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Abstract. We consider numerical methods for the computation and continuation of the three
generic secondary periodic solution bifurcations in autonomous ODEs, namely the fold, the period-
doubling (or flip) bifurcation, and the torus (or Neimark–Sacker) bifurcation. In the fold and flip
cases we append one scalar equation to the standard periodic BVP that defines the periodic solution;
in the torus case four scalar equations are appended. Evaluation of these scalar equations and their
derivatives requires the solution of linear BVPs, whose sparsity structure (after discretization) is
identical to that of the linearization of the periodic BVP. Therefore the calculations can be done
using existing numerical linear algebra techniques, such as those implemented in the software auto
and colsys.
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1. Introduction. We consider parameterized ODEs of the form

dx

dt
≡ x′ = f(x, α),(1.1)

where x ∈ Rn is the state variable, where α ∈ Rm represents parameters, and where
f(x, α) ∈ Rn is a (usually nonlinear) smooth function of x and α. Examples of sys-
tems of the form (1.1) are ubiquitous in mathematical models in physics, engineering,
chemistry, economics, finance, etc.

The simplest solutions of (1.1) are the equilibria, that is, solutions of the equation

f(x, α) = 0.

An equilibrium (x0, α0) is asymptotically stable if all eigenvalues of the Jacobian ma-
trix fx(x0, α0) have a strictly negative real part; it is unstable if there is at least one
eigenvalue with a strictly positive real part. In generic one-parameter problems, i.e.,
when m = 1, eigenvalues on the imaginary axis appear in two ways: as a simple
zero eigenvalue, or as a conjugate pair ±iω, ω > 0, of purely imaginary eigenvalues.
The first singularity corresponds generically to a limit point bifurcation, where two
solutions coalesce and annihilate each other under parameter variation. The second
singularity corresponds generically to a Hopf bifurcation, from which a family of pe-
riodic solutions emerges. Early papers on the numerical computation of bifurcations
of equilibria are [16], [22], and [20].
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Periodic solutions are solutions for which x(T ) = x(0) for some number T > 0.
The minimal such T is called the period. In generic one-parameter problems, periodic
solutions can bifurcate in several ways that can be characterized by the properties of
the monodromy matrix. The monodromy matrix is the linearized T -shift along orbits
of (1.1), evaluated at the point x(0) on the periodic solution. The eigenvalues of this
matrix are called the Floquet multipliers of the periodic solution [14], [17].

A periodic solution always has a multiplier equal to 1. If this multiplier has ge-
ometric multiplicity 1, then we call the periodic solution regular. The corresponding
eigenvector of the monodromy matrix is the tangent vector to the periodic solu-
tion at the point where the monodromy matrix is computed. If all other multipliers
are strictly inside the unit circle in the complex plane, then the periodic solution is
asymptotically stable. If at least one multiplier has modulus greater than 1, then
the periodic solution is unstable. In all other cases, one should take into account
higher-order derivatives of the T -shift to decide whether or not the periodic orbit is
stable.

Three singularities, determined by the monodromy matrix, can occur along a
one-parameter family (“curve” or “branch”) of periodic solutions, namely (1) a fold
singularity, when the multiplier 1 has algebraic multiplicity equal to or greater than
2; (2) a flip singularity, when there is a multiplier equal to −1; (3) a Neimark–Sacker
singularity, when there is a conjugate pair of complex multipliers with modulus 1.

Under some genericity conditions, each of these singularities implies a certain
bifurcation scenario. These conditions always include some spectral conditions on
the critical multipliers, i.e., multiplicity restrictions and the absence of other critical
multipliers. Furthermore, there are nondegeneracy conditions that can be formulated
in terms of the system at the critical parameter values, and transversality conditions
that are determined by the system’s dependence on the parameter (see [17]). We shall
list all relevant genericity conditions in the following sections.

Generically, the first critical case (fold) corresponds to a point on the periodic
solution family where the curve turns quadratically with respect to the free parameter.
This phenomenon is called a limit point (fold) bifurcation: Two periodic solutions
collide and disappear when the parameter passes the critical value. The second case
(flip) indicates generically a period-doubling of the periodic solution; i.e., there are
nearby periodic solutions of approximately double period. It is also called the flip
bifurcation. Finally, the third case (Neimark–Sacker) corresponds generically to a
bifurcation of an invariant torus, on which the flow contains periodic or quasi-periodic
motions. This phenomenon is often called the Neimark–Sacker bifurcation. There
is some ambiguity in calling a bifurcation by the same name as the corresponding
singularity. However, this is a common practice in the applied literature.

The aim of this paper is to formulate the computation and continuation of the
three generic periodic solution bifurcation curves as minimally extended BVPs to
which standard numerical approximation methods as well as convergence theory ap-
ply. Fully extended BVPs for continuing periodic solution bifurcations have been
implemented in auto [6] (see also [7], [15]). The latter approach doubles the number
of function components in the case of the period-doubling and fold bifurcations, and
triples it in the case of the torus bifurcation. Fully extended BVPs also yield a more
complicated Jacobian sparsity structure (after discretization) than that correspond-
ing to the underlying periodic BVP. There are efficient solution techniques for such
sparse linear systems; see, for example, [10]. However, these are not very easy to
implement and they are specific for each bifurcation. By contrast, the minimal BVPs
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presented in this paper for the period-doubling and fold bifurcations have the same
number of function components as the periodic solution problem. In the torus case
the number of BVP function components is only doubled, but the resulting system
is overdetermined. The most important numerical advantage is that only one type of
sparse system needs to be solved, namely the one corresponding to the underlying pe-
riodic BVP. Conceptually, the approach used in this paper is similar to the bordering
technique for equilibrium bifurcations [5], [12], [13], [17].

The paper is organized as follows. Section 2 is devoted to the computation of one-
parameter families of periodic solutions to (1.1). Classical results on the regularity of
BVPs defining families of periodic solutions are proved here for completeness. Sections
3 and 4 present the main results of the paper. Here we construct functionals that
vanish at bifurcation points of periodic solutions and we prove that they are well-
defined and regular. As is usual, only some of the nondegeneracy conditions that
appear in bifurcation analysis are necessary for regularity. Section 5 deals with various
computational issues, including efficient computation of the defining systems and their
derivatives. A numerical example is given in section 6.

2. Computation and continuation of periodic solutions. Numerical con-
tinuation is a technique to compute solution curves to an underdetermined system
of equations. Details can be found, for example, in [1], [3], [12], and [16]. It is a
basic ingredient of the numerical bifurcation algorithms implemented in auto [6] and
content [18]. In this case only one parameter is free, so for practical purposes the
parameter vector reduces to a scalar. In this paper we restrict our discussion to issues
that are specific to the case of periodic orbits.

To compute a periodic solution of period T of (1.1), one first fixes the period by
rescaling time. Then (1.1) becomes

x′(t) = Tf(x(t), α),(2.1)

and we look for solutions of period 1, that is,

x(0) = x(1).(2.2)

The period T is one of the unknowns of the problem. In a continuation context, we as-
sume that a solution (xk−1(·), Tk−1, αk−1) is known, and we want to find (xk(·), Tk, αk),
which we denote by (x(·), T, α). Equations (2.1) and (2.2) together do not fix the so-
lution completely, since any solution can be translated freely in time; that is, if x(t)
is a solution, then so is x(t+ σ) for any σ. To fix the solution it is necessary to add
a “phase condition.” In auto [6] and content [18] the integral constraint

∫ 1

0

x∗(τ)x′
k−1(τ) dτ = 0(2.3)

is used to fix the phase. (We use “∗” to denote transpose.)
The periodic solution is now determined by (2.1), (2.2), (2.3), which together

form a BVP with an integral constraint.
In our continuation context, the periodic orbit x(t) and the scalars T and α vary

along the solution family. In the setting of Keller’s pseudoarclength continuation
method [16] the continuation equation is

∫ 1

0

(x(τ)− xk−1(τ))
∗ẋk−1(τ) dτ + (T − Tk−1)Ṫk−1 + (α− αk−1)α̇k−1 = ∆s,(2.4)
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where the derivatives are taken with respect to arclength in the function space, and
should not be confused with the time derivatives in, for example, (2.3).

A widely used method to discretize the above BVP is the method of orthogonal
collocation with piecewise polynomials. It is used in colsys [2], as well as in auto
and content. The method is known for its high accuracy [4], and it is particularly
suitable for difficult problems, due to its known optimal mesh adaptation techniques
[21]. The numerical continuation of the discretized equations leads to structured,
sparse linear systems [9]. To describe these systems it is convenient to formulate the
BVP in terms of operators on function spaces.

Denote by Ck([a, b],Rn) the space of k times continuously differentiable functions
defined on [a, b] and with values in Rn. Let D be the differentiation operator acting
from C1([a, b],Rn) to C0([a, b],Rn). Any n × n matrix M(t) smoothly depending on
t ∈ [a, b] defines an operator from C1([a, b],Rn) into itself by the matrix multiplication
(Mψ)(t) = M(t)ψ(t). The Dirac evaluation operator at the point t is denoted δt.

For a given φ ∈ C0([0, 1],Rn) we denote by Intφ the linear functional from
C0([0, 1],Rn) into R defined by

Intφ(v) = 〈φ, v〉 =
∫ 1

0

φ∗(τ)v(τ) dτ.

Suppose we want to compute a periodic solution of (1.1); i.e., we want to solve
the system (2.1), (2.2), (2.3), and (2.4) for (x(t), T, α) by a Newton-like method. The
Fréchet derivative operator corresponding to this problem has the form




D − Tfx(x(t), α) − f(x(t), α) − Tfα(x(t), α)
δ0 − δ1 0 0
Intx′

k−1
(·) 0 0

Intẋk−1(·) Ṫk−1 α̇k−1


 .(2.5)

The discrete version of these linear operators is a square matrix that has a large
matrix corresponding to D − Tfx(x(t), α) in the upper left corner, bordered on the
right by two extra columns and at the bottom by n + 2 extra rows. The big matrix
in the upper left corner is a block band matrix. Systems of this form are solved in
auto by a specially adapted elimination algorithm that computes the multipliers as
a by-product [9].

