary particles such as electrons, atoms, etc.
These interactions extend over distances which are
enormously greater than the usual action radii of the
elementary particles. A brief survey of some possible
cooperative phenomena in static and in stationary systems

is given and their importance in physics, astrophysics,
and biology is pointed out. Incidentally a generalization
of thermodynamics from static systems to stationary
systems is discussed. The view is advanced that the
existence of crystals is due to certain cooperative phe-
nomena which fact would in general necessitate the
existence of a secondary structure of crystals. The various
general contentions and conclusions of this paper are
illustrated and applied in the case of ferromagnetism.

§1. INTRODUCTION

A CRUDE survey shows that some of the
major problems of modern physics may be
roughly classified into four groups. These are:
(1) The problem of the nuclei of atoms and the
existence of elementary particles such as the
proton, the electron and the photon; (2) the
problem of the interaction of the electromagnetic
and the gravitational fields with matter and the
problem of unifying the fields; (3) the problem of
the universe as a whole; (4) the problem of co-
operative actions of a great number of elementary
particles, and, in particular, the problem of the
solid state.

The first three problems will probably necessi-
tate radical changes of our current notions about
time, space, causality, fields, etc. The fourth
problem is of an entirely different nature inas-
much as it seems that no fundamentally new laws
must be invented for its solution. The difficulty
rather lies in our present inability to visualize the
simultaneous cooperation of a great number of
particles and the lack of mathematical methods
to obtain exact solutions for sufficiently general
cases of interactions between many elementary
particles.

§2. GENERAL TvypPEs OF COOPERATIVE
PHENOMENA IN STATIC SYSTEMS

I do not make any claim to give a complete list
of all possible cooperative phenomena with the
following enumeration. The purpose of this in-

vestigation rather is to point out a few character-
istic examples and to indicate what rdle they
actually play or eventually might play in our
attempt to comprehend in a scientific way the
phenomena around us.

A. Cooperative phenomena caused by the
special laws of force which govern the inter-
action between elementary individual par-
ticles ,

The special group of phenomena which is dis-
cussed in this section is closely related to the
problem of the existence of equations of state in
the thermodynamic sense. It is indeed well known
that not every homogeneous physical system
which is in thermal equilibrium allows of an
equation of state. For example, for a space charge
of equally charged particles there exists no uni-
versal relation between the pressure, the density
and the temperature at a given point.

In order to formulate the conditions which are
necessary to'insure the existence of an equation
of state we first must define what an equation of
state is. In thermodynamics we distinguish be-
tween extensive and intensive quantities. Intensive
quantities may be obtained by measurements in
the immediate neighborhood of the point for
which they shall be determined. Density, pres-
sure, temperature, etc., are intensive properties.
The value of an extensive property, on the other
hand, can be determined only by measurements
on the whole system. A# equation of state is a rela-
tion between intensive properties exclusively. No
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such relation exists, rigorously speaking, for any
real system. We must, however, consider the fol-
lowing approximation. If .S is the surface of our
system, V its total volume and 4 a length of the
order of the size of a molecule we usually neglect
terms of the order Sd/V compared with one.
Within this approximation many equations of
state exist.

Suppose now that the system which we con-
sider is built up of particles whose mutual energy
&(r, ¢, §) as a function of the mutual distance 7
and polar angles y and ¢ is given by

&(r, ¥, ¥) =acy, Nr?+a1(y, $)r- D 4.... (1)

The total potential energy ep of a particle in our
system will be

ep= f ®(r, ¥, 9)7* sin ddydodr.  (2)

The integration must be extended over the whole
system 2. Carrying out the integrals over ¢ and ¢
we obtain

er=Ao [ dr/r2t4, fazr/rp—1+- B

From this equation it is evident that p=3 repre-
sents a critical value inasmuch as the first integral
converges for an infinitely expanded system only if

»>3. 4)

It may of course happen that 4, or some of the
other coefficients are zero, which case will be dis-
cussed later. For <3 the contribution of all
particles in a shell between 7 and 7+dr to ep in-
creases with 7. In this case the energy ep depends
very much on the boundaries of our system and
no equation of state can exist. For $>3 an equa-
tion of state as we have defined it exists.

