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Space-Time Regularization for Video Decompression*

Hayden Schaefferf, Yi Yang®, and Stanley Osher®

Abstract. We consider the problem of reconstructing frames from a video which has been compressed using the
video compressive sensing (VCS) method. In VCS data, each frame comes from first subsampling
the original video data in space and then averaging the subsampled sequence in time. This results in
a large linear system of equations whose inversion is ill-posed. We introduce a convex regularizer to
invert the system, where the spatial component is regularized by the total variation seminorm, and
the temporal component is regularized by enforcing sparsity on the difference between the spatial
gradients of each frame. Since the regularizers are L'-like norms, the model can be written in the
form of an easy-to-solve saddle point problem. The saddle point problem is solved by the primal-
dual algorithm, whose implementation calls for nearly pointwise operations (i.e., no direct linear
inversion) and has a simple parallel version. Results show that our model decompresses videos more
accurately than other popular models, with PSNR gains of several dB.
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1. Introduction. Adaptive video compression and decompression is at the frontier of
mathematical image processing. Since the dominant source of data is video-based and the
demand for transmitting videos continues to grow, the importance of constructing reliable
and fast tools to process such data is becoming increasingly necessary. In this work, we focus
on the reconstruction of compressed sequences of frames acquired from what is known as video
compressive sensing (VCS).

Classical compression algorithms, such as MPEG, acquire all incoming signals before com-
pressing them in a given basis. For example, in MPEG-IV, the video is stored as a sequence,
where the first frame of the sequence is compressed with respect to the wavelet basis [10, 9].
After the first frame is stored, the following frames are compressed by taking the difference
between the current frame and the first frame with respect to the wavelet basis. If the differ-
ence is large, then the sequence is stored, and the process begins again with a new first frame
and resulting sequence.

Recently, there have been works in the literature which propose new video compression
schemes using the compressive sensing framework in order to increase the gains in storage

“Received by the editors July 14, 2014; accepted for publication (in revised form) October 17, 2014; published
electronically February 12, 2015.

http://www.siam.org/journals/siims/8-1/97740.html

TComputing and Mathematical Sciences, Caltech, Pasadena, CA 91125 (schaeffer@caltech.edu). The research of
this author was supported by NSF grant 1303892.

Skytree, San Jose, CA 95110 (yi@skytree.net). The research of this author was supported by NSF DMS 0835863,
NSF DMS 0914561, and ONR N00014-11-0749.

$Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90095-1555
(sjo@math.ucla.edu).

373

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


http://www.siam.org/journals/siims/8-1/97740.html
mailto:schaeffer@caltech.edu
mailto:yi@skytree.net
mailto:sjo@math.ucla.edu

Downloaded 04/30/15 to 131.215.70.231. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

374 HAYDEN SCHAEFFER, YI YANG, AND STANLEY OSHER

and recovery. This is done by compressing the incoming data before the signal is sensed
by the device, typically by means of a time-varying aperture coding function which prevents
a fixed amount of information from reaching the lens. The coded aperture appears as a
random or pseudorandom grating, which subsamples the signal in space. This differs from
the classical framework since the incoming signal is not sensed directly, but rather a spatially
subsampled version is acquired. Some recent work on the construction and implementation of
coded apertures and compressive sensing cameras can be found in coded aperture compressive
temporal image (CACTI) systems [22], coded aperture snapshot spectral imaging (CASSI)
[35, 36], cooperative analog and digital signal processing transform imager (CADSP) [19], and
sparse MRI [23]. For other examples of this methodology being implemented in hardware and
software, see [14, 6, 37, 8, 16, 5, 24, 28]. A related and connected topic, in terms of hardware
adaptation for image acquisition, can be found in [29, 1, 34], where a flutter shutter is used
to better condition the resulting motion blur kernels.

A computational difficulty in the VCS framework is the reconstruction of this type of
compressed data. Many of the mathematical methods found in the literature for recovering
compressed sensing data focus on the reconstruction of single image data—for example, those
working on the preservation of edges [13, 38, 17, 27, 3] or texture [11, 32, 18]. However,
the temporal aspect of videos introduces the need for different types of regularization which
leverage the particular structure of the data and the compression.

From the convex optimization perspective, the popular regularizers for video recovery
rely on generalizing total variation to higher dimensions. Let u = u(z,y,t) be a continuous
spatiotemporal function over Q x [0,T], where @ C R? and T > 0. Note that u(z,t) will
refer to u(z,y,t) in some sections below. Recall that the two-dimensional (2D) isotropic total
variation regularizer is defined as [31]

Vi) = |

Total variation regularization and the related models are able to reconstruct piecewise con-
stant images accurately and capture edge information found in most images. To extend this
regularizer to video data, one can directly treat the time component as an additional space
variable and form the corresponding seminorm [20, 21]

TVs() ::/Q [0,7]
X0,

In this form, all dimensions are coupled, and the expected behavior is uniform in all directions.
An equivalent seminorm on the space of three-dimensional (3D) functions of bounded variation
takes the form [14, 33]

V(@) + (0,u)?

V(@) + (0yu)2 + (9yu)?

TVoor (u) = / O + 0,u)

Qx[0,7T]

Qx1[0,7T]

with A positive. We denote this seminorm by TV, since it decouples the two spatial dimen-
sions from the temporal one. The T'V5 regularizer takes into account the differing behaviors
of the spatial and temporal components, which could allow for more flexibility in penalizing
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in-frame oscillations versus sporadic error between frames. Both seminorms provide sufficient
regularization to reconstruct video data compressed in terms of a global basis. However, when
the video data is spatially compressed using a subsampling operation, as is done in CACTI
systems [22], this treatment of the temporal component is insufficient [39]. In this work,
we propose a higher-order variation on the temporal component which promotes the correct
behavior in the reconstructed solutions, which we verify with a variety of videos.

