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A MULTISCALE DATA-DRIVEN STOCHASTIC METHOD FOR
ELLIPTIC PDEs WITH RANDOM COEFFICIENTS∗

ZHIWEN ZHANG† , MAOLIN CI† , AND THOMAS Y. HOU‡

Abstract. In this paper, we propose a multiscale data-driven stochastic method (MsDSM)
to study stochastic partial differential equations (SPDEs) in the multiquery setting. This method
combines the advantages of the recently developed multiscale model reduction method [M. L. Ci,
T. Y. Hou, and Z. Shi, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 449–474] and the data-
driven stochastic method (DSM) [M. L. Cheng et al., SIAM/ASA J. Uncertain. Quantif., 1 (2013),
pp. 452–493]. Our method consists of offline and online stages. In the offline stage, we decompose
the harmonic coordinate into a smooth part and a highly oscillatory part so that the smooth part
is invertible and the highly oscillatory part is small. Based on the Karhunen–Loève (KL) expansion
of the smooth parts and oscillatory parts of the harmonic coordinates, we can derive an effective
stochastic equation that can be well-resolved on a coarse grid. We then apply the DSM to the
effective stochastic equation to construct a data-driven stochastic basis under which the stochastic
solutions enjoy a compact representation for a broad range of forcing functions. In the online stage,
we expand the SPDE solution using the data-driven stochastic basis and solve a small number of
coupled deterministic partial differential equations (PDEs) to obtain the expansion coefficients. The
MsDSM reduces both the stochastic and the physical dimensions of the solution. We have performed
complexity analysis which shows that the MsDSM offers considerable savings over not only traditional
methods but also DSM in solving multiscale SPDEs. Numerical results are presented to demonstrate
the accuracy and efficiency of the proposed method for several multiscale stochastic problems without
scale separation.

Key words. stochastic partial differential equations, multiscale problems, data-driven methods,
Karhunen–Loève expansion, uncertainty quantification, model reduction
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1. Introduction. In recent years, there has been an increased interest in the
simulation of systems with uncertainties. Many physical and engineering applications
involving uncertainty quantification can be described by stochastic partial differential
equations (SPDEs). Several numerical methods have been developed in the literature
to solve SPDEs, such as the stochastic finite element method [24], Wiener chaos ex-
pansion or generalized polynomial chaos (gPC) method [31, 25, 40, 41, 42, 39, 33, 32],
and stochastic collocation method [43, 5, 30, 6]. These methods can effectively solve
the SPDEs when the dimension of stochastic input variables is low. However, their
performance deteriorates dramatically when the dimension of stochastic input vari-
ables is high. This so-called curse of dimensionality is one of the essential challenges
in uncertainty quantification. Recently, some progress has been made to alleviate
this difficulty by exploring the sparse structure of the solutions and constructing a
problem-dependent stochastic basis to solve these SPDEs; see, e.g., the data-driven
stochastic method [11, 44] and dynamically biorthogonal method [9, 10].
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In this paper, we consider another challenge in uncertainty quantification, i.e.,
solving SPDEs involving multiple scales. Due to the large range of scales in these
solutions, it is extremely challenging to solve for the small scales of the solution. It
requires tremendous computational resources. Thus, finding an effective (upscaled)
equation that governs the large-scale solution is very important. When the solution
has scale separation and a periodic structure, the classical homogenization theory
provides a powerful tool for deriving an effective equation. However, in many applica-
tions, the solutions usually do not satisfy the scale separation assumption or may not
have periodic structures. In this case, it is very difficult to derive an effective equation.
In the past three decades, there have been a number of multiscale methods for deter-
ministic PDEs in the literature; see [2, 3, 4, 17, 8, 14, 15, 16, 18, 19, 20, 27, 28, 35].
The SPDEs involving multiple scales become more complicated because we cannot
directly apply these well-developed upscaling techniques for each realization of the
stochastic parameters. Recently, Zabaras and coworkers proposed a stochastic varia-
tional multiscale method for diffusion in heterogeneous random media [38, 23]. They
combined the gPC method with the variational multiscale method to do model re-
duction. However, when the dimension in stochastic direction is large, this method is
inefficient due to the exponential growth of the number of the gPC basis elements. We
also point out that in [1], Arnst and Ghanem considered the probabilistic equivalence
and stochastic model reduction in multiscale analysis. In [27, 37], Kevrekidis et al.
applied the equation-free idea to study stochastic incompressible flows.