Consider the fundamental variational equation

X ′ − Tfx(x(t), α)X = 0(2.6)

and the adjoint equation

X ′ + Tf∗
x(x(t), α)X = 0.(2.7)

Denote by Φ(t) the fundamental matrix solution of (2.6), for which Φ(0) = I, where
I = In×n is the n-dimensional identity matrix. Then Φ(1) is the monodromy matrix
of the periodic solution. The eigenvalues of Φ(1) are the Floquet multipliers, and
there is always at least one multiplier that is equal to 1. A corresponding eigenvector
is x′(0). For a regular periodic solution the multiplier 1 has geometric multiplicity 1.
Similarly, denote by Ψ(t) the fundamental matrix solution to (2.7) for which Ψ(0) = I.
One has Ψ(t) = [(Φ(t))−1]∗.
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If v(t) is a vector solution to (2.6) with initial values v(0) = v0 and w(t) is a
vector solution to (2.7) with initial values w(0) = w0, then the inner product satisfies
w∗(t)v(t) = w∗

0v0; i.e., it is independent of time t.
The left and right eigenvectors of the monodromy matrix Φ(1) for a geometri-

cally simple eigenvalue 1 will be denoted p0, q0, respectively. It is easily seen that
p0 (respectively, q0) is also the right (respectively, left) eigenvector of Ψ(1) for the
eigenvalue 1. Furthermore, q0 is a scalar multiple of x′(0).

We now state some basic facts about the linear operator (2.5) when linearized
about a regular periodic solution (x(t), T, α).

Proposition 1. If (x(t), T, α) is a regular periodic solution of (2.1), then the
operator

[
D − Tfx(x(t), α)

δ1 − δ0

]
: C1([0, 1],Rn) → C0([0, 1],Rn)×Rn(2.8)

has a one-dimensional kernel spanned by Φq0. Its range has codimension 1; if ζ ∈
C0([0, 1],Rn), r ∈ Rn, then (ζ, r)∗ is in the range if and only if 〈Ψp0, ζ〉 = p∗0r. In
particular, if r = 0, then (ζ, 0)∗ is in the range if and only if 〈Ψp0, ζ〉 = 0.

Proof. First, let v(t) be in the kernel of (2.8). Then v must have the form
v(t) = Φ(t)v0 for a vector v0. Since 0 = (δ1 − δ0)v = v(1) − v(0) = (Φ(1)− I)v0, we
infer that v0 must be a right eigenvector of Φ(1) for the eigenvalue 1.

Next, let ζ ∈ C0([0, 1],Rn), r ∈ Rn, be given. If (ζ, r)∗ is in the range of (2.8),
then there must exist a v ∈ C1([0, 1],Rn) for which

v′(t)− Tfx(x(t), α)v(t) = ζ(t).

The general solution of this linear differential equation is

v(t) = Φ(t)

[
v0 +

∫ t

0

Ψ∗(τ)ζ(τ) dτ

]
,

where v0 = v(0) is an initial vector. Also, we must have v(1)− v(0) = r, that is,

(Φ(1)− I)v0 +Φ(1)

∫ 1

0

Ψ∗(τ)ζ(τ) dτ = r.

Such a vector v0 can be found if and only if

p∗0

(
Φ(1)

∫ 1

0

Ψ∗(τ)ζ(τ) dτ − r

)
= 0,

that is, if

p∗0

∫ 1

0

Ψ∗(τ)ζ(τ) dτ − p∗0r = 0,

from which the second result follows.
Corollary 1. If (x(t), T, α) is a regular periodic solution of (2.1), then the

operator


 D − Tfx(x(t), α)

δ1 − δ0
Intφ


 : C1([0, 1],Rn) → C0([0, 1],Rn)×Rn ×R(2.9)
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is one-to-one if and only if 〈φ,Φq0〉 �= 0.
Proposition 2. If (x(t), T, α) is a regular periodic solution of (2.1), then the

operator [
D + Tf∗

x(x(t), α)
δ1 − δ0

]
: C1([0, 1],Rn) → C0([0, 1],Rn)×Rn

has a one-dimensional kernel spanned by Ψp0. Its range has codimension 1; if ζ ∈
C0([0, 1],Rn), r ∈ Rn, then (ζ, r)∗ is in the range if and only if 〈Φq0, ζ〉 = q∗0r. In
particular, if r = 0, then (ζ, 0)∗ is in the range if and only if 〈Φq0, ζ〉 = 0.

Proof. The proof is similar to the proof of Proposition 1.
Corollary 2. If (x(t), T, α) is a regular periodic solution of (2.1), then the

operator
 D + Tf∗

x(x(t), α)
δ1 − δ0
Intψ


 : C1([0, 1],Rn) → C0([0, 1],Rn)×Rn ×R(2.10)

is one-to-one if and only if 〈ψ,Ψp0〉 �= 0.
Proposition 3. Let (x(t), T, α) be a regular periodic solution of (2.1), and let

φ0, ψ0 ∈ C0([0, 1],Rn) be such that 〈φ0,Φq0〉 �= 0, 〈ψ0,Ψp0〉 �= 0. Then the operator

 D − Tfx(x(t), α) ψ0

δ1 − δ0 0
Intφ0 0


 : C1([0, 1],Rn)×R → C0([0, 1],Rn)×Rn ×R

is one-to-one and onto.
Proof. To prove that the operator is one-to-one, suppose that

 D − Tfx(x(t), α) ψ0

δ1 − δ0 0
Intφ0

0


(

v
G

)
=


 0

0
0




for v ∈ C1([0, 1],Rn), G ∈ R. In particular, it follows that
[

D − Tfx(x(t), α)
δ0 − δ1

]
v =

( −Gψ0

0

)
.

Since 〈ψ0,Ψp0〉 �= 0, it follows from the last statement in Proposition 1 that G = 0.
By Corollary 1 and the assumption that 〈φ0,Φq0〉 �= 0, it follows that v = 0 as well.

To prove that the operator is onto we consider the equation
 D − Tfx(x(t), α) ψ0

δ1 − δ0 0
Intφ0

0


(

v
G

)
=


 ζ

r
s


 ,(2.11)

where ζ ∈ C0([0, 1],Rn), r ∈ Rn, s ∈ R. In particular, the first two equations can be
written [

D − Tfx(x(t), α)
δ1 − δ0

]
v =

(
ζ −Gψ0

r

)
.(2.12)

By Proposition 1 this equation is solvable for v, say, v = vp, if

〈Ψp0, ζ −Gψ0〉 = p∗0r,
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that is, if we choose

G = Gp ≡ 〈Ψp0, ζ〉 − p∗0r
〈Ψp0, ψ0〉 ,

where, by assumption, the denominator does not vanish. Now

v(t) = vp(t) + cΦ(t)q0

is also a solution of (2.12) for any constant c. The third equation in (2.11) can now
be written as ∫ 1

0

φ∗
0(τ)[vp(τ) + cΦ(τ)q0]dτ = s.

By the assumption that 〈φ0,Φq0〉 �= 0 it follows that the third equation is satisfied if
we take

c =
s− ∫ 1

0
φ∗

0(τ)vp(τ)dτ∫ 1

0
φ∗

0(τ)Φ(τ)q0 dτ
.

Proposition 4. Let (x(t), T, α) be a regular periodic solution of (2.1), and let
φ0, ψ0 ∈ C0([0, 1],Rn) be such that 〈φ0,Φq0〉 �= 0, 〈ψ0,Ψp0〉 �= 0. Then the operator


 D + Tf∗

x(x(t), α) φ0

δ1 − δ0 0
Intψ0 0


 : C1([0, 1],Rn)×R → C0([0, 1],Rn)×Rn ×R

is one-to-one and onto.
Proof. The proof is similar to the proof of Proposition 3.

3. Test functionals for bifurcations of periodic solutions. For the fold and
Hopf singularities of equilibria, several test functions, and corresponding minimally
extended defining systems, are discussed in [12] and incorporated in content [11]. To
obtain similar systems for the case of periodic orbits, we define simple singularities of
periodic solutions, specifically the limit point, the period-doubling bifurcation, and the
torus bifurcation, and we then construct functionals that vanish at these singularities.

3.1. A test functional for the fold bifurcation. Let (x(t), T, α) define a
periodic solution of (1.1); i.e., it satisfies (2.1), (2.2), and (2.3). We say that the
solution has a simple fold singularity if the monodromy matrix Φ(1) has an eigenvalue
+1 with algebraic multiplicity 2 and geometric multiplicity 1, while there are no other
critical multipliers.1

Let p0 and q0 denote the corresponding left and right eigenvectors, which satisfy

(Φ(1)− I)q0 = 0, (Ψ(1)− I)p0 = 0,

(Φ(1)− I)∗p0 = 0, (Ψ(1)− I)∗q0 = 0,

with

p∗0p0 = q∗0q0 = 1.

1A geometrically double eigenvalue +1 corresponds to a higher degeneracy. Recall that by
definition a regular periodic solution has a geometrically simple multiplier +1.
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At a simple fold, where the multiplier 1 has algebraic multiplicity 2, we also have
generalized eigenvectors p1 and q1 satisfying

(Φ(1)− I)q1 = q0, (Ψ(1)− I)p1 = p0,

where q1 and p1 can be chosen so that

q∗1q0 = p∗1p0 = 0.

Note that in the multiplicity-2 case we also have p∗0q0 = p∗1(Ψ(1)− I)∗q0 = 0.
Proposition 5. If (x(t), T, α) is a regular periodic solution of (2.1), then the

operator


 D − Tfx(x(t), α) − f(x(t), α)

δ1 − δ0 0
Intf(x(·),α) 0


(3.1)

from C1([0, 1],Rn)×R into C0([0, 1],Rn)×Rn ×R is one-to-one if the multiplier 1
has algebraic multiplicity 1. If the multiplier 1 has algebraic multiplicity 2, i.e., at a
simple fold, then the operator has a one-dimensional kernel, spanned by the vector

(
v
1

)
∈ C1([0, 1],Rn)×R,(3.2)

where v(t) = c0
T Φ(t)(c2q0 − (q1 − tq0)), where c2 is determined by the condition that

q∗0

∫ 1

0

Φ∗(τ)Φ(τ)[c2q0 − (q1 − τq0)] dτ = 0,

and where c0 is determined by the condition that x
′(0) = c0q0.

