Enhanced thermoelectric properties of Sr$_5$In$_2$Sb$_6$ via Zn-doping

Sevan Chanakian,a Alex Zevalkink,a,b Umut Aydemir,a Zachary M. Gibbs,c Gregory Pomehna,a Jean-Pierre Fleurial,b Sabah Buxb and G. Jeffrey Snydera

Zintl phases exhibit inherently low thermal conductivity and adjustable electronic properties, which are integral to designing high-efficiency thermoelectric materials. Inspired by the promising thermoelectric figure of merit of optimized A_MZ$_6$ phases such as Yb$_{14}$MnSb$_{11}$ (A= Ca or Sr, M= Al, Ga, In), Zn-doped Sr$_5$In$_{2-x}$Zn$_x$Sb$_6$ (x = 0, 0.025, 0.05, 0.1) compounds were investigated. Optical absorption measurements combined with band structure calculations indicate two distinct energy transitions for Sr$_5$In$_2$Sb$_6$, one direct (E_g ~ 0.3 eV) and the other from a lower valence band manifold to the conduction band edge (E_g ~ 0.55 eV). Sr$_5$In$_2$Sb$_6$ exhibits nondegenerate p-type semiconducting behavior with low carrier concentration (~4×10^{18} h$^+$/cm3 at 300 K). Charge carrier tuning was achieved by Zn$^{2+}$ substitution on the In$^{5+}$ site, increasing carrier concentrations to up to 10^{20} h$^+$/cm3. All samples displayed relatively low thermal conductivities (~0.7 W m$^{-1}$ K$^{-1}$ at 700 K). The Zn-doped samples exhibited significantly higher zT values compared to the undoped sample, reaching a value of ~0.4 at 750 K for Sr$_5$In$_{1.9}$Zn$_{0.1}$Sb$_6$.

Introduction

Thermoelectric devices produce electricity when a heat gradient is applied, making them an attractive means to convert waste heat into usable energy.$^{1-3}$ The maximum efficiency of thermoelectric materials is determined by the dimensionless thermoelectric figure of merit, $zT = \alpha^2T/\kappa\rho$, where α is the Seebeck coefficient, ρ is the electrical resistivity, and κ is the thermal conductivity.4 The coupled nature of the material properties encompassed by zT provides a challenge to obtaining high-efficiency thermoelectric materials.

Due to their complex crystal structures, tunable transport properties, and high temperature stability, Sb-based Zintl compounds such as Yb$_{14}$MnSb$_{11}$ (zT ~ 1.4 at 1200 K), Sr$_5$GaSb$_3$ (zT ~ 0.9 at 1000 K), Mg$_2$Sb$_2$ (zT ~ 0.84 at 773 K), Ca$_{1-x}$RE$_x$-Ag$_{1-y}$Sb (zT ~ 0.7 at 1079 K), AM$_2$Sb$_2$ (zT ~ 1.26 at 700 K) and Ca$_3$In$_2$Sb$_6$ (zT ~ 0.7 at 1000 K) are promising candidates for use in thermoelectric applications.5–9 While the complex primitive cells of Zintl compounds reduce the velocity of the optical phonon modes, which lowers the lattice thermal conductivity,1 their covalently-bonded polyanionic structures may also contribute to the high electronic conductivity.4 Through doping, these phases become extrinsic semiconductors with carrier concentrations in the range of 10^{19} to 10^{21} carriers per cm3 and exhibit significant improvements to their electronic properties and zT.10

Sr$_5$In$_2$Sb$_6$, isostuctural with Ca$_5$In$_2$Sb$_6$,11 crystallizes in the Ca$_4$Ga$_4$As$_6$ (space group $Pbam$) structure type as reported by Cordier et al.14 (Fig. 1). The crystal structure of Sr$_5$In$_2$Sb$_6$ consists of corner-linked chains of InSb$_4$ tetrahedra connected by Sb-Sb covalent bonds, forming ladder-like structures along the c-direction (described by: [(4b)In$^+$]$_4$[(2b)Sb]4[1(1b)Sb]3]$_2$) and five ionically bonded Sr$^{2+}$ atoms, which provide overall charge balance.8,12 The current study investigates the electronic and thermal transport properties of Sr$_5$In$_{2-x}$Zn$_x$Sb$_6$ (x = 0, 0.025, 0.05, 0.1) and reports the enhanced thermoelectric performance that results from Zn-doping.