Related work on recovering videos from VCS data can be found in [40, 39]. The algorithm
proposed in [40, 39] uses a Gaussian mixture model to represent each 3D patch in the data
set, with the assumption that the space of patches lives on a union of subspaces and each
patch is drawn from one subspace. Unlike other dictionary-based algorithms, the inversion
of the compressive sensing operator in [40, 39] is analytic, making it more computationally
efficient.

This paper is organized as follows. A description of our reconstruction model is given in
section 2. Characterization of the model and minimizers along with some analytic remarks
are provided in section 3. Section 4 details the primal-dual algorithm and its implementation
for our model. Experiment results and comparisons on synthetic and real video sequences are
provided in section 5. We conclude with several final remarks in section 6.

2. Description of the model. In this section, we present a mathematical formulation of
the linear operator which defines the data acquisition process and then detail our model for
recovering VCS data.

2.1. Compressed data. The data is acquired by first spatially subsampling each frame in
the original video and then taking the running average [43, 22, 42, 33, 41]. In mathematical
terms, we can define the corresponding projection operator P : RVXNXT _y RNXN gyer g
video sequence as

1 T
Plu) = 2 3" Py, (1),
j=1

where N? is the number of pixels in each frame and 7T is the number of frames. The sequence
u is defined by the collection of frames u;, i.e., u := [u1,u,...,ur]. The set S; corresponds
to the spatial locations in frame j where the mask is transparent (i.e., “on”). For each set,
S; C €, where Q is the spatial domain, the framewise projection is defined by the standard
operation

uj(x) if ze€S;,
P, (us(w)) = {oj e st
<.

We define the spatial compression rate (or ratio) as the size of S; divided by the size of
Q, which is assumed to be (nearly) uniform in j. The data projection operator is typically
normalized by T and hence represents the running average of the incoming compressed signal.
Alternatively, the normalization can be done pointwise by dividing each pixel by the number
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of instances of acquired data:

_ Z;F:l Ps; (uj())
Z?:l PSj(l)
0

where we take  := 0. For the mathematical exposition here, this normalization factor is not
directly considered; however, our method readily applies in this case.

In practice, the data is acquired adaptively, in the sense that sequences with larger values
of T have relatively less motion, while a sequence with smaller values of T may be more
dynamic [22, 42, 33, 30]. For the model presented here, this fact is not directly used but could
be incorporated via the parameter choices described in section 5. Overall, the inverse problem
we consider here is as follows: given one compressed sequence f € RV*N find v € RVXNxT
such that P(u) = f.

)

Plu(z))

2.2. Our model. Since it is not necessarily true that adjacent compressed frames carry
similar information (for example, there could be an abrupt change in the motion of the objects
in the foreground or a complete change in the scene), we will consider here the decompression
of a sequence of frames given one compressed measurement. Within the sequence there are
three main dimensions, two spatial and one temporal, and we must regularize in both space
and time in order to fill in all missing information. The regularizer also must be strong enough
to deal with the various types of issues caused by the compression: (1) blurring caused by the
motion of objects between frames over the lapsed time (scene-based motion), (2) the blurring
effect caused by averaging the frames together (camera-based motion), (3) noise in the sensor
array during the acquisition process, and (4) the number of missing pixels and the overall
distribution of information in each frame.

As a starting point, we seek a model similar to the Rudin—Osher—Fatemi (ROF) model
for still images [31]:

/ Vu(e,0)] dx+ P / (u(,0) — f)? dx,

Q0 2 Jo

where p is a positive parameter and f is the input data. So we assume that each individual
frame can be well approximated by a piecewise constant function. Also, we take as a basic
assumption that the sequence is defined over a finite time interval where the frames are made
up of a stationary background and a moving foreground. Therefore, the appropriate spatial
regularizer is the average total variation for each frame:

1 & 1
Spatial: T;HVU]W:T;/Q V| dx.

Unless otherwise stated, we consider all vector norms to be the standard [? norm. The
spatial regularizer ensures that each reconstructed frame contains sharp edges and regions of
homogeneous intensity, thereby reducing the effects of blur and noise in the sequence. Also, it
has been shown that total variation regularized decompression provides a near-optimal stable
method for image recovery [26].
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Based on the assumption of piecewise constant frames, it is clear that the difference
between frames u;y; — u; must remain piecewise constant for consistency. Therefore, we
regularize the temporal component by the average total variation applied to the difference
between adjacent frames:

T T
1 1
Temporal: T JZ:; IVujt1 — Vujl| = T ]Z:;/Q |Vuji1 — Vuj| dx,

where ury1 = ui. The temporal regularizer acts partly like a temporal fidelity term which
communicates gradient-based information between the frames and partly as a penalty term
to decrease the sporadic intensity displacement that could occur. This helps mitigate the
effects of subsampling and improves the reconstruction when the sampling rate in space is
low and/or when 7T is large. The choice of this regularizer is also related to the assumption
that the velocity field acts locally uniformly and can be discontinuous. This is applicable to
real data, since many of the moving objects found in stationary videos will move at a locally
uniform speed as long as the object is physically rigid in nature (i.e., nonexpansive and/or
with low acceleration).

Altogether, the noise-free decompression model can be written as a convex (constrained)
optimization problem,

T T
1 A
(2.1) min TZHV%’Hl + fZHVUjH = Vi
j=1 j=1
s.t. P(u) = f,

and the noisy recovery model can be written as a convex (unconstrained) optimization prob-
lem,

u

T T
. 1 A 1
(2.2) min > IVl + T D Vs — Vuglh + 5 1P(u) = FliZzs
j=1 j=1

where A and p are positive parameters. We impose a periodic boundary condition in space
and time. This condition is consistent in time since we assume that the velocity field can be
discontinuous. Also, since the vector norms used are [, the model is invariant under rotations
of the video. It is also invariant to contrast, scaling, and translation of the video.