Proof. Consider the homogeneous equations


 D − Tfx(x(t), α) − f(x(t), α)

δ1 − δ0 0
Intf(x(·),α) 0


(

v
S

)
=


 0

0
0


 .(3.3)

From the first equation in (3.3) we have

v(t) = Φ(t)

[
v0 + S

∫ t

0

Ψ∗(τ)f(x(τ), α) dτ

]
= Φ(t)

[
v0 +

S
T

∫ t

0

Ψ∗(τ)x′(τ) dτ

]

= Φ(t)

[
v0 +

S
T

∫ t

0

Ψ∗(τ)Φ(τ) dτ x′(0)
]

= Φ(t)
[
v0 +

St
T x′(0)

]
,

where we used the facts that Ψ∗(τ)Φ(τ) = I and x′(t) = Φ(t)x′(0). Above, v0 = v(0)
is an initial vector. By the second equation in (3.3) we have

0 = v(1)− v(0) = (Φ(1)− I)v0 +
S

T
x′(0),

that is,

(Φ(1)− I)v0 = −S

T
x′(0).
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Now (Φ(1) − I)x′(0) = 0, so that x′(0) = c0q0, for some c0 ∈ R, c0 �= 0. Thus we
must solve

(Φ(1)− I)v0 = −c0
S

T
q0,(3.4)

where q0 spans the kernel of Φ(1)− I.
If the multiplier 1 has algebraic multiplicity 1, then we must have S = 0, v0 = c1q0,

and hence v(t) = c1Φ(t)q0. By the third equation in (3.3)

0 =

∫ 1

0

f∗(x(τ), α)v(τ) dτ =
1

T

∫ 1

0

x′∗(τ)v(τ) dτ =
1

T

∫ 1

0

[
Φ(τ)x′(0)

]∗
c1Φ(τ)q0 dτ

or

c0c1 q∗0

(∫ 1

0

Φ∗(τ)Φ(τ) dτ

)
q0 = 0,

from which it follows that c1 = 0. Thus v(t) ≡ 0. It follows that the operator (3.1) is
one-to-one.

At a simple fold the multiplier 1 has algebraic multiplicity 2. In this case (3.4) is
also solvable if S is nonzero, namely

v0 = −c0
S

T
q1 + c2q0,

where c2 ∈ R is arbitrary. The third equation in (3.3) then implies

0 =

∫ 1

0

x′∗(τ)v(τ) dτ

=

∫ 1

0

x′∗(τ)Φ(τ)[v0 +
Sτ
T x′(0)] dτ

=

∫ 1

0

x′∗(τ)Φ(τ)[−c0
S
T q1 + c2q0 +

Sτ
T c0q0] dτ

=

∫ 1

0

[Φ(τ)x′(0)]∗Φ(τ)[−c0
S
T q1 + c2q0 +

Sτ
T c0q0] dτ

= c0q
∗
0

∫ 1

0

Φ∗(τ)Φ(τ)[−c0
S
T q1 + c2q0 +

Sτ
T c0q0] dτ,

from which it follows that

c2 =
c0Sq

∗
0

∫ 1

0
Φ∗(τ)Φ(τ)[q1 − τq0] dτ

T q∗0
∫ 1

0
Φ∗(τ)Φ(τ) dτ q0

.

Proposition 6. Let (x(t), T, α) be a regular periodic solution of (2.1) and con-
sider the operator

M1 =


 D − Tfx(x(t), α) − f(x(t), α)

δ1 − δ0 0
Intf(x(·),α) 0


(3.5)

from C1([0, 1],Rn)×R into C0([0, 1],Rn)×Rn ×R. If the multiplier 1 has algebraic
multiplicity 1, then M1 is onto. If it has algebraic multiplicity 2, i.e., at a simple fold,



410 E. J. DOEDEL, W. GOVAERTS, AND YU. A. KUZNETSOV

then the range of M1 has codimension 1 and the vector
 Ψp0

−p0

0


 ∈ C0([0, 1],Rn)×Rn ×R(3.6)

is complementary to the range space.
Proof. Consider a vector (ξ, η, ω)∗ in C0([0, 1],Rn) ×Rn ×R. This vector is in

the range of M1 if and only if there exist (v, S)∗ in C1([0, 1],Rn)×R such that

M1

(
v
S

)
=


 ξ

η
ω


 .(3.7)

The first equation in (3.7) implies that

v(t) = Φ(t)

[
v(0) +

∫ t

0

Ψ∗(τ)(ξ(τ) + Sf(x(τ), α)) dτ

]
.

The second equation in (3.7) then implies

η = v(1)− v(0) = (Φ(1)− I)v(0) + Φ(1)

∫ 1

0

Ψ∗(τ)(ξ(τ) + Sf(x(τ), α)) dτ.

Now∫ 1

0

Ψ∗(τ)f(x(τ), α)dτ =
1

T

∫ 1

0

Ψ∗(τ)x′(τ) dτ =
1

T

∫ 1

0

Ψ∗(τ)c0Φ(τ)q0 dτ =
c0
T

q0.

So

η = (Φ(1)− I)v(0) +
Sc0
T

q0 +Φ(1)

∫ 1

0

Ψ∗(τ)ξ(τ) dτ.(3.8)

If 1 is an algebraically simple eigenvalue of Φ(1), then q0 is not in the range of
(Φ(1) − I). For given ξ and η, (3.8) can be solved for v(0) and S. Moreover, the
solution is unique up to the addition of a scalar multiple of q0 to v(0). Since

∫ 1

0

(x′(τ))∗Φ(τ)q0 dτ = c0

∫ 1

0

(Φ(τ)q0)
∗Φ(τ)q0 dτ �= 0,

the scalar is determined uniquely by the third equation in (3.7).
If 1 is an algebraically double eigenvalue of Φ(1), i.e., at a fold point, then (3.8)

is solvable if and only if

p∗0η = p∗0

∫ 1

0

Ψ∗(τ)ξ(τ) dτ.

If so, the third equation in (3.7) again determines the solution uniquely.
Proposition 7. If (x(t), T, α) is a regular periodic solution of (2.1), then the

operator 
 D + Tf∗

x(x(t), α) − f(x(t), α)
δ1 − δ0 0

Intf(x(·),α) 0


(3.9)
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from C1([0, 1],Rn) × R → C0([0, 1],Rn) × Rn × R is one-to-one if the multiplier 1
has algebraic multiplicity 1. If the multiplier 1 has algebraic multiplicity 2, i.e., at a
simple fold, then the operator has a one-dimensional kernel, spanned by (Ψ∗p0, 0)

∗ ∈
C1([0, 1],Rn)×R.

Proof. Consider the homogeneous equations
 D + Tf∗

x(x(t), α) − f(x(t), α)
δ1 − δ0 0

Intf(x(·),α) 0


(

w
R

)
=


 0

0
0


 .(3.10)

From the first equation in (3.10) we have

w(t) = Ψ(t)

[
w0 +

R

T

∫ t

0

Φ∗(τ)x′(τ) dτ

]
,

where w0 = w(0) is an initial vector. The second equation in (3.10) implies

0 = w(1)− w(0) = (Ψ(1)− I)w0 +
R

T
Ψ(1)

∫ 1

0

Φ∗(τ)x′(τ) dτ

or

(Ψ(1)− I)w0 = −R

T
Ψ(1)

∫ 1

0

Φ∗(τ)Φ(τ) dτ x′(0).

Given R, this equation is solvable for w0 if

−Rq∗0Ψ(1)
∫ 1

0

Φ∗(τ)Φ(τ) dτ x′(0) = 0,

that is, recalling that x′(0) = c0q0, c0 �= 0, and q∗0Ψ(1) = q∗0 if

c0Rq∗0

∫ 1

0

Φ∗(τ)Φ(τ) dτ q0 = 0.

It follows that R = 0, independently of the algebraic multiplicity of the eigenvalue 1.
Thus w(t) = Ψ(t)w0, where (Ψ(1)− I)w0 = 0, so that w0 = c3p0 for some c3 ∈ R.

From the third equation in (3.10) it follows that

0 =

∫ 1

0

w∗(τ)x′(τ) dτ =

∫ 1

0

[c3Ψ(τ)p0]
∗Φ(τ)x′(0) dτ

= c0 c3 p∗0

∫ 1

0

Ψ∗(τ)Φ(τ) dτ q0 = c0 c3 p∗0q0.

If the multiplier 1 has algebraic multiplicity 1, then p∗0q0 �= 0. In this case c3 = 0 and
hence w(t) ≡ 0; that is, the operator (3.9) is one-to-one.

If the multiplier 1 has algebraic multiplicity 2, then p∗0q0 = 0, and we can choose
c3 �= 0. In this case w0 �= 0; hence w(t) �≡ 0. It follows that the operator (3.9) has a
one-dimensional kernel.

Proposition 8. If (x(t), T, α) is a regular periodic solution of (2.1), then the
operator

M2 =


 D + Tf∗

x(x(t), α) − f(x(t), α)
δ1 − δ0 0

Intf(x(·),α) 0


(3.11)
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from C1([0, 1],Rn) × R → C0([0, 1],Rn) × Rn × R is onto if the multiplier 1 has
algebraic multiplicity 1. If the multiplier 1 has algebraic multiplicity 2, i.e., at a simple
fold, then the range has codimension 1, and the vector (0, 0, 1)∗ ∈ C0([0, 1],Rn)×Rn×
R is complementary to the range space.

Proof. Consider a vector (ξ, η, ω)∗ in C0([0, 1],Rn) ×Rn ×R. This vector is in
the range of M2 if and only if there exist (w,R)∗ in C1([0, 1],Rn)×R such that

M2

(
w
R

)
=


 ξ

η
ω


 .(3.12)

The first equation in (3.12) implies that

w(t) = Ψ(t)

[
w(0) +

∫ t

0

Φ∗(τ)(ξ(τ) +Rc0Φ(τ)q0) dτ

]
.

The second equation in (3.12) then implies

η = w(1)− w(0) = (Ψ(1)− I)w(0) + Ψ(1)

∫ 1

0

Φ∗(τ)(ξ(τ) +Rc0Φ(τ)q0)dτ.

We thus obtain the equation

(Ψ(1)− I)w(0) = η −Rc0Ψ(1)

∫ 1

0

Φ∗(τ)Φ(τ)q0 dτ −Ψ(1)

∫ 1

0

Φ∗(τ)ξ(τ) dτ.

This equation is solvable for w(0) if and only if

q∗0η = Rc0q
∗
0

∫ 1

0

Φ∗(τ)Φ(τ)q0 dτ + q∗0

∫ 1

0

Φ∗(τ)ξ(τ)dτ.

The latter equation is solvable uniquely for R, so the previous one is solvable for w(0)
and defines it up to the addition of a scalar multiple of p0.

Now suppose that (w,R)∗ solve the first two equations in (3.12), where w(0) =
w0 + rp0 and r is arbitrary. The third equation in (3.12) then requires

c0q
∗
0(w0 + rp0) = ω + two integral terms which are linear in ξ(t) and R.