From these considerations it follows that for
$>3 the individual actions between neighboring
particles play the most important role whereas
for p<3 we may say that the cooperative actions
between all the particles are essential for the final
equilibrium of the system.

The special group of cooperative actions dis-
cussed here is related to the fact that there are
important cases with potential energy functions
(1) for which

p=3. (5)
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As mentioned already, a system made up of
charges e; of one sign only, that is an electron
cloud or'an ion cloud, is a system belonging to
this class. We have here

with p=1. (6)

It is well known that no equation of state exists
in this case. The pressure in a given point de-
pends not only on the density and the tempera-
ture at this point but is greatly influenced by the
boundary conditions.

It is also known that for an assembly of elec-
trons the quantum theory postulates an exclusion
principle. No two electrons in the system may
have identical sets of quantum numbers. This
means in other words that every electron of the
system ‘‘knows’ what every other electron is
doing. This is equivalent to some kind of co-
operative action between all the electrons of the
system. Whether and how this action is related
to the one mentioned above, which is due to
p=1is as yet unknown. It is certain, however,
that these two cooperative actions play a great
r6le for our understanding of the structure of
matter.

There is another very important case for which
p=1. Indeed according to the theory of relativity
the structure of the universe as a whole is essen-
tially determined by the gravitational interac-
tion of all the matter which it contains. Again no
equation of state can exist, a fact which in many
respects complicates the problem of the universe
as a whole very much.

It is well known in astrophysics that if gravita-
tion is involved the entropy of an adiabatically
closed system does not necessarily increase but
may decrease in course of time. Take for instance
the case of two big spheres of a monoatomic gas
(Emden spheres) which are initially at two dif-
ferent temperatures T and T3 The sphere S; at
the higher temperature T radiates energy to the
sphere S; of the lower temperature T:. S, expands
and T3 is lowered in spite of the absorption of
energy. On the other hand, T increases because
of the resulting contraction of S;. This illustrates
that if cooperative phenomena are involved
ordinary thermodynamics may not be applicable.

A system which is built up of neutral ele-
mentary particles usually possesses an equation
of state if the gravitational interactions may be

S (r) = eier/7in
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neglected. Indeed the next possible term in the
expansion (1) is characterized by p=3. This
term corresponds to the interaction of two
dipoles u. If we consider the dependency on #
alone it is

B(r) o= p?/7 ()

At the absolute zero point of temperature this
would produce, according to (2), a potential
energy ep per dipole which is proportional to
log D, if D is of the order of the linear dimensions
of our system. In general, however, the tempera-
ture agitation makes two sufficiently distant di-
poles practically rotate at random with respect
to each other which causes ep to decrease rapidly
enough with the distance to guarantee the exist-
ence of an equation of state. This happens for
instance in a so-called dipole gas which possesses
an equation of state. It also may happen that a
particular line-up of the dipoles in space is
characterized by a coefficient 4, equal to zero.
In this case the integral (2) is conditionally con-
vergent and an equation of state may exist because
of certain particular circumstances which are re-
lated to the formation of a so-called secondary
structure. This will be elaborated upon later.

