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where co, cl, c2 ....... are polynomials in n, and are odd or even functions
of n according as q is even or odd.
There is a recurrence relation

(n + 1)(n + m + 1)F.+1(z) = -(2n + 1)zF.'(z) + n(n -m) (z)
(18)

It follows then from equations (16) and (4) that, if q 2 1,

(2q + 1\ n2ao q(21 + 1 + q)(21 + 1- q) n2a0 -2 ( )
_+ +-1 -Z

and

rt8=(l + 1 + q/2)(I- q/2) {(q + 1 )aO

q Z2r1} (20)
q + 1 n2a02

Formulas (4), (9) and (10) are the most useful for computational purposes.

1 I. Waller, Zeit. Physik, 38, 644 (1926).
2 J. H. Van Vleck, Proc. Roy. Soc. A, 143, 679 (1934). There is a slight error in his

expression for r for 1=2, the coefficients being all 10 times too large.
3a may be equated to zero except in the case q = 21.
4 W. N. Bailey, Generalized Hypergeometric Series (Cambridge Tract No. 32), p. 18.
6 The polynomial 1n(Z) is discussed by H. Bateman, T8kohu Math. J., 37, 23 (1933).

The general case will be treated by the author in a paper to be published soon.
W. N. Bailey, Generalized Hypergeometric Series, (Cambridge Tract No. 32), p. 22.
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1. Under the title "The Analytical Theory of Probability," A. Kolmo-
goroffl published a few years ago a mathematically elegant account of
what might be called the general theory of diffusion. As the main result
of his analysis, he sets up two differential equations for transition proba-
bilities (see below). The first of them contains as its independent varia-
bles the initial parameters of the transition probability and has an ana-
lytical form resembling the ordinary diffusion equation. Unlike it, the
second differential equation (depending on the final parameters) has a
different form unfamiliar to the physicist.
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The puzzling asymmetry of the two equations, as to whose physical
reasons the author gives no hint, was, in our opinion, the main cause
why the work of Kolmogoroff did not receive more attention. Unless
these reasons are fully understood, an intelligent application of the theory
to practical problems is very difficult. We think it, therefore, worth
while to present in the following lines a discussion of the mutual connection
between the two equations of Kolmogoroff and of their relation to other
forms of the diffusion equation used in physics.

2. The concept of the transition probability applies to systems com-
posed of many identical elements. If one of these elements was at the
time s in the state x, the probability of its being found at a later time I
in the state y is called transition probability and is denoted by v(x, s; y, t).
The states x and y are in general defined by several geometrical and
dynamical co6rdinates. Following Kolmogoroff, however, we shall
restrict ourselves to the case of states depending on a single parameter,
since the generalization for many parameters is obvious. Moreover, we
shall take this single coordinate as continuous and deal with intervals
between x and x + Ax, etc.

Kolmogoroff considers only the case of independent probabilities when
v(s, x; y, t) is not influenced by the presence or absence of other particles
in the same or neighboring states. Under this restriction this function
must satisfy the two fundamental requirements of the theory of probability

Jv(x, s; y, t)dy = 1, (1)

Jv(x, s; y, t')v(y, t'; z, t)dy = v(x, s; z, t) (2)

the integrals being extended over the whole region of variability of the
parameter y.
By mere mathematical transformations, these conditions lead directly

to the equations of diffusion in Kolmogoroff's form

= [a(y, t)v(x,s;y,t) + - [b(y, t)v(x,s; y, t). (4)
at a y2

The meaning of the coefficients is the mean transition velocity of an

element at the time t and in the state y

a(y, t) = lim.O -J(r - y)v(y t;, t + A)dq, (5)
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and the mean spread of this velocity

b(y, t) = limA.O 2 - y)2v(y, t; 77, t + A)d7. (6)

Another type of probability which also has considerable physical interest
is the distribution probability or density of distribution D(s, t; y) which
is defined as the chance of finding an element in the state y at the time t,
no matter where it came from. It is clear from the definition of the
function v(x, s; y, t) that the density of distribution is connected with it
in the following way

D(s, t; y) =) (s, s; x)v(x, s; y, t)dx, (7)

provided D(s, s; x) is the known density at the time s. Hence D(s, t; y)
must also satisfy the equation (4).