To address this issue, we propose a multiscale data-driven stochastic method (Ms-
DSM) to systematically perform model reduction in both the stochastic and physical
dimensions. Our new method consists of offline and online stages. In the offline stage,
we perform model reduction in both the stochastic and physical dimensions, respec-
tively. We choose the stochastic collocation method to approximate the stochastic
space since it can exploit the possible regularity of the solution with respect to the
stochastic parameters to achieve faster convergence, and it leads to the solution of
uncoupled deterministic problems, just as in the Monte Carlo method. We utilize the
Clenshaw–Curtis rule to generate the sparse grids [5, 43]. On each collocation point,
we solve a deterministic problem. We first derive an effective (upscaled) equation that
can be resolved on a coarse grid. We then construct a data-driven stochastic basis
in stochastic collocation representation [11] under which the solutions of the effec-
tive stochastic equation have a compact representation for a broad range of forcing
functions and/or boundary conditions.

We use the following stochastic elliptic equations with multiscale random coeffi-
cients as an example to illustrate the main idea of our approach:

−∇ · (aε(x, ω)∇uε(x, ω)) = f(x, θ), x ∈ D,ω ∈ Ω, θ ∈ Θ,(1.1)

uε(x, ω) = 0, x ∈ ∂D,(1.2)

where D ∈ Rd is a bounded spatial domain, Ω is a sample space, and Θ is a parameter
set, which is used in the multiquery setting. The multiscale information is described
by the multiscale coefficient matrix aε(x, ω). We assume that aε(x, ω) is a symmetric,
positive definite matrix satisfying λmin ≥ α > 0 (λmin is the smallest eigenvalue of
aε(x, ω)) for a.e. x ∈ D, ω ∈ Ω. For such coefficients, the solutions are only Hölder
continuous. If aε(x, ω) is highly oscillatory, the solution will become highly oscillatory
as well. The deterministic forcing function f(x, θ) ∈ L2(D) is parameterized by θ,
which is assumed to be resolved on a coarse grid. We would like to derive an effective
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stochastic equation of the form

−∇ · (a∗(x, ω)∇u∗(x, ω)) = f(x, θ), x ∈ D,ω ∈ Ωs, θ ∈ Θ,(1.3)

u∗(x, ω) = 0, x ∈ ∂D,(1.4)

where Ωs is the approximated sample space including all the stochastic collocation
points. The key is how to construct an effective coefficient a∗(x, ω) so that the solution
of the effective (1.1) approximates the original multiscale (1.1) with some desirable
accuracy. We adopt the global upscaling technique proposed in [12] to construct
a∗(x, ω). We proceed as follows.

We generate collocation points or samples according to the distribution informa-
tion of the random parameters. On each collocation point, or sample ωl ∈ Ωs, the
multiscale problem (1.1)–(1.2) becomes deterministic. We first solve the correspond-
ing homogeneous problem to obtain the harmonic coordinates F . Then, we decompose
the harmonic coordinates F into a smooth part g plus a highly oscillatory part χ so
that g is invertible and χ is small. Although F does not need to be invertible, to
motivate the method, we assume temporarily that F is invertible and express u as
a function of F . One important property of the harmonic coordinates is that u as
a function of F is about one order smoother than u as a function of x (see [35]).
Thus, we can write the solution of (1.1) as uε(F ) = uε(g + χ) and formally expand
uε around g. By substituting the leading order expansion into the original equation
(1.1), we obtain an effective equation of form (1.3) after ignoring the higher order
terms involving χ. The effective coefficient a∗(x, ωl) in (1.3) is defined in terms of
aε(x, ωl), g, and χ, i.e.,

a∗(x, ωl) = aε(x, ωl)

(
I +

∂χ

∂x
(x, ωl)

∂x

∂g
(x, ωl)

)
, ωl ∈ Ωs,(1.5)

where I is an identity matrix. Under some conditions, one can show that the solution
to the effective (1.3) is in H2, which is one order smoother than the original multiscale
solution. Thus, we can solve the effective equation on a coarse mesh. Note that
a∗(x, ωl) is still multiscale, but the nonsmooth part of a∗ is divergence free, i.e.,
∇ · (a∂F∂x ) = 0, which will be shown later in this paper. This property will help us
to obtain an upscaled solution u0. This is how we perform model reduction in the
physical dimension.