Fig. 1 The crystal structure of Sr$_5$In$_{2-x}$Zn$_x$Sb$_6$ contains corner-linked In(Zn)Sb$_4$ tetrahedra connected by Sb-Sb dimers to form double-chained ladders in the c-direction. Sr atoms are ionically bonded, providing overall charge balance.
Experimental methods

The Sr$_5$In$_{2-x}$Zn$_x$Sb$_6$ ($x = 0, 0.025, 0.05, 0.1$) series was synthesized using ball milling followed by hot pressing. An InSb precursor was prepared using stoichiometric amounts of In shot (99.999%, Alfa Aesar) and Sb shot (99.9999%, Alfa Aesar). The elements were vacuum sealed in double quartz ampoules and heated to 900 K at a rate of 150 K h$^{-1}$ and annealed there for 12 h, then slowly cooled to room temperature. In an argon-filled glove box, stoichiometric quantities of InSb, Sb, dendritic Sr (99.9%, Sigma Aldrich), and Zn foil (99.99%, Alfa Aesar) were weighed and placed in a stainless-steel vial with two 0.5 inch diameter stainless-steel balls. The Sr was cut into 1–3 mm pieces before it was weighed. The samples were then ball milled using a high energy SPEX Sample Prep 8000 Series Mixer/Mill for one hour. Each resulting powder was loaded into a high-density graphite die (POCO) with a 12 mm inner diameter and hot pressed in an argon environment at 823 K for 2 hours under 110 MPa of pressure. The samples were then cut into ~1 mm thick disks.

X-ray diffraction (XRD) was performed using a Philips PANalytical XPert MPD diffractometer with Cu-Kα radiation in reflection mode. The crystal structure and the lattice parameters refinement using Si as internal standard were carried out by the WinCSD program package. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were conducted using a Zeiss 1550 VP SEM to characterize the microstructure and to determine the phase purity. The chemical composition of the target phases was determined by electron probe micro-analysis (EPMA) with wavelength dispersive X-ray spectroscopy (WDS) using a JEOL JXA-8200 system. The Archimedes method was used to measure the sample densities. Hall effect and electrical resistivity measurements were performed using the Van der Pauw technique in a four-point probe setup with tungsten electrodes and a reversible 1 T magnetic field. Seebeck measurements were carried out using W–Nb thermocouples and light-pipe heating – the temperature gradient across the samples were oscillated between ±10 K. The electronic transport data was analyzed using solutions to the Boltzmann transport equation within the relaxation time approximation. All electrical transport measurements were assumed to have ~10% error. The thermal diffusivity, D was measured using the laser flash method with a Netzch LFA 457 instrument. The thermal conductivity, κ, was calculated using $\kappa = DC_p d$, where C_p is the Dulong–Petit approximation for heat capacity and d is the measured density of material. An error of approximately ~5% should be assumed for the thermal diffusivity. Room temperature optical measurements were performed using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). A Thermo Scientific Nicolet 6700 FTIR spectrophotometer equipped with a Harrick Praying Mantis Diffuse Reflection accessory, DTGS detectors and KBr beamsplitter was employed for the DRIFTS measurement. Raw reflectance data was used to estimate the absorption coefficient (scaled by the scattering coefficient) using the Kubelka Munk formula: $F(R) = \frac{(1 - R)^2}{2R}$. Direct ($n = 2$) and indirect ($n = 1/2$) extrapolations of the absorption edge to the zero: $(\hbar\omega - E_g)$ were considered in order to estimate the transition onset energies. Because both extrapolations yielded reasonable fits, we used the calculated band structure to help us determine which interband transitions are likely responsible for the absorption edge features—as discussed in detail later in the text.