6D 6 62
a;= -ay [a(y, t)D] + - [b(y,t)D]. (8)

3. The most important case is the one in which the coefficients a(y)
and b(y) are independent of time. The system is then called "homogeneous
in time" and it is apparent from (5) and (6) that the transition probability
can be represented as v(x, y, t-s), depending only on the elapsed time t-s.
It will be sufficient for our purpose to consider this simpler case. In
fact when we meet in the applications probabilities that are not homo-
geneous in time they usually are also not independent and, therefore,
outside the pale of Kolmogoroff's theory. As the equation (8) shows,
the main physical characteristic of these systems is that in them the den-
sity of distribution D tends toward a state of equilibrium with the definite
value Do(y). Supposing that the system has reached its equilibrium
state, we can apply thermodynamical reasoning: For any interval of
time the number of systems which move from the state x into the state y
must be equal to the number of those which move in the opposite direction.
This leads to the formula

Do(x)v(x, y, t-s) = Do(y)v(y, x, t-s), (9)
as a direct expression of the second law of thermodynamics.
For the function v(y, x, t-s), the first equation of diffusion (3) takes the

simplified form

bv(y, x, t-s) = a(y) a v(y, x, t-s) + b(y) -2 v(y, x, t-s). (10)
6t byby

Substituting from (9) v(y, x, t-s) = Do(x)v(x, y, t-s)/Do(y), we find
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? v(x, y,t-s) - Fv(x ,y,t-s)12 FV(X,y, t-s)1
=a(Y) ++b(y)-at Do(y) by L Do(y) by2 L Do(y) J

As a distribution density, Do(y) must be an integral (independent of
time) of the same equation which is satisfied by v(x, y, t-s). We shall see
that this requirement is fulfilled if we put

Do(y) = exp dy, (11)

where C is a constant. In fact, the equation for the transition probability
v(x, y, t-s) becomes then

v= _ [a(y)v] + -2. [b(y)v], (12)
at by by2

while that for the equilibrium density can be written in the form

0 = _ [a(y)Do] + a [b(y)Do]. (13)
aJy aJy2

These equations are of the second Kolmogoroff type which is thus
obtained from the first. The asymmetry between the two types is, there-
fore, shown to be an immediate consequence of the second law of thermo-
dynamics.

4. It is important to understand the physical nature of the coefficients
a and b of the diffusion equation. According to the equation (5), a(y) is
the mean transition velocity of all elements starting from the state y.
At first sight, one should be inclined to think that systems in which this
mean velocity vanishes must tend toward an equilibrium with uniform
density of distribution. This is, however, not the case: Applying the
second law of thermodynamics we found, in the preceding section,2 that
the equilibrium distribution Do(y) is not given by the general integral of
the equation (13) but by the special integral (11). The condition for

Do being independent of y is, therefore, {exp(f-dy )/b]/by = 0 or

db~~~~~~~~~~~~~
a- =0. In other words, the mean transition velocity a contains

dy
a part (equal to db/dy) which has no tendency to change an existing uni-
formity of distribution but the remainder a - db/dy is operative in dis-
turbing it. This fact is in complete harmony with the considerations by
which the equation of diffusion (8) is usually derived in physics. The
argument starts from calculating the number of elements which move

across a plane, y = const, per unit area and unit time. There are two

dlasses of causes for this motion to be considered. Such causes as external
forces or temperature gradients belong to the first class and produce an

effect of the form c1D simply proportional to the density. (For instance,
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in the case of an external force F the coefficient cl = MF, where M is
called the mobility). The causes of the second type are called forces of
diffusion and produce an effect proportional to the negative gradient of
the density -c2bD/by. The accumulation of the elements in any point
is, therefore, determined by the (negative) divergence of the total effect.
This leads to the equation3

aD=-- a (c,D) + a C2 a) (14)
61 by b~y by

Comparing this with the form (8) we find

b =c2, a-db/dy = cl. (15)

The expression for ci is in agreement with the conclusions arrived at
above. It shows that the form (14) of the equation of diffusion is a good
guide to the physicist as it brings in evidence the quantities significant
from his point of view. On the other hand, Kolmogoroff's equations (3)
and (4) are more general since they include the case of transition proba-
bilities which are inhomogeneous in time.

1 A. Kolmogoroff, Mathematische Annalen, 104, 415 (1931).
2 The substitution of the general integral of equation (13) for Do in (9) and (10)

does not lead to the equation (12). Kolmogoroff claims the same results by imposing
upon Do the condition lim Do = 0 for y = >c. That this argument is unconvincing,
appears from the fact that it would exclude the uniform density. It is inconvenient
to restrict oneself to finite systems.

3 E.g., P. S. Epstein, Gerlands Beitr. Geophysik, 35, 154 (1932).
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G. I. Taylor' gave an important impetus to the statistical theory of
turbulence by introducing the concept of "isotropic" turbulence, defined
by the feature that the mean squares and mean products of the velocity
components and of their derivatives are invariant with respect to rotation
and reflection of the coordinate axes. Taylor found that under the as-
sumption of the isotropy, the squares and double products of the first de-
rivatives of the velocity components can be expressed by one single correla-

tion function R(y). This function is defined by the ratio =- where u, and
U2
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