B. Cooperative phenomena which are produced
by self-perpetuating electric or magnetic
fields

The type of phenomenon which belongs in this
group is best illustrated by the following simple
example. In a uniformly electrically polarized
isotropic medium which has the shape of a long
needle the polarization P sets up a so-called
Lorentz field L=4=P/3. If the dielectric constant
of the medium is great enough, L may cause the
electric moment P to be self-perpetuating. This
polarization causes either the atoms to be
stripped of their electrons! or it may produce
permanent electric moments.? The internal field
which is set up depends very much on the shape
of the medium and the integral (2) is conditionally
convergent. For the center of a cube the field is
exactly zero. Both these values, namely 47P/3
for the needle and zero for the cube are inde-
pendent of the thickness of the needle and the
size of the cube as long as we do not approach

1 K. F. Herzfeld, Phys. Rev. 29, 701 (1926).
2 F, Zwicky, Phys. Rev. 38, 1772 (1931).
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atomic dimensions. This size may, for instance,
be infinitely great from which possibility we con-
clude that the essential characteristics of this
group of cooperative actions is that the Lorentz
field or some similar quantity is determined by a
conditionally convergent sum or a conditionally
convergent integral. It depends indeed on the
shape in which we let our medium extend to in-
finite dimensions. The term infinite means here,
infinite with respect to the size of the atoms, or
infinite relative to the lattice constant of a
crystal, etc.

The fields which are set up in ferromagnetic
substances belong also to this group. Still other
possibilities of self-perpetuating cooperative ac-
tions are imaginable, although they are not in
common use in physics.

C. Other cooperative phenomena

I again give an example for illustration. It was
first proposed by U. Dehlinger® in his theory of
recrystallization. Dehlinger investigated the rela-
tive equilibrium of two parallel chains of atoms
whose individual interactions are given. He
shows that two dynamically stable configurations
are possible. One is characterized by a constant
and for both chains equal spacing of the atoms
along the chain. There is another stable configu-
ration, however, which is characterized by un-
equal spacings. In this arrangement there occur
periodically slight accumulations, and slight
scarcities, of atoms along the chain. Dehlinger
calls them ‘‘Verhakungen.” Under ordinary cir-
cumstances an individual ‘“Verhakung” is un-
stable. A row of Verhakungen following one
another in sufficiently short intervals, however,
results in a dynamically stable configuration.
The mutual stabilizing action of a row of Ver-
hakungen is evidently a cooperative phenomenon
which depends on the interaction of many atoms.

In two or three-dimensional arrays of atoms
conditions are far more complex. From the fact
that crystal lattices show many dynamically
stable but thermally pseudostable configurations
it must be inferred that arrangements similar to a
row of Verhakungen are very frequent.

Another case of a cooperative phenomenon
according to the quantum theory is related to
the energy content of a solid body. This energy

3 U. Dehlinger, Ann. d. Physik 2, 780 (1929).
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content .depends on the so-called frequency
spectrum of the body », s, -v,. It has been
proved that the high frequencies asymptotically
tend towards the same distribution regardless of
the shape of the body. The low frequencies
(sound waves) however are essentially dependent
on the external shape of the body. This makes the
zero point energies hvyse, hvaye,- + + dependent also
on the shape of the body and therefore introduces
cooperative features into the thermal and caloric
behavior of solids.

§3. STATIONARY SYSTEMS, ‘‘STATIC”’ AND
“STATIONARY’ THERMODYNAMICS

In thermodynamics we investigate the be-
havior of physical systems, that is the dependence
of their pressure, energy, etc., on certain variable
static parameters such as the density, the tem-
perature, the external electric field, etc. We pic-
ture this behavior in phase diagrams, with the
parameters as coordinates. The thermal equi-
librium of a static system is determined by the
condition that a certain function such as the total
entropy or the total free energy, etc., is a maxi-
mum or minimum. Which one of these functions
must be chosen depends on the type of variation
which one investigates (adiabatic at constant
volume, or isothermal at constant volume, etc.).

Static systems naturally are very special cases
of physical systems which in general undergo
changes in course of time. If we are looking for a
generalization of thermodynamics it is logical to
consider stationary systems as the next step
towards the goal of formulating the laws of the
macroscopic behavior of systems which change in
time.