To verify the scaling between terms in our model, consider the continuous in time case
where the lapse time between the frames, At, and the time interval, I, are shrinking. First,
we will fix I and send At — 07. The number of frames, T, is inversely proportional to the
lapse time, ie., T = é. For simplicity, we assume that the projection operators are identity
(i.e., Sj = Q). Using the Taylor series, the difference between consecutive frames is

Uj+1 — Uj = At 8tUj + O(At2),
and thus,

VUj.H — Vu]' = At V@tuj + O(At2)
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Also, for any well-behaved sequence variables v;, the running average can be approximated
by

1 <& 1 1
— v; = — vidt + O(A#?).
T; J I/O J ( )

If the space-time mixed derivatives (i.e., VOuu;) are bounded in L', the second term in (2.2)
goes to zero as At — 07, Therefore, for fixed u(z,t), sending At — 07 in the energy yields

1 1 w (1 [ 2

If we send the time interval I — 07, by the Lebesgue differentiation theorem (and by switching
some of the operations) we have

/ Vu(e,0)] dx+ P / (u(,0) — f)? dx,

Q 2 Ja

which is the ROF model on the initial frame u(z,0). This argument is only formal and is used
to verify that the choice of coefficients in the model (in terms of T') is correct with respect to
our assumptions.

In the derivation above we take the difference u;41 —wu; to be an approximation to the time
derivative. However, for discrete time, we consider it to be a measure of similarity between
consecutive frames and not necessarily corresponding to close-in-time dynamics. It could be
advantageous to take large time steps (At large) during the compression, thereby storing more
information. In that case, only significant events in the video need to be captured, and the
rest of the motion can be interpolated between frames.

As an example, we compare our model with a model that only contains spatial regular-
ization (by taking A = 0). In Figure 1, a sequence with 50 repeated frames is compressed
using the VCS method with an overall compression rate of 0.04% and then recovered with
the total variation in space model (see Figure 1(c)) and our method (see Figure 1(d)). The
average peak signal-to-noise ratio (PSNR) using our model is more than three times larger.
Also based on visual comparison, we can see that it is necessary to use temporal regularization
in order to reconstruct the objects in the video.

2.3. Relation to known models. Since our model uses a total variation regularizer, it is
related to other 3D extensions of the ROF model. In particular, we will consider the standard
T'V3 model (for example, see [20, 21, 2]):

(TVs) min + Sl du = fIIF..

V(@:u)? + (Byu)? + (Oyu)?
It

where A is a general (possibly ill-posed) linear operator. In this model the third dimension
is treated in the same way as space and thus does not take advantage of the structure of the
data. One benefit is that in this form the problem is easy to solve since one could make use
of any algorithm that works in the 2D case.
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(a) Compressed sequence. (b) 25th frame from the original se-
quence.

(c) 25th frame from the TV model.  (d) 25th frame from our model.

Figure 1. The standard Shapes image is repeated for 50 frames and has been compressed to 2% in space for
a total compression rate of 0.04%. Each frame is compressed with an independently generated random mask.
In this example, we show the benefits of a temporal reqularizer. Our model provides a reconstructed sequence
with an average peak signal-to-noise ratio (PSNR) of 22.95, while the spatial-only regularized model has an
average PSNR of 7.00. Notice that this PSNR value for the spatial-only reqularized model is not too low, since
the background value in the original video is 0.

Recall that the TVa,1 model separates the spatial and temporal terms as follows:

(TVa11) min V/(@su)? + (9yu)?

il
+ MOl + Sl A — fI7.
1

Although the regularizer is an equivalent seminorm on BV (€ x [0,77]), the minimizers will
generally be different. This model also has the advantage that it can be solved using standard
algorithms. In both of these models, the main assumption for the temporal term is that the
optical velocity is sparse in time [14]. This is effective when the subsampling operation is
done within a global basis, since the basis itself prevents localized effects such as pixelation
(in space) or flickering (in time). However, when the data is randomly subsampled in space,
the sparse in time assumption is no longer valid, as can be seen in numerical results presented
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in section 5.

3. Analytic remarks. In this section, we introduce an alternative formulation of our regu-
larizer in terms of duality. Using the dual form, we are able to characterize solutions in terms
of the coefficients in the model. Also, we verify two basic properties that the reconstruction
should contain in order to be a valid recovery model.

3.1. Characterization of semidiscrete minimizers. We consider the semidiscrete function
space, where the spatial variables are continuous and the temporal variable is discrete. The
energy is defined for sequences of functions u := [ug,...,ur] € (BV)T. Since the regularizer
is L'-like, it can be written as a maximization against L>-like elements. Using this duality,
we can provide a meaningful range for u for fixed A and T

Lemma 3.1. Consider the semidiscrete norm defined for T > 0 and A > 0 on the sequence
u = [ug,...,ur] € (BV(Q))T

1 & A
lull = = 3 lgllry + 23 g = ws v
T T
=1 =1

The norm has the equivalent representation
T
[lul] := SUp 7 Z Huj, v5)

where the operator is defined as H := [V,V S| and Sy is the forward finite difference operator
(in terms of the index j). The corresponding dual space can be identified as the space of
functions w whose components can be written as w; = —div ¢;, with ¢; € L>(2 x Q). The
corresponding dual norm is as follows:

1
ol = inf e {116~ S-lu=: 315 |
where S_ is the negative of the backward finite difference operator (i.e., S_ = S7% ).

Proof. By considering the dual characterization of the TV seminorm, we can write our
seminorm in a linear form [25]:

||ul] = Z Jujllrv + Z [wj+1 = wjllrv

1< AZT
¢Joo,wj||oo<1szl 03 szl " "

Next, by rescaling 1); (and reusing notation for simplicity) we have the following equation:

T T
|Jul| = sup Z Vuj, ¢;) —Z (Vujir — Vug, ;) .
165l <Lljlleo<r T 4 T3
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In this form, it is clear that by defining the operator H := [V, V.S, ] and the function space

V= Av [vj =95, 93], llillee <1, [[Y5lle0 < AT,

the norm simplifies to

!