To perform model reduction in the stochastic dimension, we adopt the Karhunen–
Loève (KL) expansion [26, 29] for the stochastic coefficient or solution. It is well known
that the KL expansion can generate an optimal basis in the sense that it minimizes
the total mean squared error. In our method, the model reduction in the stochastic
dimension consists of two essential parts: (1) a compact parameterization for the
(smooth) effective coefficient a∗(x, ω) and (2) a problem-dependent compact basis to
represent the stochastic solution to the effective (1.3).

In the first step of stochastic model reduction, we compute the truncated KL
expansion of a∗(x, ω),

a∗ij(x, ω) ≈ āij(x) +

M∑
m=1

√
λij,mξij,m(ω)φij,m(x), 1 ≤ i, j ≤ d,(1.6)

and save the KL expansion results. We have used the stochastic collocation samples
(1.5) to estimate the covariance function of a∗(x, ω). This compact representation of
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the effective coefficient enables us to generate a∗(x, ω) very efficiently in the online
stage.

In the second step of stochastic model reduction, we construct a data-driven
stochastic basis by applying the DSM for the effective stochastic equation (1.3). We
assume that f(x, θ) can be approximated by a finite-dimensional basis fk(x), i.e.,

f(x, θ) ≈ ∑K
k=0 ck(θ)fk(x). With such a parameterization of f(x, θ), we first solve

(1.3) with f0(x) as a forcing function, and then use the KL expansion of the solution
to construct the stochastic basis {Ai(ω)}mi=0. For each query f(x, θ), we expand the
solution u∗(x, ω) in terms of the stochastic basis {Ai(ω)}mi=0, i.e.,

u∗(x, ω) ≡
m∑
i=0

Ai(ω)ui(x),

and use the stochastic Galerkin method to determine the expansion coefficient ui(x).
An error analysis is used to evaluate the completeness of the data-driven basis
{Ai(ω)}mi=0. A greedy-type algorithm combined with a two-level preconditioning [21]
is used to reduce the computational cost. First, we solve the error equation on the
coarse grid for each trial function fk(x), k = 1, 2, . . . ,K. We identify the trial function
fk∗ , which gives the maximum error, and solve the error equation again with this trial
function on the fine grid. After that, the KL expansion of the error can be used to
enrich the stochastic basis. This process is repeated until the maximum residual error
is below the prescribed threshold δ. When this updating process terminates, we ob-
tain a compact data-driven basis {Ai(ω)}mi=0 for the effective stochastic equation (1.3)
which applies to all forcing functions. The detailed implementation of this enriching
algorithm depends on specific numerical representation of the stochastic basis, which
will be elaborated in detail in section 4.

We use two different sets of fine and coarse grids in the multiscale model reduction
method and the data-driven stochastic method, respectively. For the multiscale model
reduction in the spatial dimension, the fine grid and coarse grid are chosen to resolve
the multiscale (1.1) and the effective equation (1.3), respectively. However, in the
data-driven stochastic method, we use a fine grid to resolve the effective equation
(1.3), and we choose a much coarser grid to further reduce the computational cost in
training the data-driven stochastic basis.

To clarify, let hMMR
f and hMMR

c denote the fine and coarse mesh sizes in the

multiscale model reduction method, and let hDSMf and hDSMc denote the fine and
coarse mesh sizes in the data-driven stochastic method. In this paper, we have chosen
that hMMR

f < ε < hMMR
c = hDSMf < hDSMc . For instance, in Example 5 of section

6, the smallest scale of the elliptic coefficient is of order ε = 1/65. We choose a
1024 × 1024 fine gird to resolve the multiscale problem, and a 64 × 64 coarse grid
to compute the effective SPDE. To obtain the data-driven stochastic basis for this
effective SPDE, we choose the 64× 64 fine grid to calculate the stochastic basis, and
a 16× 16 grid to do the preconditioning and select the candidate force function.