A stationary system is characterized by the
fact that it depends not only on static parameters
v but in addition on at least one dynamical
parameter v’ whose value is kept constant with
respect to time. Examples of such systems are
stationary flows of matter, of electricity, of
radiation, or of heat, etc. The behavior of such a
system may be geometrically represented in a
phase diagram in which at least one dynamical
parameter is used. It is immediately evident that
in stationary systems the functions which as-
sumed extreme values for static systems no
longer possess this property.

273

Take for instance a long tube which is filled
with sodium vapor. If the tube is in equilibrium
with a great heat reservoir whose temperature T
is constant the total free energy of the gas is a
minimum. We may transform this static system
into a stationary system by passing lengthwise
through the tube ultraviolet radiation of constant
intensity. The free energy of the system is then
no longer a minimum. This is apparent from the
fact that the new system possesses two different
temperatures depending on whether we deter-
mine it by measuring the average kinetic energy
of the gas atoms or the average specific energy of
the radiation field. Gases which are distributed
throughout the interstellar spaces form actually a
system which is analogous to our example. Al-
though the temperature of interstellar space is
very low as far as the radiation field is concerned,
the atoms nevertheless possess speeds correspond-
ing to 10,000°C or more, because of the ionization
and the ensuing recoils caused by the visible and
ultraviolet light from the stars which sweeps the
spaces.

The following new problem therefore suggests
itself. Which functions T' take the place of the
entropy, the free energy, etc., in the case of
stationary systems? I shall not here go into detail
about this problem. A little consideration, how-
ever, shows that the I''s must be of the form

I' = function of [v, v/, B, (8/0S:) (v, v')]. (8)

Here v and +’ are the static and the stationary
parameters, respectively. Essentially new is the
dependence of T' on the boundary conditions B
and on the differential coefficients of the inten-
sive parameters with respect to the spatial co-
ordinates .S;. For our considerations the occur-
rence of B is important. This means that in
stationary systems we necessarily are confronted
with cooperative phenomena. This conclusion is
not only important for the behavior of actually
stationary systems but it also has serious conse-
quences with regard to many important charac-
teristics of actually static systems which we find
in nature or produce in the laboratory. This
peculiar conclusion is related to the existence of
thermally pseudostable systems. For more details
I refer to the next sections.

An interesting stationary system was once
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treated by W. Nernst.* He investigated the dis-
sociation equilibrium of a gas in a stationary flow
of heat. The relative concentrations of the mole-
cules and the particles into which they dissociate
not only depend on the temperature 7" and the
pressure p at a given point but also on grad 7.
This is easily understood because of the diffusion
through the boundary of two adjacent volume
elements which are held at two different tem-
peratures by the heat flow.

It may not be superfluous to add that there are
systems of apparently stationary character which
nevertheless are governed by the same laws as
static systems. This happens when the stationary
character of the system is only due to a trans-
formation of coordinates.

For the extension of thermodynamics which I
have suggested in the above I propose the name
stationary thermodynamics in contradistinction to
the usual older discipline which might more
specifically be called static thermodynamics.
Whether and how the characteristic canonical
functions T can generally be determined is a
problem for further investigations. Two methods
suggest themselves. One is to apply static
thermodynamics to differential parts of a sta-
tionary system. The second method consists in
using statistical methods in investigating certain
characteristic statistical games or models.® If
general methods can be found they will naturally
be of great value as stationary systems are very
frequent and of great importance. I mention
among others: (A) stationary flows of liquids and
the problem of turbulence; (B) stationary flows
of heat and of electricity; (C) flows of liquids
such as blood or saps in plants. An important
problem here is how chemical reactions take
place on cell walls subjected to stationary flows.

§4. THE PROBLEM OF THE SOLID STATE

Some of the most important applications of our
previous considerations lie in the vast field which
may shortly be called the physics of solids or more
specifically the physics of crystals.