If the eigenvalue 1 of Φ(1) has algebraic multiplicity 1, then this equation has a unique
solution in r and thus M2 is one-to-one and onto. If the eigenvalue has algebraic
multiplicity 2, then the range of M2 has codimension at most 1. If we set ξ(t) ≡ 0,
η = 0, ω = 1, then necessarily R = 0, ω = 0 as well, and thus the third equation
in (3.12) cannot be solved. So the range of M2 has codimension 1, and (0, 0, 1)∗ is a
vector complementary to the range.

Proposition 9. Let (x(t), T, α) be a regular periodic solution of (2.1) that has a
simple fold singularity; i.e., Φ(1) has eigenvalue 1 with algebraic multiplicity 2. Then
there exist v01, w01, v11, w11 ∈ C0([0, 1],Rn), w02, v12 ∈ Rn, w03, v02, v13, w12 ∈ R
such that

N1 =




D − Tfx(x(t), α) − f(x(t), α) w01

δ1 − δ0 0 w02

Intf(x(·),α) 0 w03

Intv01 v02 0



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and

N2 =




D + Tf∗
x(x(t), α) − f(x(·), α) v11

δ1 − δ0 0 v12

Intf(x(·),α) 0 v13

Intw11 w12 0




from C1([0, 1],Rn)×Rn×R to C0([0, 1],Rn)×Rn×R×R are one-to-one and onto.
For any such choice of the bordering elements we define v, w ∈ C1([0, 1],Rn) and

S,G,H,R ∈ R by the equations

N1


 v

S
G


 =




0
0
0
1


(3.13)

and

N2


 w

R
H


 =




0
0
0
−1


 .(3.14)

Then in a neighborhood of (x(t), T, α), G = 0 if and only if H = 0. Moreover, this
happens if and only if the regular periodic solution has a simple fold singularity.

Proof. We choose

(
v01(t)
v02

)
=

(
v(t)
1

)
,

where v is given in the statement of Proposition 5. Further we set


 w01(t)

w02

w03


 =


 Ψ∗(t)p0

0
0


 .

By Propositions 5 and 6, N1 is one-to-one and onto. We further set

(
w11(t)
w12

)
=

(
Ψ∗(t)p0

0

)
,


 v11(t)

v12

v13


 =


 0

0
1


 .

By Propositions 7 and 8, N2 is one-to-one and onto. The last statement in the
proposition is proved by standard arguments.

3.2. A test functional for the period-doubling bifurcation. By definition,
at a simple flip singularity there is an algebraically simple Floquet multiplier equal
to −1 and no other multipliers with unit modulus, except for an algebraically simple
multiplier +1. The left and right eigenvectors of the monodromy matrix Φ(1) for the
eigenvalue −1 will be denoted by p2 and q2, respectively. They are also the right and
left eigenvector, respectively, of Ψ(1) for the eigenvalue −1.
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Proposition 10. If (x(t), T, α) corresponds to a simple flip singularity, then the
operator

[
D − Tfx(x(t), α)

δ0 + δ1

]
: C1([0, 1],Rn) → C0([0, 1],Rn)×Rn

has a one-dimensional kernel spanned by Φq2. Its range has codimension 1; if ζ ∈
C0([0, 1],Rn), r ∈ Rn, then (ζ, r)∗ is in the range if and only if 〈Ψp2, ζ〉 = −p∗2r. In
particular, if r = 0, then (ζ, 0)∗ is in the range if and only if 〈Ψp2, ζ〉 = 0.

Proof. The proof is similar to the proof of Proposition 1.
Corollary 3. If (x(t), T, α) corresponds to a simple flip singularity, then the

operator


 D − Tfx(x(t), α)

δ0 + δ1
Intφ


 : C1([0, 1],Rn) → C0([0, 1],Rn)×Rn ×R(3.15)

is one-to-one if and only if 〈φ,Φq2〉 �= 0.
Proposition 11. If (x(t), T, α) corresponds to a simple flip singularity, then the

operator

[
D + Tf∗

x(x(t), α)
δ0 + δ1

]
: C1([0, 1],Rn) → C0([0, 1],Rn)×Rn

has a one-dimensional kernel spanned by Ψp2. Its range has codimension 1; if ζ ∈
C0([0, 1],Rn), r ∈ Rn, then (ζ, r)∗ is in the range if and only if 〈Φq2, ζ〉 = −q∗2r. In
particular, if r = 0, then (ζ, 0)∗ is in the range if and only if 〈Φq2, ζ〉 = 0.

Proof. The proof is similar to the proof of Proposition 2.
Corollary 4. If (x(t), T, α) corresponds to a simple flip singularity, then the

operator


 D + Tf∗

x(x(t), α)
δ0 + δ1
Intψ


 : C1([0, 1],Rn) → C0([0, 1],Rn)×Rn ×R(3.16)

is one-to-one if and only if 〈ψ,Ψp2〉 �= 0.
Proposition 12. Let (x(t), T, α) correspond to a simple flip singularity, and let

φ0, ψ0 ∈ C0([0, 1],Rn) be such that 〈φ0,Φq2〉 �= 0, 〈ψ0,Ψp2〉 �= 0. Then the operator


 D − Tfx(x(t), α) ψ0

δ0 + δ1 0
Intφ0 0


 : C1([0, 1],Rn)×R → C0([0, 1],Rn)×Rn ×R

is one-to-one and onto.
Proof. The proof is similar to the proof of Proposition 3.
Proposition 13. Let (x(t), T, α) correspond to a simple flip singularity, and let

φ0, ψ0 ∈ C0([0, 1],Rn) be such that 〈φ0,Φq2〉 �= 0, 〈ψ0,Ψp2〉 �= 0. Then the operator


 D + Tf∗

x(x(t), α) φ0

δ0 + δ1 0
Intψ0

0


 : C1([0, 1],Rn)×R → C0([0, 1],Rn)×Rn ×R

is one-to-one and onto.
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Proof. The proof is similar to the proof of Proposition 4.
Proposition 14. Let (x(t), T, α) be a periodic solution close to a simple flip

singularity, and let φ0, ψ0 ∈ C0([0, 1],Rn) be such that 〈φ0,Φq2〉 �= 0, 〈ψ0,Ψp2〉 �=
0, so that the operators M3 and M4 (defined below) from C1([0, 1],Rn) × R into
C0([0, 1],Rn) × Rn × R are both one-to-one and onto. Let v, w ∈ C1([0, 1],Rn), G,
H ∈ R be defined by the equations

M3

(
v
G

)
≡


 D − Tfx(x(t), α) ψ0

δ0 + δ1 0
Intφ0 0


(

v
G

)
=


 0

0
1


 ,(3.17)

M4

(
w
H

)
≡


 D + Tf∗

x(x(t), α) φ0

δ0 + δ1 0
Intψ0 0


(

w
H

)
=


 0

0
−1


 .(3.18)

Then G = H. Furthermore, G = 0 if and only if the periodic solution corresponds to
a simple flip singularity. If so, then v(0) is the right eigenvector of the monodromy
matrix for the eigenvalue −1.

Proof. Multiplying the first equation in (3.17) on the left with w∗(t), integrating
over the interval [0, 1], and using the last equation in (3.18) we obtain

∫ 1

0

w∗v′(τ) dτ − T

∫ 1

0

w∗(τ)fx(x(τ), α)v(τ) dτ −G = 0.

Integrating the first term by parts, using the second equations in (3.17) and (3.18),
we obtain

−
∫ 1

0

v∗(τ)w′(τ) dτ − T

∫ 1

0

v∗(τ)f∗
x(x(τ), α)w(τ) dτ −G = 0.

Using the first equation in (3.18) we get

−〈v, (−Hφ0)〉 −G = 0.

Using the third equation in (3.17) we obtain G = H. The other statements in the
proposition are now obvious.

3.3. A test functional for the torus bifurcation. We say that a periodic
solution has a simple Neimark–Sacker singularity if the monodromy matrix Φ(1) has
a conjugate pair of simple complex multipliers with modulus 1 (i.e., e±iθ, 0 < θ < π)
and no other multipliers with unit modulus, except an algebraically simple eigenvalue
+1. Furthermore, let p1, p2 ∈ Rn (respectively, q1, q2 ∈ Rn) be such that p1 +
ip2 (respectively, q1 + iq2) is a left (respectively, right) complex eigenvector of the
monodromy matrix Φ(1). Thus

(p1 + ip2)
HΦ(1) = eiθ(p1 + ip2)

H ,

Φ(1)(q1 + iq2) = eiθ(q1 + iq2),

Ψ(1)(p1 + ip2) = eiθ(p1 + ip2),

(q1 + iq2)
HΨ(1) = eiθ(q1 + iq2)

H ,

where (p1 + ip2)
H = p∗1 − ip∗2, (q1 + iq2)

H = q∗1 − iq∗2 .
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In this section it is convenient to extend the definition of x(t),Φ(t), and Ψ(t) to
the interval [0, 2] by periodicity with period 1 and to redefine

Intφ(v) = 〈φ, v〉 =
∫ 2

0

φ∗(τ)v(τ) dτ.

We start with the following result.
Proposition 15. Let (x(t), T, α) define a periodic solution; i.e., it satisfies

(2.1), (2.2), and (2.3). Let (x(t), T, α) correspond to a simple Neimark–Sacker singu-
larity with multipliers e±iθ, 0 < θ < π. Let κ = cos θ and consider the operator[

D − Tfx(x(t), α)
δ0 − 2κδ1 + δ2

]
: C1([0, 2],Rn) → C0([0, 2],Rn)×Rn.(3.19)

Then we have the following:
(i) The operator (3.19) has a two-dimensional kernel spanned by Φ(t)q1 and

Φ(t)q2.
(ii) The operator (3.19) has a range with codim 2. The vectors

(
Ψp1

0

)
,

(
Ψp2

0

)
∈ C0([0, 2],Rn)×Rn

span a two-dimensional subspace that is complementary to the range of (3.19).
Proof. Let v be in the kernel of (3.19). Then v must have the form v(t) = Φ(t)v0

with v0 ∈ Rn. We further have

0 = (δ0 − 2κδ1 + δ2)v = v(0)− 2κv(1) + v(2) = (Φ(1)− eiθI)(Φ(1)− e−iθI)v0.