In the online stage, we expand the solution of (1.3) in terms of the data-driven
stochastic basis and solve a set of coupled deterministic PDEs to obtain the coeffi-
cients. We remark that deriving the effective stochastic equation (1.3) and construct-
ing the data-driven basis {Ai(ω)}mi=0 can be expensive if we solve (1.1) only once for
a given forcing function. However, when we need to solve the same (1.1) many times
with multiple forcing functions, the MsDSM in the online stage offers considerable
computational savings, since our method takes advantage of the model reduction in
both the stochastic and the physical dimensions.
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Fig. 1. The computation time comparison. SCFEM: Stochastic collocation finite element
method. MsDSM: Multiscale DSM on a coarse grid. DSMf: The DSM on a fine grid.

We have carried out complexity analysis to compare the complexity of our method
with that of the stochastic collocation finite element method (SCFEM) as well as with
the DSM on a fine grid (DSMf). Our study shows that the computational saving
of the MsDSM over the SCFEM is quite significant when the number of queries
is large. To illustrate the main idea, we choose one particular example, which is
Example 5 in section 6. In this problem, the smallest scale of the elliptic coefficient
is of order ε = 1/65. We need to use a 1024 × 1024 fine mesh to fully resolve this
multiscale problem if we use either the SCFEM or the DSM. On the other hand,
since the MsDSM solves the effective SPDE, we can use a 64 × 64 relative coarse
mesh to achieve comparable accuracy. Our complexity analysis gives the following
timing models for the three methods: (i) SCFEM: tSCFEM = 18620.01n, (ii) MsDSM:
tMsDSM = 49258.59+18.25n, (iii) tDSM = 47700.90+438.62n, where n is the number
of queries. One can see that the online cost per query for MsDSM is the smallest
(18.25 seconds) among the three methods. The first term in the timing model is the
offline computational cost, which is absent for the SCFEM. We plot the CPU time
comparison in the logarithmic scale in Figure 1. As we can see, the computational
saving of the MsDSM over the SCFEM or the DSM is quite dramatic for n large.
The MsDSM gives superior performance over the SCFEM even for a relatively small
number of queries. More discussions can be found in sections 5 and 6.

The rest of the paper is organized as follows. In section 2, we give a brief intro-
duction of the KL expansion and the gPC basis. In section 3, we review the derivation
of the effective equation for a deterministic multiscale elliptic equation and its ana-
lytic results. We present our derivation of the MsDSM in section 4. In section 5,
we perform complexity analysis and construct several timing models to illustrate the
computational complexities of different methods. In section 6, we discuss some nu-
merical implementation issues and present several numerical results to demonstrate
the accuracy and effectiveness of our method. Finally, some concluding remarks are
given in section 7.

2. Some preliminaries.

2.1. The Karhunen–Loève expansion. In the theory of stochastic processes,
the KL expansion [26, 29] is a representation of a stochastic process as an infinite
linear combination of orthogonal functions. The importance of the KL expansion is
that it yields an optimal basis in the sense that it minimizes the total mean squared
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error.
Consider a probability space (Ω, F, P ), whose event space is Ω and is equipped

with σ-algebra F and probability measure P . Suppose u(x, ω), defined on a compact
spatial domain D ⊆ Rd, is a second-order stochastic process, i.e., u(x, ω) ∈ L2(D×Ω).
Its KL expansion reads as

u(x, ω) = ū(x) +

∞∑
i=1

√
λiξi(ω)φi(x),

where ū(x) = E [u(x, ω)], {λi, φi(x)}∞i=1 are the eigenpairs of the covariance kernel
C(x, y), i.e.,

(2.1)

∫
D

C(x, y)φ(y)dy = λφ(x).