1
ol = s 7 32 ()

Note also that the dual operator of H can be found easily via integration by parts and is
H *[v] , v]] = —div v} —div S_ ’UJZ, where S_ is the negative of the backward finite difference
operator.

To find the corresponding dual norm, we must first find the dual norms of both regularizers

separately. For simplicity, we will define the separate norms as

1 T
Il = 73 sl

[fullp == Z [wj1 — ujllrv.
By definition, the dual norm of || - ||, is
1 T
l|w||g« == sup (u,w)= sup — Z (uj, wj) .
llulla<1 llulla<1 £ 55

For all w in the corresponding dual space, we can identify (possibly nonunique) vector fields
¢; such that

w; = —div gbj.

Therefore, the dual norm further simplifies to

T
1
|wlas = sup = > (uj, —div ¢;)
||uag1T;
1 T
= sup =) (Vuy, ;).
||uua<1TZ e

By the Cauchy—Schwarz inequality, we have

’ﬂ |

T T
Z Vuj, dj) < Z [usllzv]l@sllzee < max (||é]lL) [fulla,
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which provides an upper bound to this dual norm (minimizing with respect to all choices of
¢). This bound can be obtained by taking Vu; to be a (rescaled) Dirac delta function at a
global maximum of ¢z, where J is the index which maximizes the L* norms over the sequence
{¢;}. Therefore, the dual norm is

o« = inf e (| 1)

where w; = —div ¢; for all 1 < j < T'. Similarly, for the dual norm of || - ||, we have by
definition
1 I
[wllps := sup (u,w) = sup = (uj,w;).
lulls<1 lullp<1 + 525

Following the same argument as above, the dual norm simplifies to

T
1 .
lwlpe = sup — > (uj, —div S_g;)

Jj=1

T
1
= sup —Z(VS+uj,¢j>.

llullp<1 T 4=
By the Cauchy—-Schwarz inequality, we have
1 & 1 &
T 2:1 (VSiuj,¢5) < 2:1 18+ ujllrvldsllzee < max ([|5]lze) lfulls,
j= j=

which provides an upper bound as before. This bound can be obtained by taking V.S u; to
be a (rescaled) Dirac delta function at a global maximum of ¢;, where J is the index which
maximizes the L norms over the sequence {¢;}. Therefore, the dual norm is

wllp« = igfm?X(H%HLw),

where w; = —divS_ ¢; forall 1 <j <T.
Altogether, the dual norm of our regularizer, || - || = || - ||la + Al| - ||p, is given by
[|lw||« = inf s
v,8
st [Jw —v]]ax <5 [[v][ps < As.

To further simplify it, we can identify elements w and v in the dual space by w; = —div ¢;
and v; = —div S_ 1; so that the norm becomes

||w|]« = inf s
v,8
s.t. inf ||¢; — S_1)i||pe < s, Inf ||[1hi]|pe < As,
¢7¢||¢J 7/)J||L = w ||7/)J||L

where w; = —div ¢; and v; = —div S_ 1y,
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or (after some calculation), in a more compact form,

1
, = inf = S| oo, ||| oo
ol = inf mae {11 - S, 3111 |

)

s.t. w; = —div ¢;,

where the direct dependence on v; can be removed. |
Next, recall the noisy model (2.2), and define the corresponding energy functional E over
sequences u € (BV)T:

N >

T T
1 7
(3.1) B(u) = 7 > lugllry + 5 lujer —ugllry + SIPw) - FliZs-
=1 =1

Note that the adjoint operator of P is

P*(u) = [Ps,v, Ps,v,...,Ps, v],
which will be needed in the following theorem, whose proof is related to those found in
25, 12, 32].

Theorem 3.2. Let E be the energy from (3.1) and || - ||« be the dual norm from Lemma 3.1,
and define the following seminorm on (BV)T:

1 <& Py
ull = =) lujllev + = > lujrr — ujllrvs
T T
i=1 =1

then the following relations hold:
o If||P*fl|« < %, then the optimal solution of min, E(u) is u = 0.
o If||P*f|l« > %, then the optimal solution of min, E(u) satisfies ||P*(f — Pu)||. = %
and p (u, P*(f — Pu)) = [|ull.
Theorem 3.2 provides some guidelines for choosing i given the compressed sequence f and
a fixed scale A. To determine A, note that by the triangle inequality we have the following
bound on the ratio between the two terms:

T
2= lwjn = wllry

T
7 2=t llujllry

(3.2)

Therefore, since we want to weigh their importance equally, it is best to choose A € [0, 1], with

typical values near %

3.2. Further analytical remarks. We would like the model to exhibit certain properties
when the data falls into two extremal cases. The first is that when the projection operator
contains no subsampling in space, we prefer that the minimizing sequence not be able to
distinguish information between frames. This is a modeling assumption to ensure that the
reconstruction does not bias information between frames. Therefore, in this case we would
like the optimal solution to be constant in time.

Property 3.3 (degeneracy). If S; = Q for all 1 < j < T, then a constant sequence is a
minimazer.
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Proof. For any sequence {u]}] 1, define its average as u := %Zle uj = P(u). The

energy can be bounded from below:
1 <& pypa 7
=7 > lugllry + Z lujrr = wjllzy + Sl (u) Fliz:
j=1

] 1

T
w3 Xl —whe + 510 - 113
T J J 9 L

TV =1

v
Nl =

<
Il
—

Y
Nl =

W
wi| +L1P@) - fI3
TV

_ Moy -
— llally + Sz - £12

= E(a).

<
Il
i

Since the functional is convex, the minimizer must indeed be obtained by the constant sequence
{a}j_,. =

This may seem counterintuitive at first, within the framework of compressive sensing, since
the more information one is given, the better the solution recovery rate should be. However,
the subsampling in space provides us with the additional information corresponding to the
pixel-frame relationship. By connecting some of the pixels to specific frames or subsets of
frames, we can better identify structures and features in the entire sequence.