We infer that it is necessary and sufficient that v0 is in the span of q1, q2.
As a first step in the proof of (ii) we consider ζ ∈ C0([0, 2],Rn), r ∈ Rn, and we

give a necessary and sufficient condition in order that (ζ, r)∗ be in the range of (3.19).
First, there must exist a v ∈ C1([0, 2],Rn) for which

v′(t)− Tfx(x(t), α)v(t) = ζ(t).

The general solution of this linear differential equation is

v(t) = Φ(t)

[
v0 +

∫ t

0

Ψ∗(τ)ζ(τ) dτ

]
,

where v0 = v(0) is an initial vector. Also, we must have v(0) − 2κv(1) + v(2) = r,
that is,

(Φ(1)−eiθI)(Φ(1)−e−iθI)v0−2κΦ(1)

∫ 1

0

Ψ∗(τ)ζ(τ) dτ +Φ(1)2
∫ 2

0

Ψ∗(τ)ζ(τ)dτ = r.

This is an equation for v0 which is solvable if and only if

−2κpHΦ(1)
∫ 1

0

Ψ∗(τ)ζ(τ) dτ + pHΦ(1)2
∫ 2

0

Ψ∗(τ)ζ(τ) dτ = pHr

or, equivalently,

−2κeiθ
∫ 1

0

pHΨ∗(τ)ζ(τ) dτ + e2iθ

∫ 2

0

pHΨ∗(τ)ζ(τ) dτ = pHr.
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If we define the linear functional L by setting

L(ζ) = −2κeiθ
∫ 1

0

pHΨ∗(τ)ζ(τ) dτ + e2iθ

∫ 2

0

pHΨ∗(τ)ζ(τ) dτ,(3.20)

then we infer that (ζ, r)∗ is in the range of (3.19) if and only if L(ζ) = pHr.
As a second step in the proof of (ii) we compute L(Ψp1) and L(Ψp2). We have

L(Ψp1) = −2 cos θeiθ
∫ 1

0

pHΨ∗(τ)Ψ(τ)p1 dτ + e2iθ

∫ 2

0

pHΨ∗(τ)Ψ(τ)p1 dτ

= eiθ(−2 cos θ+cos θ+i sin θ)

∫ 1

0

pHΨ∗(τ)Ψ(τ)p1 dτ+e2iθ

∫ 1

0

pHΨ∗(1+τ)Ψ(1+τ)p1 dτ.

Now we note that

Ψ(1 + τ)p1 = Ψ(τ)Ψ(1)p1 = Ψ(τ)(cos θp1 − sin θp2)

and

pHΨ∗(1 + τ) = [Ψ(τ)Ψ(1)p]H = [eiθΨ(τ)p]H = e−iθpHΨ∗(τ).

Hence

L(Ψp1) = i sin θeiθ
∫ 1

0

pHΨ∗(τ)Ψ(τ)p dτ = (− sin θ + i cos θ) sin θ

∫ 1

0

‖Ψ(τ)p‖2 dτ.

By a similar argument we find that

L(Ψp2) = (cos θ + i sin θ) sin θ

∫ 1

0

‖Ψ(τ)p‖2dτ.

As a third step in the proof of (ii) we show that the range of (3.19) has codimension
2 by proving that every (ξ, r)∗ can be written in a unique way as

(
ξ
r

)
=

(
ξ0
r0

)
+ α

(
0
p1

)
+ β

(
0
p2

)
,(3.21)

with (ξ0, r0)
∗ in the range of (3.19) and α, β ∈ R.

Obviously ξ0 = ξ, and r0 has to satisfy the conditions

pHr0 = L(ξ), r0 = r − αp1 − βp2.

These conditions imply

(
p∗1p1 p∗1p2

p∗2p1 p∗2p2

)(
α
β

)
=

(
p∗1r − Re [L(ξ)]
p∗2r + Im [L(ξ)]

)
.

This nonsingular linear system defines α, β in a unique way. Next, r0 is defined by
the requirement r0 = r − αp1 − βp2, and with this choice we have pHr0 = L(ξ).

As the fourth and last step to prove (ii) we will show that

(
Ψp1

0

)
,

(
Ψp2

0

)
,
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and we will also span a two-dimensional space complementary to the range of (3.19).
To this end we decompose

(
Ψp1

0

)
=

(
Ψp1

r1

)
+ α1

(
0
p1

)
+ β1

(
0
p2

)
,

(
Ψp2

0

)
=

(
Ψp2

r2

)
+ α2

(
0
p1

)
+ β2

(
0
p2

)

in the decomposition of (3.21). Then α1, β1, α2, β2 are defined by the matrix equation

(
p∗1p1 p∗1p2

p∗2p1 p∗2p2

)(
α1 α2

β1 β2

)
=

( −Re [L(Ψp1)] −Re [L(Ψp2)]
Im [L(Ψp1)] Im [L(Ψp2)]

)
.

The proof of (ii) is complete if we show that

(
α1 α2

β1 β2

)

is a nonsingular matrix or, equivalently, that
( −Re [L(Ψp1)] −Re [L(Ψp2)]

Im [L(Ψp1)] Im [L(Ψp2)]

)

is nonsingular. By the second step this matrix is equal to

(
sin θ − cos θ
cos θ sin θ

)
sin θ

∫ 1

0

‖Ψ(τ)p‖2dτ.(3.22)

Since sin θ �= 0 in (3.22) the proof is complete.
Proposition 16. Let (x(t), T, α) define a periodic solution; that is, it satis-

fies (2.1), (2.2), and (2.3). Let (x(t), T, α) correspond to a simple Neimark–Sacker
singularity with multipliers e±iθ, 0 < θ < π. Set κ = cos θ and consider the operator

[
D + Tf∗

x(x(t), α)
δ0 − 2κδ1 + δ2

]
: C1([0, 2],Rn) → C0([0, 2],Rn)×Rn.(3.23)

Then we have the following:
(i) The operator (3.23) has a two-dimensional kernel spanned by Ψ(t)p1 and

Ψ(t)p2.
(ii) The operator (3.23) has a range of codimension 2. The vectors

(
Φq1
0

)
,

(
Φq2
0

)
∈ C0([0, 2],Rn)×Rn

span a two-dimensional subspace that is complementary to the range of (3.23).
Proof. The proof is similar to the proof of the preceding proposition.
Corollary 5. Let (x(t), T, α) correspond to a simple Neimark–Sacker singular-

ity of a periodic solution. If κ = cos θ, then the operators



D − Tfx(x(t), α) Ψp1 Ψp2

δ0 − 2κδ1 + δ2 0 0
IntΦ(·)q1 0 0
IntΦ(·)q2 0 0


 : C1([0, 2],Rn)×R2 → C0([0, 2],Rn)×Rn×R2
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and




D + Tf∗
x(x(t), α) Φq1 Φq2

δ0 − 2κδ1 + δ2 0 0
IntΨ(·)p1 0 0
IntΨ(·)p2 0 0


 : C1([0, 2],Rn)×R2 → C0([0, 2],Rn)×Rn×R2

are both one-to-one and onto.
Proof. The proof is standard.
Proposition 17. Let (x(t), T, α) be close to a simple Neimark–Sacker singularity

of periodic solutions and κ close to the value cos θ at the singular point. Furthermore,
let (ψ0, ψ1) span a space sufficiently close to the span of (Ψp1,Ψp2), and let (φ0, φ1)
span a space sufficiently close to (Φq1,Φq2), so that the operators

M5 =




D − Tfx(x(t), α) ψ0 ψ1

δ0 − 2κδ1 + δ2 0 0
Intφ0

0 0
Intφ1 0 0


 : C1([0, 2],Rn)×R2 → C0([0, 2],Rn)×Rn×R2

and

M6 =




D + Tf∗
x(x(t), α) φ0 φ1

δ0 − 2κδ1 + δ2 0 0
Intψ0

0 0
Intψ1 0 0


 : C1([0, 2],Rn)×R2 → C0([0, 2],Rn)×Rn×R2

are both one-to-one and onto. Let v1, v2, w1, w2 ∈ C1([0, 2],Rn), G,H ∈ R2×2 be
defined by the equations

M5


 v1 v2

G11 G12

G21 G22


 =




0 0
0 0
1 0
0 1


 ,(3.24)

M6


 w1 w2

H11 H21

H12 H22


 =




0 0
0 0
−1 0
0 −1


 .(3.25)

If (x(t), T, α) is a periodic solution, then G = 0 if and only if H = 0. Moreover, this
happens if and only if (x(t), T, α) corresponds to a simple Neimark–Sacker singularity
of periodic solutions with the multipliers e±iθ, where κ = cos(θ).

Proof. The proof is standard.

4. Regularity of the defining systems. In this section we prove that, under
natural nondegeneracy and transversality conditions, the test functionals constructed
in the previous section are regular (with respect to the arclength parameter along the
periodic solution family). This implies regularity of defining systems consisting of the
periodic BVP (2.1), (2.2), (2.3), and the condition for the corresponding functional
to vanish, for the two-parameter continuation of the bifurcation.
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4.1. Regularity at a fold bifurcation. To prove the regularity of the test
functional G for the simple fold singularity in Proposition 9, we proceed as in the case
of the fold singularity of equilibria [12], [3].

The computation of periodic orbits is based on the equation

F (X,α) = 0,(4.1)

where X ≡ (x(·), T ) ∈ C1([0, 1],R)×R, and F (X) ∈ C0([0, 1],R)×Rn ×R is given
by

F (X) ≡




x′(t)− Tf(x(t), α)

x(1)− x(0)∫ 1

0

x∗(τ)x′
k−1(τ) dτ




(see (2.1), (2.2), and (2.3)). The Fréchet derivative FX(X,α) of this operator (with
xk−1 substituted by x upon differentiation) is M1 as defined in (3.1). By Proposi-
tions 5 and 6, if the periodic orbit has a simple fold singularity, then FX is singular.
Moreover, the left and right singular vectors are then

 Ψp0

−p0

0




and (
v
1

)
,

given in (3.2) and (3.6), respectively. By definition, a simple fold point is nondegen-
erate if 

 Ψp0

−p0

0




∗

FXX

(
v
1

)(
v
1

)
�= 0.(4.2)

Let α be a scalar parameter in (1.1). A nondegenerate fold point is called regular if
[FX Fα] is onto at the singularity. This is the usual transversality condition for the
limit point bifurcation, which can be equivalently expressed as


 Ψp0

−p0

0




∗

Fα �= 0.(4.3)

Let s denote arclength along the family of periodic orbits. We think of X and α as
functions of s so that (4.1) is an identity in s. By (3.13) this also defines G as a
function of s. Suppose that a fold singularity occurs at s = s0. We will prove that
Gs(s0) �= 0 near a regular fold point, i.e., a simple fold singularity where both (4.2)
and (4.3) hold.