Results and discussion

Chemical and structural characterization

Sr$_5$In$_{2-x}$Zn$_x$Sb$_6$ samples were found to be air and moisture sensitive. X-ray diffraction patterns of the Sr$_5$In$_{2-x}$Zn$_x$Sb$_6$ ($x = 0, 0.025, 0.05, 0.1$) samples showed no detectable secondary phase (see Fig. 2a). Lattice parameter refinement showed little change upon Zn substitution (see Table 1), which is expected as Zn and In have similar ionic radii (0.60 Å and 0.62 Å, respectively). The Rietveld refinement fit based on the reported structure model for the Sr$_5$In$_{2-x}$Zn$_x$Sb$_6$ sample is shown in Fig. 2b. For that sample, all the Sr and the Sb positions were found to be fully occupied and the In site was found to be mixed occupied with Zn (Occ. In/Zn = 0.91(1)/0.09(1)), corresponding to a refined composition of Sr$_5$In$_{1.82}$Zn$_{0.18}$Sb$_6$. This is in close agreement

![Fig 2](image-url) (a) XRD (Cu-Kα1) patterns of the polycrystalline Sr$_5$In$_{2-x}$Zn$_x$Sb$_6$ ($x = 0, 0.025, 0.05$, and 0.1) samples confirm the phase purities. (b) The Rietveld fit of Sr$_5$In$_{2-x}$Zn$_x$Sb$_6$ based on the structure reported by Cordier et al. Almost all reflections can be indexed with the orthorhombic unit cell $Pbam$ with lattice parameters shown in Table 1. The ticks mark the calculated reflection positions and the baseline corresponds to the residuals of the Rietveld refinement.

10290 | J. Mater. Chem. A, 2015, 3, 10289–10295

This journal is © The Royal Society of Chemistry 2015
Fig. 4 shows the experimental carrier concentrations of the Electronic transport properties

<table>
<thead>
<tr>
<th>Nominal compositions</th>
<th>WDS compositions</th>
<th>Lattice parameters (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr5In2Sb6</td>
<td>Sr4.85(2)In2.069(6)Sb6.09(2)</td>
<td>a = 14.766(2), b = 12.700(2), c = 4.6673(8)</td>
</tr>
<tr>
<td>Sr5In1.975Zn0.025Sb6</td>
<td>Sr4.85(2)In2.031(2)Zn0.021(3)Sb6.01(2)</td>
<td>a = 14.765(2), b = 12.702(2), c = 4.6668(7)</td>
</tr>
<tr>
<td>Sr5In1.95Zn0.05Sb6</td>
<td>Sr5.01(2)In1.988(6)Zn0.033(3)Sb6.97(1)</td>
<td>a = 14.773(2), b = 12.709(2), c = 4.6677(7)</td>
</tr>
<tr>
<td>Sr5In1.975Zn0.025Sb6</td>
<td>Sr4.85(2)In2.031(2)Zn0.021(3)Sb6.01(2)</td>
<td>a = 14.763(3), b = 12.707(2), c = 4.6666(7)</td>
</tr>
</tbody>
</table>

with the WDS result of Sr4.94(2)In1.818(6)Zn0.195(5)Sb6.05(2). WDS results revealed a slight Sr deficiency and a slight In and Sb excess in the samples. In this work, the nominal compositions are used to refer to the samples. Microstructure analysis via SEM confirmed that the bulk materials were mostly phase pure with a < 1 wt% Sb-excess secondary phase (Fig. 3). All samples were approximately 98–99% of their theoretical density.

Electronic transport properties

Fig. 4 shows the experimental carrier concentrations of the Sr5In2−xZn2xSb6 (x = 0, 0.025, 0.05, 0.1) series. The values are significantly lower than the predicted carrier concentration (dashed line) assuming each Zn leads to one free hole. This suggests that Zn does not fully replace In in the Sr5In2Sb6 structure or that additional mechanisms (e.g. compensating site defects or impurities) are present. This contrasts with the nearly 100% effective doping with Zn on the M site (M = Al, Ga, In) in Ca5M2−xZnxSb6 compounds.