Second, we expect that if a sequence is nearly trivial (i.e., contains only one nontrivial
frame), then minimizers should not depend on the location of the nontrivial frame.

Property 3.4 (consistency). For any j, if up =0 for all k # j, then uj must solve

n%in {(1 + 2\ [lugllry + 5 Hu] f”2L2} :
J

This proof follows directly. This also provides further support for the use of the temporally
periodic boundary condition, since with it the model directly inherits this property.

4. Numerical method. Since the data can be large, both the storage and use of large
linear operators may be expensive. Therefore, we use the simple first order method called
the primal-dual algorithm [44, 7, 4, 15]. The primal-dual algorithm requires that the energy
minimization problem can be written in the form of a saddle point problem. We outline the
construction of the related saddle point problem below.

Using Lemma 3.1, (2.2) can be written as a saddle point problem:

T

T
. wr
min 2 ()4 2 (Tl =) )+ P =
j=1

u HvHoo<1 leloo 1

where v and w are the dual variables. We can also introduce another variable z by taking the
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Legendre dual of the fidelity term to get
d 1

T
min max Z(Vuj,vj —1—2 (uj1 — uj),wy) + (P(u) — f,2) — ||Z||L2
j=1

U |l <1, [|wlleo <A, 2 =

This equation can be written as an unconstrained saddle point problem by taking the L
constraints and including them as a penalty to the energy:

T T
(4.1) min max > (Vg v) + A (V(ujn — ug),wy) + (P(u) — f,2)
j=1 j=1
1 w
= gl = xs) —xs ().

where B is the L ball with radius 1 and xp(z) is 0 if z € B and oo otherwise. This is the
form of the problem which we solve numerically and which is equivalent to (2.2).

4.1. Primal-dual algorithm. Given a saddle point problem of the form

min max F'(u) 4+ (Au,v) — G(v),

u v

where F' and G are convex functions and A is a linear operator, the iterative updates defined
by the primal-dual algorithm are [44, 7, 4, 15]

u" = (I 4+ 70F) " (u™ — 7AW",
an—l—l — 2un+1 _ un’

T = (I+ U@G)_l(v” + UAQ”H),

where OF and OG are the subdifferential of F' and G, respectively. The inverse operators
above are the proximal operators defined by

v—2|]?
(I 4+70F)71(2) :rrbin <f(v) + %) .

For our model, F(u) := 0 and G(v,w,2) = xp(v) + x5 (%) + 2MTHZH + (f,z), and
Au = [Vu,VSiu, P(u)]. The proximal operators are simple to calculate, thereby making
the algorithm easy to implement. We summarize the update rules below.

For the u substep, since F is trivial, the update is

u" =" + 7div 0" + 7div S_w" — TP 2"

In terms of the dual variables, the function G is separable; therefore, the updates are com-
pletely decoupled. For the v substep, the update is

v = (I + 00xp) 10" + o Vu" )
= Projg(v™ + oVu"™).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/30/15 to 131.215.70.231. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

386 HAYDEN SCHAEFFER, YI YANG, AND STANLEY OSHER

Similarly for the w substep, the update is
w" = X Projg(w" + oV S, u™th),

and finally the z substep is given simply by

—1
o <I+oa—|| ||L2> (" + o(Pu" — )
2" Fo(Puttt - f)
1+ % '

The projection operator Projg is defined for vectors by

z

Projp(z) := g’

where 8 := 0. Altogether the algorithm is summarized below.

Algorithm 1 Primal-dual algorithm in the noisy case (equation (2.2)).

Parameters: 7, o, A\, p.

Initialize: P u?, 09wl 20,
M M ) ) )

while |[u"*! —u"|| > tol do

0

u" =" 4 7div 0" + TAdiv S_w" — TP*2",
an—l—l — 2un+1 _.n

U )
" = Projg(v" + oVa" ),
w" = X\ Projg(w" + oVS, a"),
bl _ 2" 4 o(Pa"tt — f)
1+ ﬁ«
end while
return u

Similarly, the constrained model (equation (2.1)) can be written as the following saddle
point problem:

min max
o v||oo <1, [|w]|oo<A, 2

T T
Z<Vuj7vj +Z (uj1 — uj),wy) + (P(u) — £, 2).
J=1

j=1

The variable z is the Lagrange multiplier for the constraint P(u) = f. This saddle point
problem can also be seen as the limit of (4.1) as g — oo. The algorithm is summarized below
and is nearly identical to that of the unconstrained problem (Algorithm 1).
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Algorithm 2 Primal-dual algorithm in the noise-free case (equation (2.1)).

Parameters: 7, o, \.
Initialize: P, f, u°, v°, w®, 20.
while |[u"*! —u"|| > tol do

w1 = " 4 7div 0" + TAdiv S_w" — TP*2",

an—l—l — 2un+1 . un7

V" = Projg (v + oVa" ),
w1 = X\ Projg(w™ + o VS, "),
Zn—i—l =" 4 O_(P,an—i-l _ f)

end while
return u

Convergence of both algorithms above is guaranteed for o and 7 which satisfy o7 < m,

where || Al|op is the operator norm of A. For our algorithm, the bound o7 < \/% suffices. Also,
we should note that the primal and dual residuals decay at an appropriate rate; thus residual
balancing techniques do not accelerate the convergence of our model.

4.2. A parallel version. The algorithm is nearly pointwise since it requires only the knowl-
edge of the neighboring pixel values (in space-time). This is particularly advantageous for
implementation on graphics processing unit (GPU) arrays. Furthermore, we present a simple
version of the algorithm that can be run in parallel. A naive patchwise parallel algorithm

Figure 2. For the parallel version of our algorithm, each frame is split into patches (on the left). Then
each patch is extended to include some of the neighboring pizels (the blue boundary on the right). To recombine
the patches, a spatial cutoff function is defined over each patch. The cutoff is equal to 1 in the patch (the black
region), is equal to 0 outside of the patch, and is continuous on the overlap region (the blue region).
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would need to communicate with neighboring blocks in order to converge to the same solu-
tion as the nonparallel algorithm. Hence a good parallel algorithm should take into account
the structure of the entire algorithm as well as the structure of the data to approximate the
nonparallel solution.