I shall first discuss a few general characteristics

4 W, Nernst, Boltzmann Festschrift, p. 904 (1904).
5 P. and T. Ehrenfest, Encyklopidie d. math. Wissen-
schaften IV, 2, No. 6, p. 82.
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of crystals and I shall try to show that coopera-
tive actions between many particles are mainly
responsible for the existence of a crystalline state.
I then shall describe how such cooperative actions
in general necessitate the formation of a secondary
structure of crystals.

One of the most surprising characteristics of
crystals is the existence of an extremely well-
defined temperature of the melting point. Indeed,
most crystals, if held at constant pressure, melt
within a very small range of temperature, the
range being usually too small for an actual deter-
mination of its width. This fact has been known
for a long time, which however does not render it
any more comprehensible. As I have explained
already in another place® the difficulty lies in the
following circumstance. If the formation of a
crystal lattice were due to the interaction of each
of its atoms with a limited number of neighboring
atoms then melting, according to statistical
mechanics, should be a phenomenon similar to
the dissociation of polyatomic molecules contain-
ing a corresponding number of atoms. Melting
similar to dissociation of polyatomic molecules at
constant pressure then would extend over quite a
considerable range of temperature. A sharp melt-
ing point is comprehensible only if cooperative
phenomena between a great number of atoms are
responsible for the existence of crystals.

A second fact which points very strongly
towards the existence of cooperative phenomena
in solids is the surprisingly accurate line-up of
crystalline planes over macroscopic distances.
Calcite planes for instance are lined up to a few
seconds of arc over a distance of one centimeter.
1t is very difficult to understand this fact on the
basis of individual interactions, which, as we
know, are greatly disturbed by temperature agi-
tation. It is still harder to understand why even
quite appreciable layers of foreign atoms do not
disturb the line-up.

In the third place the enormous influence of
a few absorbed foreign atoms suggests for its
explanation the existence of cooperative phenom-
ena. The recrystallization through grain bound-
aries which are occupied by many layers of con-
taminating atoms might be mentioned in this
connection also.

8 F. Zwicky, Proc. Nat. Acad. Sci. 17, 524 (1931).
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Fourthly, volume effects are known to exist
even for crystal grains of macroscopic size.”

The phenomena discussed-in the above neces-
sitate the existence of cooperative phenomena in
crystals. Which particular cooperative phenom-
enon is responsible for a particular kind of crystal
must be decided by a special theoretical or ex-
perimental investigation. ,

As far as the geometrical arrangement of atoms
in a crystal is concerned we are now confronted
with the following situation. The primary struc-
ture will essentially be determined by the type of
individual interaction between neighboring atoms.
It may for instance be cubic. On top of this we
must consider the action of a certain cooperative
phenomenon which may have a symmetry char-
acter other than the primary structure, say
tetragonal. The cooperative phenomenon will
therefore have a tendency to distort the primary
structure, this effect being in general a very slight
one. If now our crystal had always the shape of a
long thin needle its structure would be homo-
geneous and slightly tetragonal. If, however, the
crystal is of any other shape the surfaces will
disturb the formation of a uniformly tetragonal
structure. At the surfaces the cooperative phe-
nomenon which is characteristic for one crystal
will indeed produce results different from those
in the interior of the crystal. It would then follow
that different effects would be obtained for dif-
ferent shapes of crystals. A crystal also would not
possess any equation of state. It can however be
shown in special cases that through the formation
of a secondary structure a compromise is reached
which reconciles the antagonistic tendencies of
the individual and the cooperative actions. In the
above example this means that the crystal is sub-
divided into equal regions or blocks whose tetrag-

onal axes alternate in a periodic fashion between

the directions [==1, =1, ==17]. This case is for
instance realized if a self-perpetuating electric or
magnetic polarization may be set up along any
of the three principal directions in a cubical
crystal. For details I must refer the reader to a
discussion which I have given elsewhere.3
Generalizing the above considerations we may
state that the antagonistic tendencies of the in-