The covariance kernel C(x, y) is defined as

(2.2) C(x, y) = E [(u(x, ω)− ū(x))(u(y, ω) − ū(y))] .

The random variables {ξi(ω)}∞i=1 are defined as

(2.3) ξi(ω) =
1√
λi

∫
D

(u(x, ω)− ū(x))φi(x)dx.

Moreover, these random variables {ξi(ω)} are of zero mean and are uncorrelated, i.e.,
E [ξi] = 0, E [ξiξj ] = δij . Generally, the eigenvalues λi are sorted in descending order
and cluster at zero, and their decay rate depends on the regularity of the covariance
kernel C(x, y). It has been proven that algebraic decay rate, i.e., λk = O(k−γ), is
achieved asymptotically if the covariance kernel is of finite Sobolev regularity or expo-
nential decay, i.e., λk = O(e−γk) for some γ > 0, if the covariance kernel is piecewise
analytical [36]. In general, the decay rate depends on the correlation length of the
stochastic solution. Small correlation length results in slow decay of the eigenvalues.
In any case, anm-term truncated KL expansion converges in L2(D×Ω) to the original
stochastic process u(x, ω) as m tends to infinity. Let εm denote the truncation error;
we have

(2.4) ||εm||2L2(D×Ω) =

∥∥∥∥∥
∞∑

i=m+1

√
λiξi(ω)φi(x)

∥∥∥∥∥
2

L2(D×Ω)

=
∞∑

i=m+1

λi → 0, m→ ∞,

where we have used the biorthogonality of the KL expansion.
In practical computations, we truncate the KL expansion into its first m terms

and obtain the following truncated KL expansion:

(2.5) u(x, ω) ≈ ū(x) +

m∑
i=1

√
λiξi(ω)φi(x).

The truncation error analysis in (2.5) reveals the most important property of KL
expansion. More specifically, given any integer m and orthonormal basis {ψi(x)}mi=1,
we may approximate the stochastic process u(x, ω) by

(2.6) um,ψ(x, ω) = ū(x) +

m∑
i=1

ζi(ω)ψi(x),
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where ζi(ω), i = 1, . . . ,m, are the expansion coefficients. Among all m-term approxi-
mations using an orthonormal basis, the KL expansion given by (2.5) is the one that
minimizes the total mean square error. In this sense, we say that the KL expansion
gives the optimal (or the most compact) basis to represent the stochastic solution in
the energy norm. Due to the biorthogonality of the KL expansion, we will call the
stochastic part of the KL expansion the data-driven basis in the rest of this paper.

2.2. The generalized polynomial chaos basis. In many physical and engi-
neering application problems, randomness generally comes from various independent
sources, so randomness in SPDE (1.1) is often given in terms of independent ran-
dom variables. We assume that the randomness in SPDE (1.1) is given in terms of
r independent random variables, i.e., ξ(ω) = (ξ1(ω), ξ2(ω), . . . , ξr(ω)). Without loss
of generality, we can further assume that such independent random variables have
the same distribution function ρ(x). We get aε(x, ω) = aε(x, ξ1(ω), . . . , ξr(ω)). By
the Doob–Dynkin lemma [34], the solution of (1.1) can still be represented by these
random variables, i.e., uε(x, ω) = uε(x, ξ1(ω), ..., ξr(ω)).

Let {Hi(ξ)}∞i=1 denote the one-dimensional (1D), ρ(ξ)-orthogonal polynomials,
i.e., ∫

Ω

Hi(ξ)Hj(ξ)ρ(ξ)dξ = δij .

For some commonly used distributions, such as the Gaussian distribution and the
uniform distribution, such orthogonal polynomial sets are Hermite polynomials and
Legendre polynomials, respectively. For general distributions, such polynomial sets
can be obtained by numerical methods [39]. Furthermore, by a tensor product rep-
resentation, we can use the 1D polynomial Hi(ξ) to construct an orthonormal basis
Hα(ξ) of L

2 (Ω) as

Hα(ξ) =
r∏
i=1

Hαi(ξi), α ∈ J∞r ,(2.7)

where α is a multi-index and J∞r is a multi-index set of countable cardinality,

J∞r = {α = (α1, α2, . . . , αr) |αi ≥ 0, αi ∈ N} .

