with an L.F.E. magnetometer, Model 101, and found to extend over a range of 33.4±0.4 gauss. This in no way affects the ratio of the nitrogen-to-proton coupling constants. The new value for the nitrogen coupling constant, A_N, is 11.1±0.1 gauss. Deuteration substitution in the molecule substantiates these values.

Errata: Ion Exchange Kinetics. A Nonlinear Diffusion Problem

[J. Chem. Phys. 28, 418 (1958)]

F. Helfferich and M. S. Plesset

California Institute of Technology, Pasadena, California

THE definition of τ in Eq. (6), page 420, should read

$$\tau = D_{ij}/r_{ij}^2.$$

The equation for the coefficient $f_3(\alpha)$ in Eq. (21a), page 424, should read

$$1/f_3(\alpha) = 0.260 + 0.782\alpha.$$

Errata: Theory of Helix-Coil Transitions in Polypeptides

[J. Chem. Phys. 28, 364 (1958)]

J. H. Gibbs and E. A. DiMarzio

American Viscos Corporation, Marcus Hook, Pennsylvania

X and x are the same quantity. Similar statements apply to z and Z and to γ and I. Γ should be T, the absolute temperature. The quantity $z\sum_{i-1}(j-2)n_{ij}$ appearing at the end of the numerator of the third equation should read $z\sum_{i-1}(j-2)\delta_{ij}$. The quantity $z\sum_{i-1}(j-2)^2\gamma_{ij}$ appearing in a similar location in the fourth equation should read $z\sum_{i-1}(j-2)^2\delta_{ij}$. The δ_{ij} appearing in the line following this fourth equation should read δ_{ij}.

Notes

Relation of Magnetic Disordering to the Thermodynamics of Solid Metallic Solutions

R. A. Oriani

General Electric Research Laboratory, Schenectady, New York
(Received April 2, 1958)

THE face-centered solid solutions of iron-nickel at concentrations from 0 to 56 atomic percent Ni and at 1110 K have been shown to exhibit essentially ideal thermodynamic behavior, within the accuracy of the measurements. That the excess entropy of solution (defined as the measured entropy of solution less that calculated for random mixing of species) is close to zero over this range of composition means that all contributions to the excess entropy algebraically add to zero, or that each such contribution is zero. The first possibility demands that at every concentration ΔS(vibrational) + ΔS(short-range order) + ΔS(electronic) + ΔS(magnetic) = 0. Because this would be highly fortuitous, the second possibility seems much more likely, so that ΔS(magnetic) = 0. Because at 1110 K the electron spins in each of these three phases are uncoupled, and assuming that the magnetic disordering entropy is adequately given by

$$R\sum_{i} x_i \ln(2s_i + 1),$$

where x_i is the fraction of atoms having spin s_i, a sufficient condition that the magnetic entropy of solution be close to zero is that the magnetic moments of the iron and nickel atoms are not changed through the solution process. Thus, the thermodynamic results enable a choice to be made between the two alternative interpretations of Shull's neutron diffraction pattern from disordered fcc Fe-Ni solutions, in favor of the one showing a small variation of magnetic moments of Fe and Ni with composition.

The invariance of magnetic moment of a transition metal atom between the pure state and the dissolved state is not generally to be expected and is generally not observed. Indeed, the variation of magnetic moment of an atom upon dissolution is a clear manifestation of the strong influence that environment may have upon the electronic structure of the atomic components in a solution. In general, then, an energy term may be expected for the electronic modification undergone by the atom in the solution process. Also, another energy term, as well as an entropy term, will arise from the magnetic disordering of either component and/or the solution (i.e., for any phase having coupled electronic spins at low temperature) between 0 K and the temperature at which the thermodynamic properties are measured. It would be suspected, for example, that a solid solution such as Au-Ni would have such energy and entropy terms as contributions to the thermodynamic functions. However, it should be noted that for the liquid Au-Ni alloy, regarded as formed from the liquid components, there will not exist energy and entropy terms for magnetic disordering. In such systems, therefore, one need not be surprised to find larger differences between the heat of formation, ΔH^f, of the solid solution and the heat of formation, ΔH^f, of the liquid solution than is usually the case for primary metallic solutions.

The writer thanks Dr. I. S. Jacobs for a helpful conversation.