?F. Zwicky, Phys. Rev. 40, 63 (1932).
8 F. Zwicky, Phys. Rev. 38, 1772 (1931).
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dividual and the cooperative actions between the
elementary building stones of a crystal are likely
to lead to the formation of a secondary structure,
provided that the symmetry characters of the
two phenomena are different. If the symmetry
characters happen to be the same it is conceivable
that ideal crystal lattices may be formed. This
might be true for some diamonds. My only sup-
port for this statement is that diamond has a
slipping strength which seems to be of the order
which one expects for an ideal lattice. _

Our general conclusion may be stated sche-
matically as follows:

Individual actions primary structure

Cooperative actions secondary structure.
The cooperative actions at the same time ac-
count for the fact that crystals exist at all.

In regard to the individual interactions be-
tween atoms it should be remarked that they
cause, statistically speaking, the existence of a
primary structure even in the liquid state. This
view is supported by the facts which have
recently been obtained by the x-ray investiga-
tions of liquids.

Finally mention must be made of cooperative
phenomena which act during the growth of
crystals. In the simplest case of the uniform
growth of a crystal in one direction only we are
dealing with such a stationary system. The essen-
tial characteristic of such a system is that the
heat of fusion which is liberated on solidification
is carried off in the form of a stationary flow.
This flow necessitates the existence of a tempera-
ture gradient. This gradient for ordinary rates
of growth is great enough to produce a plastic
deformation of the crystal in statu nascends, as I
have shown in another place.” If the crystal is not
annealed during the cooling process it will remain
in a partially deformed state. The resulting
crystal will be thermodynamically pseudostable.
This pseudostable configuration therefore is the
result of the cooperative phenomenon which is
caused by the stationary character of the process
of growth. There exist many other phenomena of
this type.

§5. REMARKS ON FERROMAGNETISM

Ferromagnetism from all we know must be re-
garded ‘as a typical cooperative phenomenon
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whose existence is due to the interaction of a
great number of elementary particles. Ferro-
magnetism provides excellent illustrations for
some of the contentions of this paper.

Let us discuss some of the characteristics of the
simple theory of ferromagnetism due to P. Weiss.
He assumes that in a ferromagnetic substance
there are N magnetic dipoles u per cm?® which
may freely rotate. If the medium is isotropic and
infinitely extended (without any boundaries) the
dipoles are acted upon by a total field

thHe+Hm (9)

where H, denotes the applied field and H,, the
so-called molecular field. If the dipoles were of
electric origin or if we deal with a gas such as NO
whose molecules possess magnetic moments, then

H,=4x1/3, (10)

where I is the intensity of the electric or the
magnetic polarization respectively. Weiss showed
however that in order to obtain an adequate
theory of ferromagnetism one must put

Ho=al, (11)

where « is of the order of 10,000. Quantum
mechanics recently has furnished a rational ex-
planation of these high values of a.

Under certain conditions (N large and T
small) the above equations result in a permanent
magnetization of our substance. If & is the aver-
age magnetic moment per particle in the direc-
tion of H;=H,, assuming H,=0, then

#/p= Cothx—1/x

x=uH,/KT and I=Ng, (12)

where K is Boltzmann’s constant. For H,=0
and T sufficiently low we have 1u5£0. This result-
ing permanent magnetization is a typically co-
operative phenomenon as the existence of the
molecular field H,,=aNgu is caused by a macro-
scopic amount of matter containing a great
number of dipoles. As we have claimed for such

phenomena it has a sharp melting point at
T=6=aNu?/3K. (13)

This melting point is usually called the Curie
point. Near 7°=0 we may expand, as x is small,
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and we obtain

B'=—45(KT/aNu)*/u+15(KT/Nap)?

w/ur=5(1/0)*(6—1)/36, (14)

which is a parabola for T~0. This results in
=0 for T=0. Itis

d@?/dT = —5u2/30 = —5K /aN

or as 7i(0) =0 we have du/dT = » for T=0. This
means that the melting point of ferromagnetism
(its disappearance with 7°) is infinitely sharp.
This is in accordance with our contention that
the cooperation of many particles is responsible
for the existence of sharp melting points. If a
finite system of dipoles were considered the
sharpness of the melting point would be de-
creased because of surface effects and for only a
few dipoles cooperating the melting would take
on the character of a dissociation spread over a
wide range of temperatures.