Taking derivatives of (3.13) with respect to s we find

N1


 vs

Ss
Gs


 =


 (FXXXs + FXααs)

(
v
S

)

0


 .(4.4)
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In this expression (
v
S

)

is a right singular vector of FX . Furthermore, at the fold singularity αs = 0. Since
FXXs + Fααs ≡ 0 it follows that Xs is also a right singular vector of FX . Now by
(4.4) we have Gs(s0) �= 0 if and only if

FXX

(
v
1

)(
v
1

)

is not in the range of M1; under our assumptions this is equivalent to (4.2).

4.2. Regularity at a period-doubling bifurcation. We have seen that lo-
cally, near a simple flip singularity, the system consisting of (2.1), (2.2), (2.3), and
G = 0 (where G is given by (3.17)) defines the set of simple flips in (x(·), T, α)-space
if the conditions 〈φ0,Φq2〉 �= 0, 〈ψ0,Ψp2〉 �= 0 hold. We will now prove that this is
a regular system if an appropriate transversality condition for the period-doubling
bifurcation holds.

Let s denote arclength along the family of periodic orbits so that (x(s)(t), T (s),
α(s)) is a solution of (2.1), (2.2), and (2.3) for all s near the bifurcation value s0. The
simplicity of the flip singularity implies that −1 is the algebraically simple eigenvalue
of Φ(s0)(1) so that it can be continued smoothly, together with its left and right
eigenvectors, for nearby values of s. Specifically, we denote by λ(s) an eigenvalue of
Φ(s)(1), with left and right eigenvectors p(s), q(s), that is,

Φ(s)(1)q(s) = λ(s)q(s), p∗(s)Φ(s)(1) = λ(s)p∗(s),
Ψ(s)(1)p(s) = λ−1(s)p(s), q∗(s)Ψ(s)(1) = λ−1(s)q∗(s),
p(s0) = p2, q(s0) = q2,
λ(s0) = −1.

(4.5)

The simplicity condition implies that

p∗(s)q(s) �= 0

for all s sufficiently close to s0. By standard arguments, (4.5) implies

p∗(s)q(s)λs(s) = p∗(s)Φs(s)(1)q(s).(4.6)

To get an explicit formula for Φs(s0)(1) we start from the observation that

(D − T (s)fx(x(s), α(s)))Φ = 0.

Taking derivatives, and using somewhat simplied notation, we obtain

(D − Tfx)Φs = (Tfx)sΦ.

Multiplying on the right by an arbitrary vector ξ ∈ Rn, we have

(D − Tfx)Φsξ = (Tfx)sΦξ.

This is a linear differential equation for Φsξ with solution

Φs(s)(t)ξ = Φ(s)(t)

[
ζ +

∫ t

0

Ψ∗(s)(τ)(Tfx)s(s)(τ)Φ(s)(τ)ξ dτ

]
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for some ζ ∈ Rn. For t = 0 this reduces to

Φs(s)(0)ξ = Φ(s)(0)ζ.

Since Φ(s)(0) = I, Φs(s)(0) = 0, this implies that ζ = 0, so that

Φs(s)(t)ξ = Φ(s)(t)

∫ t

0

Ψ∗(s)(τ)(Tfx)s(s)(τ)Φ(s)(τ)ξ dτ(4.7)

for all ξ ∈ Rn. From (4.6) we get

p∗(s)q(s)λs(s) = λ(s)p∗(s)
∫ 1

0

Ψ∗(τ)(Tfx)s(s)(τ)Φ(s)(τ)q(s) dτ.(4.8)

The natural transversality condition for the period-doubling bifurcation is λs(s0) �= 0.
We now show that this is equivalent to Gs(s0) �= 0, thus establishing regularity.

Proposition 18. The conditions λs(s0) �= 0 and Gs(s0) �= 0 are equivalent near
a simple flip singularity.

Proof. The equations (3.17) are to be considered as identities in s; by taking
derivatives we obtain

(D − Tfx)vs = (Tfx)sv − ψ0Gs,(4.9)

(δ0 + δ1)vs = 0,(4.10)

Intφ0vs = 0.

The solution of (3.17) at s = s0 is given by G(s0) = 0, v(s0)(t) = Φ(s0)(t)q2. Now,
at s = s0 (4.9) is a linear differential equation for vs(s0)(t) with solution

vs(s0)(t) = Φ(s0)(t)

[
ζ +

∫ t

0

Ψ∗(s0)(τ)((Tfx)s(s0)(τ)v(s0)(τ)− ψ0Gs(s0)) dτ

]

for some vector ζ ∈ Rn. Using (4.10) we find

0 = (I+Φ(s0)(1))ζ+Φ(s0)(1)

∫ 1

0

Ψ∗(s0)(τ)((Tfx)s(s0)(τ)Φ(s0)(τ)q2−ψ0Gs(s0)) dτ.

This equation in ζ has a solution if and only if

p∗(s0)Φ(s0)(1)

∫ 1

0

Ψ∗(s0)(τ)((Tfx)s(s0)(τ)Φ(s0)(τ)q2 − ψ0Gs(s0)) dτ = 0,

that is,

p∗2

∫ 1

0

Ψ∗(s0)(τ)(Tfx)s(s0)(τ)Φ(s0)(τ)q2 dτ = 〈ψ0,Ψp2〉Gs(s0).

By (4.8) this implies

−(p∗2q2)λs(s0) = 〈ψ0,Ψp2〉Gs(s0).

Since p∗2q2 and 〈ψ0,Ψp2〉 are nonzero, this completes the proof.
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4.3. Regularity at a torus bifurcation. Again, let s denote arclength along
the family of periodic orbits so that (x(s)(t), T (s), α(s)) is a solution of (2.1), (2.2),
and (2.3) for all s near the critical value s0 corresponding to a simple Neimark–Sacker
singularity. Thus Φ(s0)(1) has algebraically simple eigenvalues e±iθ. Let λ(s) =
λ1(s)+iλ2(s), p(s) = p1(s)+ip2(s), q(s) = q1(s)+iq2(s) be the smooth continuations
of the critical multiplier eiθ and the corresponding left and right eigenvectors. The
natural transversality condition for the torus bifurcation is the requirement that λ(s)
crosses the unit circle in the complex plane at nonzero velocity, i.e.,

λ1(s0)λ1s(s0) + λ2(s0)λ2s(s0) �= 0.(4.11)

Proposition 19. The system consisting of (2.1), (2.2), (2.3), and the conditions

G11 = 0,
G12 = 0,
G21 = 0,
G22 = 0,

(4.12)

where the Gij are defined in Proposition 17, together form a regular defining sys-
tem for periodic solutions having a simple Neimark–Sacker singularity if the natural
transversality condition (4.11) is satisfied.

Proof. To prove that the system (2.1), (2.2), (2.3), (4.12) is a regular defining
system (i.e., has full linear rank), we consider the implicit solution (x(s)(t), T (s), α(s))
of (2.1), (2.2), (2.3). So G11, G12, G21, G22 are functions of s, κ only, and we have to
prove that




G11s G11κ

G12s G12κ

G21s G21κ

G22s G22κ




has rank 2. Assume that c1, c2 ∈ R are such that

c1Gijs + c2Gijκ = 0, (i, j = 1, 2).(4.13)

We start by noting that pH(s)q(s) �= 0 in a neighborhood of s = s0. By standard
arguments

(pHq)λs = pHΦs(1)q,(4.14)

where for simplicity of notation we have suppressed the dependence on s. To get an
expression for Φs(1) we start from the identity

(D − Tfx)Φ ≡ 0.

Taking derivatives with respect to s and multiplying with any vector ζ ∈ Rn we find

(D − Tfx)Φsζ = (Tfx)sΦζ.

The solution of this linear differential equation in Φsζ is

Φsζ(t) = Φ(s)(t)

[
ξ +

∫ t

0

Ψ∗(s)(τ)(Tfx)s(s)(τ)Φ(s)(τ)ζ dτ

]
,
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where ξ is determined by the initial conditions. Since for t = 0 we have Φ(0) =
I,Φs(0) = 0, it follows that ξ = 0. Choosing ζ = q we obtain from (4.14) that

(pHq)λs = λpH
∫ 1

0

Ψ∗(s)(τ)(Tfx)s(s)(τ)Φ(s)(τ)q dτ.(4.15)

From (3.24) we infer that

M5


 v1s v2s

G11s G12s

G21s G22s


 =




(Tfx)sv1 (Tfx)sv2

0 0
0 0
0 0


 ,(4.16)

M5


 v1κ v2κ

G11κ G12κ

G21κ G22κ


 =




0 0
2v1(1) 2v2(1)
0 0
0 0


 .(4.17)

Combining (4.13), (4.16), and (4.17) we obtain

M5


 c1v1s + c2v1κ c1v2s + c2v2κ

0 0
0 0


 =




c1(Tfx)sv1 c1(Tfx)sv2

2c2v1(1) 2c2v2(1)
0 0
0 0


 .

Hence (
c1(Tfx)sv1

2c2v1(1)

)
,

(
c1(Tfx)sv2

2c2v2(1)

)

are both in the range of (3.19). As an essential step in the proof of Proposition 15 it
was shown that this implies

c1L((Tfx)sv1) = 2c2p
Hv1(1),

c1L((Tfx)sv2) = 2c2p
Hv2(1),

where the linear operator L is defined in (3.20). Since v1, v2 are in the kernel of (3.19)
we have

v1(τ) = Φ(τ)v1(0), v2(τ) = Φ(τ)v2(0).

Combining the last four formulae we find

c1L((Tfx)sΦq) = 2c2p
HΦ(1)q = 2c2e

iθ(pHq).(4.18)

Now,

L((Tfx)sΦq) = −2κeiθ
∫ 1

0

pHΨ∗(τ)(Tfx)sΦ(τ)q dτ + e2iθ

∫ 2

0

pHΨ∗(τ)(Tfx)sΦ(τ)q dτ

= eiθ(cos θ + i sin θ − 2 cos θ)

∫ 1

0

pHΨ∗(τ)(Tfx)sΦ(τ)q dτ

+ e2iθ

∫ 1

0

pHΨ∗(1 + τ)(Tfx)sΦ(1 + τ)q dτ.
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Also,

pHΨ∗(1 + τ) = (Ψ(1 + τ)p)H = (Ψ(τ)Ψ(1)p)H = pHΦ−1(1)Ψ∗(τ) = e−iθpHΨ∗(τ)

and

Φ(1 + τ)q = Φ(τ)Φ(1)q = eiθΦ(τ)q.