The Hall carrier concentration, n_H, Hall mobility, μ_H, electronic resistivity, ρ, and Seebeck coefficients, α, are illustrated in Fig. 5. The carrier concentration increases with increasing dopant content and becomes increasingly temperature independent. A sample prepared with higher nominal Zn content, x = 0.2, did not lead to a higher carrier concentration. We suspect that the solubility limit of Zn in the Sr5In2Sb6 matrix is reached somewhere near WDS composition for the x = 0.1 sample. All samples display poor mobilities (~2 to 3 cm² V⁻¹ s⁻¹ at room temperature), which decrease further with increasing Zn concentration. Initially the mobility increases with increasing temperature, possibly due to ionized impurity scattering effects. This contrasts with the isostructural Ca5M2Sb6 compounds, which display apparent degenerate semiconducting behavior. The resistivities of the doped samples also decrease with temperature despite extrinsic doping, which can be explained by the positive temperature dependence of μ_H below 550 K. The Seebeck coefficients decrease with dopant concentration in line with a non-degenerate to degenerate semiconductor transition. At high temperatures n-type carrier activation is responsible for the decreasing Seebeck coefficients.

![Fig. 3](Image) SEM images of (a) x = 0.025 and (b) x = 0.05 samples in back-scattered electron mode. The former sample shows homogenous microstructure and the latter one contains small amounts of Sb-rich secondary phase which could not be identified by XRD analysis. Black spots are voids, while the dark grey spots are due to surface oxidation.

![Fig. 4](Image) The Hall carrier concentration increases as a function of Zn concentration but deviates from the values predicted based on the assumption that each Zn atom contributes one carrier to the bulk material (dashed line).
Optical measurements

Optical absorption results obtained using DRIFTS are shown in Fig. 6a for both Sr$_5$In$_2$Sb$_6$ from this work and Ca$_5$In$_2$Sb$_6$ from ref. 29 for comparison. In both systems, the optical absorption edge spectra show a slow rise for energies above \sim0.3 eV followed by a faster rise above \sim0.55 eV and \sim0.65 eV for the Sr$_5$In$_2$Sb$_6$ and Ca$_5$In$_2$Sb$_6$ variants, respectively. By examining the calculated Sr$_5$In$_2$Sb$_6$ electronic band structure shown in Fig. 6b we can examine which possible interband transitions might correspond to the features in the optical absorption edge spectrum. The interband transition with the lowest energy corresponds to the direct band gap near the X point with a calculated value of \sim0.44 eV and 0.48 eV for Sr$_5$In$_2$Sb$_6$ and Ca$_5$In$_2$Sb$_6$, respectively. While the shallow rise at low energy in the optical data seems to indicate a weaker absorption feature (possibly an indirect gap or even mid-gap impurity states), we believe that this feature ($h_0\omega_1$ as indicated in Fig. 6a and b) is due to the direct X-X transition. As is commonly understood, direct gaps usually yield substantially higher optical absorption coefficients than indirect ones; however, in this case the density of states for the lower-laying secondary valence bands at Γ is significantly higher (by about a factor of 10) than the band edge states at X. Optical measurements show that $h_0\omega_1$ \sim0.3 eV for both Sr$_5$In$_2$Sb$_6$ and Ca$_5$In$_2$Sb$_6$. The second increase in absorption ($h_0\omega_2$) is possibly due to an indirect interband transition from one of several lower laying valence bands (the first of which is centered at the Γ point) to the conduction band edge. The extrapolation of the second absorption edge resulted in $h_0\omega_2$ values of \sim0.55 and 0.64 eV (see Fig. 6a) for Sr$_5$In$_2$Sb$_6$ and Ca$_5$In$_2$Sb$_6$, respectively, which differs from the true band gap by the phonon energy associated with the transition, $\hbar\omega$. In comparison, DFT results for the Γ-X transition energy are \sim0.73 and 0.75 eV respectively, which show good agreement with the optical and theoretical results.