It goes without saying that ferromagnetism
exhibits all the other characteristics of a typically
cooperative effect. It indeed implies a lineup of
magnetic moments over macroscopic distances.
It depends very much on small amounts of im-
purities present. It is structure-sensitive and it
shows volume effects inasmuch as particles of
colloidal size do not have the same magnetic
characteristics as bigger particles.

Both from the Weiss theory and from the more
modern quantum mechanical explanation one
would expect in the first approximation a uniform
line-up of the magnetic moments in one of the
directions of easiest magnetization of a ferro-
magnetic crystal. This means that such a crystal
for H,=0 should exhibit a permanent magnetic
moment different from zero. In reality this is not
the case as a single crystal as a whole is unmag-
netic. From the caloric behavior, that is, the
specific heat, it is known that the permanent
magnetization exists. This forces us to assume a
subdivision of the crystals into magnetically
saturated regions whose moments however
balance out over the whole crystal. The reason for
this probably lies in the following. If the crystal
were magnetized as a whole it would not possess
any equation of state because the demagnetizing
effect of the surface would depend on the macro-
scopic shape of the crystal. An energy loss cor-
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responds to this as the demagnetizing field is
directed oppositely to H,. This loss can be
avoided if the crystal is subdivided into bundles
of long needles which are alternately magnetized
in opposite directions. Such an arrangement has a
demagnetizing field equal to zero. The theory of
course is confronted with the task of proving that
the loss of energy along the surfaces of the op-
positely magnetized needles is less than the loss
corresponding to the demagnetizing field of a
uniformly magnetized crystal. Experimentally,
however, this seems to be established. Assuming
this to be correct the elementary regions of uni-
form magnetization can be found by the pro-
cedure suggested previously by Dr. H. M.
Evjen and myself. This method suggests the
following subdivisions or magnetic secondary
structures for Co, Ni and Fe.

Cobalt is hexagonal with the direction of
easiest magnetization along the hexagonal axis.
The simplest magnetic secondary structure
would be obtained if needles parallel to the hexa-
gonal axis and of triangular cross section are
alternately magnetized in opposite directions. In
the basal plane we would have an arrangement
as shown in Fig. 1. Shading means magnetization

F1c. 1. Basal plane of cobalt.?

upwards. The other needles are magnetized
downwards. If needles of hexagonal cross section
are used a symmetrical arrangement can only be
obtained if three states of magnetization are ad-
mitted, upward (+), downward (—), and zero
(0) which would give the picture (2). The two
arrangements would be different in regard to the
caloric behavior of the crystals. If therefore from
the caloric behavior complete saturation of the

9 Notice that the two types of triangles are mirror
images. In which way this fact provides a very simple
illustration for the existence of a secondary structure in
many crystals will be discussed in one of my next publi-
cations.
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crystal can be deduced an arrangement of the
type of Fig. 1 must be chosen.

It is well known that a type of magnetic
secondary structure in Co has been found by F.
Bitter® who observed that F:O; colloidal par-
ticles will settle in regular arrays on Co crystals.
The particles settled in an array similar to a
dense star field on the basal plane and in straight
lines in a plane parallel to the hexagonal axis.
This is in accordance with our suggestion of
needles parallel to the hexagonal axis being
alternately magnetized in opposite directions.
The thickness of the needles is experimentally of
the order 10g.