The zero multi-index corresponding to H0(ξ) = 1 is used to represent the mean of the
solution. Clearly, the cardinality of J∞r is infinite. In practical computation, we have
to truncate it into a finite set. One possible choice is the set of polynomials whose
total orders are at most p, i.e.,

(2.8) Jpr =

{
α |α = (α1, α2, . . . , αr) , αi ≥ 0, αi ∈ N, |α| =

r∑
i=1

αi ≤ p

}
.

The cardinality of Jpr in (2.8) or the number of polynomial basis functions, denoted

by Np = |Jpr |, is equal to (p+r)!
p!r! . We may simply write such a truncated set as J when

no ambiguity arises. The orthonormal basis Hα(ξ) is the standard gPC basis; see
[7, 24, 41, 25] for more details.

3. Model reduction for a multiscale elliptic equation. In this section, we
give a brief review of the multiscale model reduction method [12]. We will illustrate
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this upscaling method through the deterministic multiscale elliptic equation

−∇ · (aε(x)∇uε(x)) = f(x), x ∈ D,(3.1)

uε(x) = 0, x ∈ ∂D,(3.2)

where D ∈ Rd is a bounded spatial domain and multiscale coefficient matrix aε(x)
is a symmetric, positive definite matrix satisfying λmin(x) ≥ α > 0 (λmin(x) is the
smallest eigenvalue of aε(x)) for x ∈ D. For notational simplicity, in the rest of this
section we omit the superscript ε. Let F (x) = (F1(x), . . . , Fd(x)) be the a-harmonic
coordinates associated with (3.1) in dimension d. Then, Fk (k = 1, . . . , d) satisfies the
elliptic equation

(3.3)

{
−∇ · (a(x)∇Fk(x)) = 0 in D,

Fk = xk on ∂D,

where x = (x1, . . . , xd). Write ũ0 = u ◦ F−1. It is well known that the solution u is
smooth in terms of the harmonic coordinates, i.e., ũ0 is smooth (see [35]). If we make
a decomposition F = g + χ such that g is smooth and invertible, and χ is small with
zero boundary conditions, then we obtain, by applying a formal Taylor expansion to
ũ0 and ignoring the higher order terms,

(3.4) ũ0(F ) = ũ0(g + χ) ≈ ũ0(g) + χT∇gũ0(g).

Let u0(x) = ũ0(g(x)); then we get

(3.5) u(x) = ũ0(F ) ≈ u0(x) + χT
∂x

∂g
∇u0(x).

Furthermore, we have

(3.6) ∇u(x) ≈ ∇u0(x) + ∂χ

∂x

∂x

∂g
∇u0(x) + χT∇

(
∂x

∂g
∇u0(x)

)
.

By substituting (3.6) into (3.1) and eliminating the small terms involving O(χ), we
get a new PDE for u0 as

−∇ · (a∗(x)∇u0(x)) = f(x), x ∈ D,(3.7)

u0(x) = 0, x ∈ ∂D,(3.8)

where a∗(x) = a(x)(I + ∂χ
∂x

∂x
∂g ) denotes the effective coefficient and I is the identity

matrix. Although the above derivation is formal and approximate, we can prove that
the a∗(x) has some nice properties. In [12], error analysis is performed to show that
the difference between the solution of the effective equation (3.7) and the solution of
(3.1) can be bounded in the H1 norm by the maximum norm of the oscillatory part
of the harmonic coordinates. The main result can be summarized in the following
theorem.