We can compare the optical results with other experimental estimations of the electronic band gap. The temperature dependent resistivity approximation of the band gap calculated from $r_f E_g/2k_BT$ is \sim0.26 eV at low temperatures and \sim0.58 eV at high, which corroborates the optical absorbance data. The Goldsmid–Sharp band gap estimated from the maximum Seebeck coefficient (\sim380 μV K$^{-1}$ at 500 K for the undoped sample) using $E_g = 2e\alpha_{max}T_{max}$ is 0.38 eV. Both estimates agree approximately with the optical and DFT results. Additionally, it is well known that multiple-band effects can lead to excellent thermoelectric performance – as is the case in PbTe. However, for A$_5$In$_2$Sb$_6$ ($A =$ Sr and Ca) the offset between the two bands is too large to improve the properties, requiring a chemical potential of \sim0.25 eV to reach the second valence band which corresponds to a carrier concentration of \sim1021 h$^+$ cm$^{-3}$ (assuming single parabolic band at $T = 300$ K and $m^* = 1.3m_e$). Further investigation into whether the suggested offset is either a function of temperature or alloying, as in PbX ($X =$ S, Se, Te), can be performed to develop strategies towards band engineering in this system.
Thermal transport properties

The total thermal conductivity, κ, of a material has contributions from phonons, which leads to lattice thermal conductivity (κ_L), and charge carriers, which give rise to the electronic thermal conductivity (κ_e) and bipolar thermal conductivity (κ_B).

The total thermal conductivity increased slightly with increasing dopant concentration (Fig. 7a) due to the higher κ_e contributions. The electronic thermal conductivities were calculated using the Wiedemann–Franz law, $\kappa_e = LT_\sigma$ (L is the Lorenz factor calculated from the single parabolic band (SPB) model as described in ref. 11). The lattice and bipolar contribution to thermal conductivity ($\kappa_L + \kappa_B$) is shown in Fig. 7b. Overall, the electronic contribution to the thermal conductivity is minor. The samples show similar total and lattice thermal conductivities, but the bipolar effect is more pronounced for the undoped sample above 700 K. The $1/T$ decrease of κ as a function of temperature indicates that κ is limited by Umklapp scattering. The minimum lattice thermal conductivity above the Debye temperature can be calculated from $\kappa_{min} = \frac{1}{2} \frac{1}{(6)} V^{1/3} k_B V^{-2/3} (2\tau + v_L)$, where V is the average volume per atom and v_T and v_L are the experimental transverse and longitudinal sound velocities, respectively. The dashed line in Fig. 7b indicates the estimated κ_{min} for Sr$_5$In$_2$Sb$_6$ with $v_T = 2120$ m s$^{-1}$ and $v_L = 3580$ m s$^{-1}$. The κ_L values of all samples are found to be higher than $\kappa_{min} = 0.42$ W m$^{-1}$ K$^{-1}$ suggesting a further reduction to κ_L is possible.