Hence

L((Tfx)sΦq) = eiθ2i sin θ

∫ 1

0

pHΨ∗(τ)(Tfx)sΦ(τ)q dτ.

By (4.15) this implies

L((Tfx)sΦq) = 2i sin θ(pHq)λs.

Using (4.18) we further obtain

2ic1 sin θ(pHq)λs = 2c2e
iθ(pHq).

Dividing by 2(pHq) we obtain

(− sin θλ2s + i sin θλ1s)c1 = (cos θ + i sin θ)c2.

Taking real and imaginary parts of this complex equality we find

( − sin θλ2s − cos θ
sin θλ1s − sin θ

)(
c1
c2

)
=

(
0
0

)
.

The determinant of the 2× 2 matrix in this expression is equal to

sin θ(cos θλ1s + sin θλ2s) = sin θ(λ1λ1s + λ2λ2s).

By (4.11) and sin θ �= 0 this implies that c1 = c2 = 0, which completes the
proof.

5. Computational issues. In this section we discuss computational issues re-
lated to the implementation of our defining systems, namely the computation of
the derivatives of the test functionals with respect to the unknowns of the system,
x(t), α, T , as well as the problem of adapting the defining systems along the bifurcation
branch. We also explicitly show the BVPs that must be solved.

5.1. Fold bifurcation. Proposition 9 implies that locally, near a simple fold
singularity of periodic solutions, the system consisting of (2.1), (2.2), (2.3), and

G = 0

defines the set of simple folds in (x(·), T, α)-space; here G is defined by (3.13). Under
natural nondegeneracy and transversality conditions, the regularity of this system was
proved in section 4.1.

We need the derivatives of G with respect to the unknowns of the system, i.e.,
with respect to x(·), α, T .
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Denoting by z any component of α or T we infer from (3.13) that

N1


 vz

Sz
Gz


 =




[Tfx(x(t), α]zv + [f(x(t), α)]zS
0

−Int[f(x(·),α)]zv
0


 .

Numerically we solve a discretized version of this equation, say

Nd
1


 vz

Sz
Gz


 =




([Tfx(x(t), α]zv + [f(x(t), α)]zS)d
0

−(Int[f(x(·),α)]zv)d
0


 ,(5.1)

where Nd
1 is the discretized version of N1, i.e., a large square matrix with a structure

that can be efficiently factorized, for example, as in auto [9].
Note that a large number of linear systems having the same structured matrix

Nd
1 must be solved. Moreover, all right-hand sides are known before the factorization.

Thus the solution can be done in a single factorization process, without storing the
factors.

(Nd
1 )
T has a block structure that is very similar to Nd

1 . If an efficient solution
strategy for (Nd

1 )
T is also developed, then it is possible to avoid solving (5.1) for all

relevant z. Instead, a single system with (Nd
1 )
T is to be solved. In transposed form

it is given by

(w∗
1 , w

∗
2 , w3, w4)N

d
1 = (0, 0, 1).(5.2)

Combining (5.1) and (5.2) we find

Gz = w∗
1([Tfx(x(t), α]zv + [f(x(t), α)]zS)d − w3(Int[f(x(·),α)]zv)d.

Notice that (3.13) is equivalent to the system




v′(t)− Tfx(x(t), α)v(t)− Sf(x(t), α) +Gw01(t) = 0,
v(1)− v(0) +Gw02 = 0,∫ 1

0

v∗(τ)f(x(τ), α) dτ +Gw03 = 0,

∫ 1

0

v∗(τ)v01(τ) dτ + Sv02 = 1,

(5.3)

while (3.14) can be explicitly written as




w′(t) + Tf∗
x(x(t), α)w(t)−Rf(x(t), α) +Hv11(t) = 0,

w(1)− w(0) +Hv12 = 0,∫ 1

0

w∗(τ)f(x(τ), α) dτ +Hv13 = 0,

∫ 1

0

w∗(τ)w11(τ) dτ +Rw12 = −1.

(5.4)

Discretizations of these systems, for example by orthogonal collocation, result in lin-
earized Newton systems having the same sparsity as the linear systems arising from
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(2.5). They can therefore be solved using the same numerical linear algebra algo-
rithms.

In practice we need to adapt the auxiliary variables (i.e., w01, w02, w03, v01, v02, v11,
v12, v13, w11, and w12) along a computed branch of fold bifurcations of periodic or-
bits. For the bordering rows in N1 and N2, the natural choice is to take the kernel
vectors of M1 and M2, respectively, at a previously computed solution point. These
kernel vectors are obtained as a by-product of solving (5.3) and (5.4). For the column
bordering of N1 we need a vector that is not in the range of M1. By Proposition 6, a
possible choice is 

 w01

w02

w03


 =


 Ψp0

0
0


 ,

which by Proposition 7 can be derived from the solution of (5.4). Finally, a bordering
column for N2 is given in Proposition 8:

 v11

v12

v13


 =


 0

0
1


 .

Therefore, problems (5.3) and (5.4) actually take the following simplified forms:


v′(t)− Tfx(x(t), α)v(t)− Sf(x(t), α) +Gw01(t) = 0,
v(1)− v(0) = 0,∫ 1

0

v∗(τ)f(x(τ), α) dτ = 0,

∫ 1

0

v∗(τ)v01(τ) dτ + S = 1

and 


w′(t) + Tf∗
x(x(t), α)w(t)−Rf(x(t), α) = 0,

w(1)− w(0) = 0,∫ 1

0

w∗(τ)f(x(τ), α) dτ +H = 0,

∫ 1

0

w∗(τ)w11(τ) dτ = −1.

5.2. Period-doubling. By Proposition 14, simple flips are determined by (2.1),
(2.2), (2.3), and the condition G = 0, where G is given by (3.17), assuming the
conditions 〈φ0,Φq2〉 �= 0, 〈ψ0,Ψp2〉 �= 0 hold. To solve such systems numerically,
we need the derivatives of G with respect to the unknowns of the system, i.e., with
respect to x(t), α, T . These can be approximated by finite differences, using (3.17).
As in the fold case, they can be obtained exactly by solving an “adjoint problem” to
(3.17). In this case the adjoint problem is (3.18).

Proposition 20. Let z denote a component of the problem parameter vector α,
or let z denote the period T , on both of which the quantity G in (3.17) depends. Let v
and w be obtained from (3.17) and (3.18), respectively. Then the derivative of G with
respect to z can be written as

Gz = −
∫ 1

0

w∗(τ)[Tfx(x(τ), α)]zv(τ) dτ,
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while the linear part of the variation of G with respect to x 
→ x+ δx is given by

δG = −
∫ 1

0

w∗(τ)Tfxx(x(τ), α))v(τ)(δx)(τ) dτ.

Proof. By differentiating (3.17) we obtain

M1

(
vz
Gz

)
=


 [Tfx(x(t), α)]zv

0
0


 .(5.5)

Multiplying the first equation in (5.5) from the left with w∗, integrating over the
interval [0, 1], and using the third equation in (3.18) we get

∫ 1

0

w∗(τ)v′z(τ) dτ −
∫ 1

0

w∗(τ)Tfx(x(τ), α)vz(τ) dτ −Gz

=

∫ 1

0

w∗(τ)[Tfx(x(τ), α)]zv(τ) dτ.

Integrating the first term in this expression by parts, and using the second equations
in (3.18) and (5.5), we obtain

−
∫ 1

0

v∗z(τ)w
′(τ) dτ −

∫ 1

0

v∗z(τ)Tf∗
x(x(τ), α)w(τ) dτ −Gz

=

∫ 1

0

w∗(τ)[Tfx(x(τ), α)]zv(τ) dτ.

Using the first equation in (3.18) we get

−
∫ 1

0

v∗z(τ)(−φ0(τ)H) dτ −Gz =

∫ 1

0

w∗(τ)[Tfx(x(τ), α)]zv(τ) dτ.

By the last equation in (5.5) the first part of the proposition follows.
The linear parts of the variations of G and v under variation of x satisfy

M1

(
δv
δG

)
=


 Tfxx(x(t), α)v δx

0
0


 .

Similar to the derivation above, this implies the second part of the proposition.
Notice that (3.17) is equivalent to the system



v′(t)− Tfx(x(t), α)v(t) +Gψ0(t) = 0,

v(0) + v(1) = 0,∫ 1

0

φ∗
0(τ)v(τ) dτ = 1,

(5.6)

while (3.18) can be explicitly written as


w′(t) + Tf∗
x(x(t), α)w(t) +Hφ0(t) = 0,

w(0) + w(1) = 0,∫ 1

0

ψ∗
0(τ)w(τ) dτ = −1.

(5.7)
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Discretizations of these systems, for example by orthogonal collocation, result in lin-
earized Newton systems having the same sparsity as the linear systems arising from
(2.5). They can therefore be solved using the same numerical linear algebra algo-
rithms.

The natural choice for starting values of φ0, ψ0 is

φ0(t) = Φ(t)q2, ψ0(t) = Ψ(t)p2.

In a continuation context, it is necessary to regularly update φ0 and ψ0. Specif-
ically, v obtained from (3.17) can be used to update φ0, and w obtained from (3.18)
can be used to update ψ0. Indeed, after convergence to a period-doubling bifurcation,
v spans the kernel of (

D − Tfx(x(t), α)
δ0 + δ1

)
,

and, similarly, w spans the kernel of(
D + Tf∗

x(x(t), α)
δ0 + δ1

)
.

5.3. Torus bifurcation. We have proved in Proposition 17 that the matrix
equation G = 0 can be used to continue numerically curves of periodic solutions
having Neimark–Sacker singularities, in particular, torus bifurcation points. Some
issues require further attention.

First of all, we mention that the BVP for G is defined on the interval [0, 2] and
that 3-point boundary conditions are involved (at t = 0, 1, and 2).

To solve the system (2.1), (2.2), (2.3), (4.12) efficiently by a Newton-like method,
one needs the derivatives Gijz, where z is T or a component of α. From (3.24) we
infer that

M5


 v1z v2z

G11z G12z

G21z G22z


 =




[Tfx(x(t), α]zv1 [Tfx(x(t), α)]zv2

0 0
0 0
0 0


 .