In our approach, one generates a grid of nonoverlapping patches. Directly solving the
algorithm on each patch is less expensive than working on the entire data set, since the
time cost of Algorithms 1 and 2 depends directly on the number of pixels in the solution wu.
Therefore, each patch should be sent to different devices to be calculated in parallel. However,
along the boundary of each patch, the solutions may not contain the proper continuity and
thus have visual artifacts. To avoid patch-boundary artifacts, each patch is partially extended
(see Figure 2). A spatial cutoff function Q(p;) is introduced as a function of each patch, p;,
which is defined as 1 in the patch, 0 outside the extended region of the patch, and continuous
otherwise. Then, to recombine the patches into the frames, we take a weighted average with
respect to the cutoff @ (i.e., the weight values are determined by the values of the cutoff
function). In practice, we notice that a bilinear spline optimizes the visual quality of the
recombination by not blurring around patch boundaries, as compared to higher-order splines.
Also, the patch boundaries need only be extended by a few pixels to properly stitch the
solution together.

For a simple example, consider a one-dimensional (1D) vector of data and extract two
patches p; and ps which overlap on three points {1,2,3}. Then the linear spline extension is

X

x
Q@) =5 +1 and Q=) = |
for z € {0,1,...,4}. Given a function defined on the patches, which we will denote by wu,,,
the recombined value u is determined by

Q)@ () + Q)@ up(@) N
() = P S = Qo) (@)1 () + Qo)) (),

since the interpolants sum to one, i.e., Q(p1)(z) + Q(p2)(z) = 1.

Note that the solution computed by this parallel algorithm is not necessarily the numerical
solution of (2.2) but rather an approximation. The convergence rate, in terms of the number
of iterations of either Algorithm 1 or Algorithm 2 required to reach a specified tolerance, does
not significantly change depending on the patch size. Therefore, it is best to keep the number
of patches close to the number of parallel devices.

As an example, in Figure 3 we compare Algorithm 1 to the parallel version described
above using 49 patches. Both visual and PSNR comparisons show very little difference in the
results. For the remaining examples, we will use Algorithm 1 directly and not the parallel
version, since this is not the main focus of the work.

5. Experimental results. In this section, we apply our algorithm to various compressed
video sequences. The parameters are provided with each of the results and are chosen using
the guidelines in section 3.1. The parameter A should be larger when the motion present
in the video sequence is relatively small and can be smaller when the motion in the video
sequence is relatively large. In the experiments, we generate independent random masks for
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(a) Nonparallel. (b) Parallel. (c) Original frame.

Figure 3. Comparison between Algorithm 1 and the parallel version on a sequence of four frames. The
nonparallel method results in an average PSNR of 34.3499 with a PSNR of 34.4915 on the frame shown in (a).
The parallel method uses 49 patches since the size of each frame is 350 x 350 and the size of each extended
patch is 55 X 55 ( the extension is of length 5). This results in an average PSNR of 34.3375 and a PSNR of
34.4887 on the frame shown in (b). The parameters are fized at A = 1, yT" = 15. The compression rate in
space is 50%, and the standard deviation of the added noise is 5.

each frame, and we add Gaussian noise to each pixel before compressing the frames. The
overall compression rate is given by the product between the compression rates in space and
time. Also, each video is normalized to fall in the range of [0,255]. For our model and the
TV511 model, we apply the primal-dual algorithm outlined in the previous section. For the
TV3 model, we use the state-of-the-art implementation called TVAL3 found in [20, 21]. We
also compare our model to the L'(DCT) model, which uses ||[DCT(u)||;1 as a regularizer
(where DCT is the 3D discrete cosine transform). The reconstruction results using the T'V3
and the L'(DCT) models can be found in section 5.6. Since the results tend to be less visually
accurate compared to TV541, we do not include them in sections 5.1-5.5.

5.1. Synthetic example. Since our model is closely related to a video extension of the
ROF model, we will show that it too captures the correct edge set. In Figure 4, a simple
synthetic sequence consisting of a jump moving to the right is compressed with an overall
compression rate of 5%. Our model provides a reconstructed sequence with an average PSNR
of 28.46, while the T'Vo11 model has an average PSNR of 23.21. Since the frames’ only feature
is a high-contrast jump, the main error in T'V54; is along the edge set. In Figure 5 (b) and
(c), a Canny edge detector is used to locate the edges of the two reconstructed versions of
frame 4, for visual comparison of the regularity of the edge set.

5.2. Parking lot data. For the remaining examples, our algorithm is applied to real video
sequences containing various types of motion. Some parameter optimization is necessary to
obtain optimal results. To do so, we first optimize the parameters on a small part of the video.
Then new data is generated, and the optimized parameters are applied to the new sequence.

First, we consider a stationary camera observing a parking lot. In Figure 6 one frame
from a noisy sequence of 16 frames is shown. Since each frame is nearly piecewise constant,
total variation regularized models should be effective. The average PSNR, for our method
applied to this sequence is 37.08, and the PSNR of the shown frame (Figure 6 (c)) is 37.35.
The average PSNR for the T'V211 method applied to this sequence is 30.74, and the PSNR of
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a) Original frame 1. (b) Original frame 2. (c) Original frame 3. (d) Original frame 4.

e) Noisy frame 1. f) Noisy frame 2. g) Noisy frame 3. h) Noisy frame 4.

i) TVay1 frame 1. ) TVay1 frame 2. k) TVa41 frame 3. 1) TVay1 frame 4.