Thermoelectric figure of merit

The figure of merit, zT, is shown as a function of temperature in Fig. 8a. The zT values increase with increasing doping concentration, reaching values slightly lower than that of Zn-doped Ca$_5$In$_2$Sb$_6$ at 750 K. However, due to the smaller band gap and thus earlier onset of minority carrier activation, and lack of dopant activation, the peak zT in Zn-doped Sr$_5$In$_2$Sb$_6$ (\sim0.4 at 700 K) is lower and occurs at lower temperatures than the peak zT of the Ca analogue (\sim0.7 at 950 K). The poor mobility in the Sr$_5$In$_2$Zn$_x$Sb$_6$ system also has an overall negative impact on the electronic transport properties.
An analysis of the experimental data using a single parabolic band (SPB) model at 350 K and 500 K assuming an effective mass, m^*_{SPB}, of 1.3 m_e and 2.2 m_e, an intrinsic mobility, μ_{in}, of 4.05 and 4.8 cm2 V$^{-1}$ s$^{-1}$, and κ_{L} of 1.0 and 0.8 W m$^{-1}$ K$^{-1}$, respectively, is illustrated in Fig. 9. At 350 K, m^*_{SPB} for Sr$_5$In$_2$Sb$_6$ is similar to the density of states (DOS) effective mass reported in ref. 13 ($m_{\text{DOS}}^* = 1.13 m_e$). Compared with Zn-doped Ca$_3$In$_2$Sb$_5$, m^*_{SPB} in Zn-doped Sr$_5$In$_2$Sb$_6$ is smaller at room temperature (as predicted in ref. 13), but the effective masses become nearly identical above 500 K. The peak zT predicted in this model occurs at a carrier concentration above 10^{20} h$^+$/cm3, suggesting that a further increase in carrier concentration is necessary to optimize zT in Sr$_5$In$_2$Sb$_6$.

Conclusion

Zn-doped Sr$_5$In$_2$Sb$_6$ was successfully synthesized via ball milling followed by hot pressing processes. The electronic transport properties of the samples show a transition from non-degenerate to degenerate semiconducting behavior with increasing Zn content. Despite the complex band structure of Sr$_5$In$_2$Sb$_6$, the figure of merit as a function of carrier concentration can be described using a single parabolic band model. Optical absorption measurements and the calculated band structure revealed two distinct energy transitions with energies of \sim0.3 eV and \sim0.55 eV, respectively: one from the valence edge to the conduction band and another from a lower valence band manifold to the conduction band. The lattice thermal conductivity – the main contributor to k – had a minimum of \sim0.7 W m$^{-1}$ K$^{-1}$ at 700 K, suggesting there is potential to further lower k by \sim0.3 W m$^{-1}$ K$^{-1}$. A peak zT of 0.4 was achieved at around 750 K in the most heavily Zn-doped sample; however, the SPB model suggests further doping is required for optimization. With improved processing techniques to increase the carrier concentration and mobility, a higher figure of merit can potentially be achieved.

Acknowledgements

This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and was supported by the NASA Science Missions Directorate’s Radioisotope Power Systems Technology Advancement Program. S. C. would like to thank Jan-Hendrik Poehls, Stephen Dongmin Kang, and Saneyuki Ohno for their helpful discussions. U. A. acknowledges the financial assistance of The Scientific and Technological Research Council of Turkey. We would like to acknowledge the Molecular Materials Research Center (MMRC) at Caltech for allowing use of their instruments for the optical measurements obtained in this work.

References

5. J. Wang, et al., Ca$_{1-x}$RE$_x$Ag$_{1-y}$Sb (RE = La, Ce, Pr, Nd, Sm; 0 ≤ x ≤ 1; 0 ≤ y ≤ 1); Interesting Structural Transformation and Enhanced High-Temperature Thermoelectric Performance, *J. Am. Chem. Soc.*, 2013, 135(32), 11840–11848.
6. K. Guo, Q. G. Cao and J. T. Zhao, Zintl phase compounds AM$_2$(Sb$_3$) (A = Ca, Sr, Ba, Eu, Yb; M = Zn, Cd) and their substitution variants: a class of potential thermoelectric materials, *J. Rare Earths*, 2013, 31(11), 1029–1038.
11. S. Ohno, et al., Thermoelectric properties of the Yb$_5$Mn$_{a+2}$-xZn$_2$Sb$_{y}$ solid solutions, *J. Mater. Chem. A*, 2014, 2(20), 7478.
13. A. Zevalkink, et al., Thermoelectric properties and electronic structure of the Zintl phase Sr$_5$In$_2$Sb$_6$ and solid solution.
Ca$_{5-x}$Sr$_x$In$_3$Sb$_6$, J. Phys.: Condens. Matter, 2015, 27(1), 015801.