One also needs the derivatives with respect to κ; for this we find

M5


 v1κ v2κ

G11κ G12κ

G21κ G22κ


 =




0 0
2v1(1) 2v2(1)
0 0
0 0


 .

Numerically we solve the discretized versions of these equations, say

Md
5


 v1z v2z

G11z G12z

G21z G22z


 =




[Tfx(x(t), α]zv1 [Tfx(x(t), α)]zv2

0 0
0 0
0 0


 .(5.8)

One also needs the derivatives with respect to κ; for this we find

Md
5


 v1κ v2κ

G11κ G12κ

G21κ G22κ


 =




0 0
2v1(1) 2v2(1)
0 0
0 0


 ,(5.9)
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where Md
5 is the discretized version of M5, i.e., a large square matrix of the same

structure as that factored efficiently in auto.
We again note that a large number of linear systems with the same structured

matrix Md
5 has to be solved. All right-hand sides are known when the factorization

is done. Thus the solution of all systems can be done during a single factorization
process of Md

5 without storing the factors.
(Md

5 )
∗ has a block structure that is very similar to that of Md

5 . If an efficient
solution strategy for (Md

5 )
∗ is also developed, then it is possible to avoid solving (5.8)

for all relevant z and (5.9). Instead, a single system with (Md
5 )

∗ is to be solved. In
transposed form it is given by

(
w1∗

1 w2∗
1 G11 G12

w1∗
2 w2∗

2 G21 G22

)
Md

5 =

(
0 0 1 0
0 0 0 1

)
.(5.10)

Combining (5.8) and (5.10) we find

(
G11z G12z

G21z G22z

)
=

(
w1∗

1 [Tfx(x(t), α)]zv1 w1∗
1 [Tfx(x(t), α)]zv2

w1∗
2 [Tfx(x(t), α)]zv1 w1∗

2 [Tfx(x(t), α)]zv2

)

if z is T or one of the components of x, α. For κ we find

(
G11κ G12κ

G21κ G22κ

)
=

(
2w2∗

1 v1(1) 2w2∗
1 v2(1)

2w2∗
2 v1(1) 2w2∗

2 v2(1)

)
.

Next notice that (3.24) is equivalent to the system




v′1 − Tfx(x(t), α)v1 +G11ψ0 +G21ψ1 = 0,
v′2 − Tfx(x(t), α)v2 +G12ψ0 +G22ψ1 = 0,

v1(0)− 2κv1(1) + v1(2) = 0,
v2(0)− 2κv2(1) + v2(2) = 0,∫ 2

0

φ∗
0(τ)v1(τ) dτ = 1,

∫ 2

0

φ∗
1(τ)v2(τ) dτ = 0,

∫ 2

0

φ∗
0(τ)v1(τ) dτ = 0,

∫ 2

0

φ∗
1(τ)v2(τ) dτ = 1,

(5.11)
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while (3.25) can be explicitly written as




w′
1 + Tf∗

x(x(t), α)w1 +H11φ0 +H21φ1 = 0,
w′

2 + Tf∗
x(x(t), α)w2 +H12φ0 +H22φ1 = 0,

w1(0)− 2κw1(1) + w1(2) = 0,
w2(0)− 2κw2(1) + w2(2) = 0,∫ 2

0

ψ∗
0(τ)w1(τ) dτ = −1,

∫ 2

0

ψ∗
1(τ)w2(τ) dτ = 0,

∫ 2

0

ψ∗
0(τ)w1(τ) dτ = 0,

∫ 2

0

ψ∗
1(τ)w2(τ) dτ = −1.

(5.12)

Discretizations of these systems, for example by orthogonal collocation, result in lin-
earized Newton systems having the same sparsity as the linear systems arising from
(2.5). They can therefore be solved using the same numerical linear algebra algo-
rithms.

In a continuation context, the vector-functions φ0, φ1, ψ0, ψ1 should be updated.
This can be done by solving both (5.11) and (5.12). Indeed, v1, v2 span the two-
dimensional space in which φ0, φ1 should be chosen and w1, w2 similarly span the
space in which ψ0, ψ1 should be chosen (some orthogonalization and scaling may be
appropriate).

Finally, recall that we compute the Neimark–Sacker points by using essentially an
overdetermined system. This necessitates some changes in the elimination strategy
when solving the linear systems.

6. Numerical example. In this section we illustrate our new techniques on a
test example, a simple feedback control system of Lur’e type:




ẋ1 = x2,
ẋ2 = x3,
ẋ3 = −αx3 − βx2 − x1 + x2

1,
(6.1)

where α and β are positive parameters. It is well known (see, for example [17, sec-
tion 5.4]) that the equilibrium x1 = x2 = x3 = 0 of (6.1) has a supercritical Hopf
bifurcation at

α0 =
1

β
,

generating a stable periodic solution that exists for α < α0. This periodic solution
has a supercritical period-doubling bifurcation at α1 ≈ 0.630302.

The discretized continuation problem (2.1), (2.2), and (2.3) for the periodic solu-
tion has been programmed in the matlab Continuation Toolbox [19]. The method
of orthogonal collocation with piecewise polynomials is used, similar to the one im-
plemented in auto. It is characterized by the number NTST of mesh points and the
number NCOL of collocation points. At each computed point on the solution curve, a
discrete version of (5.6) is set up and solved. This gives a value of the test function
G to detect a flip singularity. A constant bordering function ψ0 is used, while the
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Fig. 1. Test function G(α) and µ1(α) + 1 for β = 1.
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Fig. 2. Solutions v(t) at different α-values for β = 1.

computed approximation to v is used to update the bordering function φ0. Figures 1
and 2 are produced with NTST=10 and NCOL=4.

Figure 1 shows the behavior of G as a function of α for β = 1. For this value
of β, Hopf bifurcation occurs at α0 = 1. In the same figure, the function µ1 + 1 is
plotted, where µ1 is a nontrivial Floquet multiplier of the periodic solution for which
µ1(α1) = −1. The multipliers are computed via a specially adapted elimination
algorithm from auto. As can be seen, G vanishes together with µ1 + 1. Moreover,
close examination of numerical data gives the above bifurcation value α1 with seven
correct decimal places.
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Fig. 3. Cycle and period-doubling branches.

Figure 2 shows a family of computed profiles v(t) along the solution curve. The
dashed solution corresponds to the bifurcation parameter value α1. Finally, Figure 3
shows the two-parameter continuation of the period-doubling bifurcation curve, which
corresponds to a close curve. The continuation is started at one of the PD points in
the one-parameter path of periodic solutions discussed above.

We now briefly address the important issue of comparing our new method for
continuing period-doubling bifurcations to the algorithm based on a fully extended
system, i.e., (2.1), (2.2), and (2.3), augmented by



v′(t)− Tfx(x(t), α)v(t) = 0,

v(0) + v(1) = 0,∫ 1

0

φ∗
0(τ)v(τ) dτ = 1,

as implemented in auto. The corresponding discretized system is nearly twice the
size as the discretized minimally extended system composed of (2.1), (2.2), (2.3), and
G = 0, where G is to be computed from (5.6). However, for the minimally extended
system one has to solve the extra BVP (5.7) in order to calculate the Jacobian matrix
of the discretized bordered system. For comparison, both methods were implemented
in a similar fashion, using the standard sparse matrix solver in the Continuation
Toolbox [19], and tested using different choices for the number of mesh points and
the number of collocation points. Table 1 shows the execution times required by
the two methods for computing the same number (300) of solution points along the
period-doubling curve shown in Figure 3. Computations were done on a 350 Mhz PC.

Clearly the bordered system of this paper is faster, and its advantage widens as
the number of mesh points and the number of collocation points increases. In the
computations we used an adaptive step length, and the bordered system actually
resulted in larger steps than the fully extended system. Details of the implementation
and more extensive comparisons will be reported elsewhere.
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Table 1

NTST NCOL Minimally extended system Fully extended system
10 4 101,8 s 122,3 s
10 5 134,9 s 159,4 s
20 4 269,9 s 358,6 s
20 5 371,9 s 558,2 s
30 4 529,8 s 808,0 s
30 5 751,0 s 1260,3 s
40 4 886,0 s 1528,8 s
40 5 1376,8 s 2528,6 s
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furcation problems: Part II, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1 (1991), pp.
745–772.

[10] T. F. Fairgrieve, The Computations and Use of Floquet Multipliers for Bifurcation Analysis,
Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 1994.

[11] W. Govaerts, Yu. A. Kuznetsov, and B. Sijnave, Implementation of Hopf and double Hopf
continuation using bordering methods, ACM Trans. Math. Software, 24 (1998), pp. 418–
436.

[12] W. J. F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM,
Philadelphia, 2000.

[13] A. Griewank and G. W. Reddien, Characterization and computation of generalized turning
points, SIAM J. Numer. Anal., 21 (1984), pp. 176–185.

[14] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurca-
tions of Vector Fields, Appl. Math. Sci. 42, Springer-Verlag, New York, 1983.

[15] A. D. Jepson, Numerical Hopf Bifurcation, Ph.D. thesis, California Institute of Technology,
Pasadena, CA, 1981.

[16] H. B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems, in Ap-
plications of Bifurcation Theory, P. H. Rabinowitz, ed., Academic Press, New York, 1977,
pp. 359–384.

[17] Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd ed., Springer-Verlag, New
York, 1998.

[18] Yu. A. Kuznetsov and V. V. Levitin, content: A Multiplatform Environment for Ana-
lyzing Dynamical Systems, Dynamical Systems Laboratory, CWI, Amsterdam, 1995–1997.
Available via ftp from ftp.cwi.nl/pub/content.

[19] Yu. A. Kuznetsov, W. Mestrom, and A. M. Riet, A Continuation Toolbox in mat-
lab, Mathematical Institute, Utrecht University, Utrecht, The Netherlands, 2001,



PERIODIC SOLUTION BIFURCATIONS 435

http://www.math.uu.nl/people/kuznet/cm.
[20] G. Moore and A. Spence, The calculation of turning points of nonlinear equations, SIAM J.

Numer. Anal., 17 (1980), pp. 567–576.
[21] R. D. Russell and J. Christiansen, Adaptive mesh selection strategies for solving boundary

value problems, SIAM J. Numer. Anal., 15 (1978), pp. 59–80.
[22] R. Seydel, Numerical computation of branch points in nonlinear equations, Numer. Math., 33

(1979), pp. 339–352.