) Our frame 1. ) Our frame 2. ) Our frame 3. ) Our frame 4.

Figure 4. This synthetic sequence demonstrates the reconstruction of edge (high contrast) features. The
sequence is compressed to 5% of the original data. The noise has a standard deviation of 24.5. Our model
provides a reconstructed sequence with an average PSNR of 28.46, while the T'Vai1 regularized model has an
average PSNR of 23.21.

the shown frame (Figure 6 (d)) is 31.18.

Our model has a higher PSNR since it is able to communicate the spatial continuity
between frames better than the TVo,1 model. This can be seen in the homogeneous intensity
along the light pole and paint lines in Figure 6 (c¢) as opposed to the false edges in Figure 6 (d).
In Figure 7, the difference between the computed frames and the exact frame is shown (both
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(a) Compressed sequence. (b) Edges of our frame 4. (c¢) Edges of TVay: frame
4.

Figure 5. In (b) and (c), a Canny edge detector is used to locate the edges of two reconstructed versions
of frame 4, for visual comparison of the reqularity of the edge set.

on the same scale). The error between our approximation and the true solution is mainly made
up of fine scale details and a smooth component, both of which are known not to be preserved
by total variation terms. On the other hand, the error between the TVs,1 approximation
and the true solution contains edge information and discontinuous details, which are likely an
artifact due to the inconsistency between the two regularizers.

In Figure 8, a four-frame sequence is extracted from the parking lot video which contains
car and shadow motion. The average PSNR for our method applied to this sequence is 33.66,
and the average PSNR for the TV, method applied to this sequence is 31.32. The T'Voyy
reconstruction of the car (located on the bottom right corner of the frames) creates a fuzzy
boundary as compared to our reconstruction. One can also see the staircasing and pixelation
effect along solid lines in the TV, reconstruction.

5.3. Toy car data. Next, we look at the toy car video, which contains a large range
of motion. In Figure 9, we compare our method to the T'Vo,; solution and the original
sequence. In this sequence three scales of movement appear: the slow car in the background,
the medium speed of the car on the left, and the faster car on the right. The velocity field
is close to piecewise constant and can be very discontinuous due to the large jumps between
frames. The average PSNR for our method applied to this sequence is 37.96, and the average
PSNR for the TV method applied to this sequence is 35.77.

In the zoomed in versions of frames 1 and 2 (see Figure 10), we can see the flickering effect
present in the T'Voyi reconstruction. The difference between the two TVayi reconstructed
frames will still be sparse since it contains pixelwise peaks. However, this does not appear
as the visually correct representation of the true frame. Also, the reconstruction contains a
“ghost,” or a faint copy of moving objects from neighboring frames, appearing because of
the method’s inability to correctly separate the frame-by-frame behavior. These effects are
diminished in our reconstruction, thereby leading to higher PSNR values.

5.4. Traffic data. In Figure 11, we apply our method to a sequence of traffic/surveillance
frames. In this video, multiple scales of objects appear in motion—both cars and people.
The average PSNR for our method applied to this sequence is 32.19, and the average PSNR
for the T'Vo41 method applied to this sequence is 29.66. In the zoomed in frame, Figure 12,
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(a) Original frame 4. (b) Noisy frame 4.

(¢) Our frame 4. (d) TV241 model’s frame 4.

Figure 6. Our algorithm applied to a parking lot sequence of 16 frames with slow car and shadow motion in
the bottom right corner. The average PSNR of our reconstruction is 37.08 with a PSNR of 37.35 in the frame
shown in (c). The average PSNR of the TVay1 reconstruction is 30.74 with a PSNR of 31.18 in the frame
shown in (d). The parameters are set to Aours = 4, Arvy,, = 0.5, uT = 20. The total number of iterations is
fized to a mazimum of 1200. The compression rate in space is 50%, and the standard deviation for the additive

noise is 5.

) Our difference. b) TVay1 difference.

Figure 7. Comparison of the difference between the recovered frame and the original frames corresponding
to the solutions in Figure 6 (c) and (d).

we observe the reconstruction of a person walking. Our model is able to recover the shape
of the person as well as the continuous linear structures appearing on the road, while the
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(e) TVay1 frame 1. (f) TVaqq frame 2. (g) TVaqq frame 3. (h) TVaqq frame 4.

(i) Original frame 1.  (j) Original frame 2. (k) Original frame 3. (1) Original frame 4.

Figure 8. Our algorithm applied to a parking lot sequence of four frames with moderate car and shadow
motion in the bottom right corner. The average PSNR of our reconstruction is 33.66. The average PSNR of
the TVay1 reconstruction is 31.32. The parameters are set t0 Aours = 1.4, Arv,, = 1.2, uT = 0.5. The total
number of iterations is fized to a mazimum of 750. The compression rate in space is 35%, and the standard
deviation for the additive noise is 5.

comparable model (T'V541) has difficulty. Although some objects in the video may be moving
by only one pixel between frames, which is typically not considered to be well represented by
the total variation seminorm, it seems that our model is still able to approximate the correct
continuous behavior along the boundary of those moving objects.

5.5. Facial data. For a challenging video, we test our method on a facial sequence which
contains small movements and texture. In Figure 13, we observe that each frame consists of
small scale details in the stationary and moving objects as well as subtle facial movements
which rotate outside of the visual plane. The average PSNR for our method applied to this
sequence is 32.19, and the average PSNR for the T'Vo1; method applied to this sequence is
30.38. The smaller difference between the PSNRs is due in part to the difficulty both methods
have in capturing all the details of the scenes.

A zoomed in comparison is provided in Figure 14. Visually, our method produces a more
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(a) Our frame 1. (b) Our frame 2.

(e) TVay1 frame 1. (f) TVaqq frame 2.

(i) Original frame 1.  (j) Original frame 2. (k) Original frame 3. (1) Original frame 4.