In nickel which is a cubic crystal the direction
of easiest magnetization is along the body di-

Fi1G. 2.

agonal [1117] of the cube. An adequate secondary
structure is obtained by magnetizing alternately
needles with a square cross section. The needles
must be parallel to one of the three principal
directions of the cube and the largest uniformly
magnetized regions will be cubes with the re-
sultant magnetic moment in the direction of one
of its body diagonals.

F. Bitter has not obtained any patterns of the
settled colloidal particles in this case for a zero
external field. This means that the secondary
structure is characterized by a lattice constant
which is too small to be resolved by his method.
If a field is applied, however, the particles settle
in equidistant straight lines which are approxi-
mately normal to the applied field. This might be
interpreted in the following way which is in ac-
cordance with our previous considerations. One
would expect off-hand that on application of an
external field H, the whole magnetic secondary

1 F, Bitter, Phys. Rev. 38, 1903 (1931) and 41, 507
(1932).
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structure would disappear and that the crystal
would appear uniformly magnetized along that
diagonal of the elementary crystallographic cube
which is nearest to the direction of H, This,
however, would result in a maximum demagnetiz-
ing effect of the surface. It seems therefore
energetically more advantageous to make use of
more than one, and, may be, of all four space
diagonals choosing on every one, of course, that
direction which is nearer to the direction of the
external field. This would result in an alignment
of the magnetic vectors which in a two-dimen-
sional representation is schematically shown in
Fig. 3. Although the magnetic stray fields are
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F1G. 3. Nickel in a magnetic field.

present all over the surface the colloidal particles
would be drawn in only at places where the field is
strongly inhomogeneous and would settle along
the lines L, which agrees qualitatively with F.
Bitter’s findings. An experimental investigation
is under way in this Institute to measure out the
distribution of the magnetic stray fields on the
surface directly. From this investigation much
more detailed information about the phenom-
enon in question may be hoped for.

In iron the direction of easiest magnetization is
along the principal axes of the elementary cube,
thatis, along one of theaxes[+1,0,0], [0, +1,0]
or [0, 0, #=17. The elementary cells of the mag-
netic secondary structure therefore must be
alternately magnetized along one of these six
directions. Two relatively simple solutions sug-
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gest themselves. The elementary cells of the first
solution are regular octahedra and tetrahedra,
whose four essentially different faces are re-
spectively normal to the space diagonals of the
elementary cube of the primary structure. The
second solution uses regular rhombic dodeca-
hedra with faces which are respectively parallel to
the twelve planes of the type (110). This latter
solution cannot be built up by an interpenetra-
tion of sets of infinite needles. In both solutions
the elementary cells of the secondary structure
are alternately magnetized in the principal direc-
tions [1, 0, 0], etc. As iron single crystals do not
seem to possess any crystallographically dis-
tinguished slip planes the solution using rhombic
dodecahedra seems to be the more adequate.
However, further experimental investigations
will be necessary to solve the problems related to
the geometry of the magnetic secondary struc-
ture of ferromagnetic crystals.

Just as in the case of nickel the characteristic
spacing of the magnetic secondary structure in
iron is too small to be resolved by Bitter’s
method. With an applied external field however
one obtains striations similar to the case of nickel.

Bitter’s experiments prove without any doubt
the existence and intrinsic importance of coopera-
tive phenomena. As the striations which he ob-
tains may be shifted at will relative to the bound-
aries of the crystal it is impossible to make im-
perfections (or mosaic structure) responsible for
the phenomena in question. The effects discov-
ered by him therefore prove conclusively the
possibility and the actual existence of secondary
structures as I have postulated them several
years ago.

This short sketch may suffice for the present
to make clear the vital importance of cooperative
phenomena for a deeper understanding of the
nature of the crystalline state. As mentioned be-
fore, cooperative actions between many particles
are not confined to crystals. They play an im-
portant part in other systems and are probably
most essential for the possibility of living
organisms.