Figure 9. Our algorithm applied to a toy car sequence of four frames with three varying levels of motion.
The average PSNR of our reconstruction is 37.96. The average PSNR of the TVay1 reconstruction is 35.77.
The parameters are set to Aours = 0.75, Arv,,, = 0.4, uT = 0.25. The total number of iterations is fived to a
mazimum of 3000. The compression Tate in space is 456%, and the standard deviation for the additive noise is
5.

realistic approximation. Our model contains smoother level lines on the face, better repre-
senting the contours in the data, while the T'V54 1 reconstruction contains fuzzy boundaries.

5.6. Comparison of results. We compare our results to three models, the T'V541 model,
which we have used for visual comparisons in the previous sections, the L'(DCT) model,
which uses ||[DCT(u)||;1 as a regularizer, and the T'V3 model implemented by the TVAL3
algorithm. In Table 1, we compare the methods using different sequences, different levels of
noise, and various compression ratios. The sequences listed with the same name are from
different parts of the given video. Also, by varying the compression ratio in time from 25%
to 4%, we see that the PSNR values from our reconstruction vary less than those of the other
two models, which shows that our model has a more stable performance.

In all cases listed here, our method has higher PSNR and produces more visually appealing
results as compared to the other methods. In Figure 15, we plot the results from Table 1.
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(a) Our frame 1. (b) Our frame 2.

(¢) TVaq1 frame 1. (d) TVz41 frame 2.

(e) Original frame 1. (f) Original frame 2.

Figure 10. A zoomed in visual comparison between the reconstructions in Figure 9.

The first column in Figure 15 corresponds to the first row in Table 1, the second column
in Figure 15 corresponds to the tenth row in Table 1, and the third column in Figure 15
corresponds to the last row in Table 1. The T'Voy; and T'V3 both have the flickering effect
seen in the previous examples, while the solutions generated by the L'(DCT) model suffers
from global high-frequency oscillations. It should be noted that the TVAL3 method is not
specifically tuned and could have results more comparable to the other methods if significantly
altered, although this is not within the scope of this work.
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(e) TVay1 frame 1. (f) TVaqq frame 2.

(i) Original frame 1.  (j) Original frame 2. (k) Original frame 3. (1) Original frame 4.

Figure 11. Our algorithm applied to a traffic sequence of five frames (four of which are shown here) with
varying levels of motion. The average PSNR of our reconstruction is 32.19. The average PSNR of the TVay1
reconstruction is 29.66. The parameters are set to Aours = 0.65, Arv,,, = 0.2, uT = 1. The total number of
iterations is fized to a mazimum of 3500. The compression rate in space s 50%.

(a) Our frame 3. (b) TVa41 frame 3. (c) Original frame 3.

Figure 12. A zoomed in visual comparison between the solutions from Figure 11.
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(f) TVa4q frame 2. (g) TVa41 frame 3. (h) TVay1 frame 4.

(i) Original frame 1.  (j) Original frame 2. (k) Original frame 3. (1) Original frame 4.

Figure 13. Our algorithm applied to a facial sequence of four frames. The average PSNR of our reconstruc-
tion is 32.19. The average PSNR of the T'Va11 reconstruction is 30.38. The parameters are set to Aours = 0.5,
ATvy,, = 0.35, pT = 1. The total number of iterations is fized to a mazimum of 3500. The compression rate
wn space 15 50%, and the standard deviation for the additive noise is 5.

(a) Our frame 3. (b) TVay1 frame 3. (c) Original frame 3.

Figure 14. A zoomed in visual comparison between the solutions from Figure 13.
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Table 1
Comparing the PSNRs of our model, the TVaiy1 model, the L*(DCT) model, and the TVs model imple-
mented by TVAL3. The first column contains the name of the video used to generate the sequence, and the
sequences differ between rows. The second column contains the standard deviation of the added noise. The
third, fourth, and fifth columns contain the compression ratios. The sixth, seventh, eighth, and ninth columns
contain the PSNR values for the four methods.

Sequence | Noise | Overall | Time | Space | Ours | TVzy1 | L' (DCT) | TVAL3
Toy car 10 11.25% 25% 45% 37.96 | 35.74 33.24 30.98
Toy car 10 11.25% 25% 35% 35.48 33.63 29.54 29.59
Toy car 5 8.75% 25% 35% 37.19 | 35.10 33.49 30.91
Parking 5 7.00% 20% 35% 34.99 | 33.10 31.28 29.69
Parking 10 7.00% 20% 35% 32.12 30.69 27.57 28.57
Parking 10 9.00% 20% 45% 32.50 31.64 28.97 30.44
Parking 10 10.00% 20% 50% 32.50 | 31.91 29.50 30.48
Traffic 5 6.25% 25% 25% 29.74 27.25 27.74 24.67
Traffic 5 3.12% 12.5% 25% 31.58 29.07 30.27 27.40
Traffic 5 2.08% 8.3% 25% 33.51 28.90 31.06 27.04
Traffic 5 1.56% 6.25% 25% 33.59 28.69 29.60 26.85
Traffic 5 0.40% 4% 10% 31.51 24.37 24.49 23.62
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(m) TVs (1). (m) TVs (2). (o) TV; (3).

Figure 15. A visual comparison of the results found in Table 1. The first row, (a)—(c), contains the original
frames, while the remaining rows contain the solutions generated by each model. The first column corresponds
to the first row in Table 1, the second column corresponds to the tenth row in Table 1, and the third column
corresponds to the last row in Table 1.
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6. Conclusion. In this work, we introduce a convex regularizer for video recovery, which
is made up of a total variation term on each frame and a total variation term on the difference
between frames. The model can be easily solved using the primal-dual algorithm and has a
simple parallel version. Based on visual comparisons and PSNR values, the model outperforms
other popular models. Since our model is developed for sequences of compressive frames with
randomly generated masks, it may be applicable to other compressive sensing paradigms—for
example, compressive hyperspectral imaging.
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