Theorem 3.1. Suppose u, F, and u0 are weak solutions to (3.1), (3.3), and (3.7),
respectively. Let u1 = χT ∂x∂g∇u0, F = g + χ, and χ = 0 on ∂Ω. Then we have

(3.9) ‖u− u0 − u1‖H1(Ω) ≤ C

∥∥∥∥∂g∂x
∥∥∥∥
L∞(Ω)

‖χ‖L∞(Ω)

∥∥∥∥det
(
∂x

∂g

)∥∥∥∥
L∞(Ω)

|ũ0|H2(Ω),
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where C is a constant that depends on n, Ω, and a. And ũ0 = u0 ◦ g−1.
In general, the oscillatory part of the harmonic coordinates is small. The smallness

of the oscillatory part will depend on the regularity of the multiscale coefficient of the
problem. In the case when the problem has scale separation and periodic structure,
this method recovers the homogenized equation from the classical homogenization
theory, and the oscillatory part of the harmonic coordinates can be proved to be small
in the H1 norm. One important advantage of this method is that one does not require
the problem to have scale separation or periodic structures. Thus the method can be
applied to solve more challenging problems arising from various physical applications.

Theorem 3.1 indicates that one can first solve (3.7) accurately on a coarse mesh
to obtain u0, and then approximate u by u0 +χT ∂x∂g∇u0. This suggests the following
steps to derive the effective equation.

Step 1. Solve (3.3) on a fine mesh to get harmonic coordinates F .
Step 2. Decompose F = g+χ, where g is smooth and χ is small with χi= 0 on

∂D.
Step 3. Solve (3.7) on a coarse mesh to get u0.
Step 4. Approximate u by u0 + χT ∂x∂g∇u0.
The first and second steps are solved in the offline stage. We can store the

information about g and χ so that we could compute u0 efficiently for different f .
The remaining steps are solved very efficiently on a coarse mesh in the online stage.
In [12], the authors gave some guidelines on how to construct the decomposition of
the harmonic coordinates. The first criterion is to make sure that g is smooth and
invertible. The second criterion is to make χ small. A simple but effective way to
construct g is to choose the nodal values of g at the coarse mesh points to be the
local average of F around these coarse mesh points [12]. One can then interpolate g
from the coarse mesh points to the fine mesh points using the linear finite element
interpolation. Then χ is given by χ = F − g. Since F is linear on the boundary, such
a decomposition guarantees that g = F on the boundary, which implies that χ = 0
on ∂Ω.

4. Multiscale data-driven stochastic method. It is extremely challenging
to solve the SPDE involving multiple scales. We not only need to use a very fine mesh
to resolve the small scales of the solution in the physical dimension, but we also need
to approximate the solution in the stochastic space whose dimension could be high. In
applications, we often need to solve the same SPDE many times with multiple forcing
functions or boundary conditions, which is known as the multiquery problem. It is
computationally infeasible to solve a multiquery multiscale stochastic problem using
traditional methods. In this paper, we propose a multiscale data-driven stochastic
method (MsDSM) to reduce the computational complexity of solving the multiquery
multiscale stochastic problem.

Our MsDSM consists of offline and online stages. In the offline stage, we generate
collocation points or samples according to the distribution information of the random
parameters [43]. On each collocation, or sample, point, the multiscale problem (1.1)-
(1.2) becomes a deterministic one. We derive an effective stochastic equation that can
be resolved on a coarse grid. We then construct a data-driven stochastic basis which
gives a compact representation for the solutions of the effective stochastic equation for
a broad range of forcing functions and/or boundary conditions. In the online stage,
we represent the multiscale stochastic solution in terms of this data-driven stochastic
basis, and we need only solve a small number of coupled deterministic PDEs. This
leads to considerable computational savings when we need to solve the same multiscale
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stochastic PDE many times with multiple queries.

4.1. Derivation of the effective equation for a stochastic partial differ-
ential equation involving multiple scales. We use the stochastic elliptic equa-
tions (1.1)–(1.2) described in the introduction as an example to illustrate the main
idea. It is important to note that the effective coefficient a∗(x) derived in (3.7) depends
only on the multiscale coefficient and decompositions of the harmonic coordinates, and
does not depend on the forcing term. Therefore, we can apply this idea to upscale
the multiscale stochastic coefficient in (1.1). For each collocation, or sample, point
ωl ∈ Ω, the multiscale problem (1.1)–(1.2) becomes a deterministic PDE. We first
solve the corresponding homogeneous problem with specified boundary conditions to
obtain the harmonic coordinates F . Then, we decompose the harmonic coordinates
F into a smooth part g plus a highly oscillatory part χ: F = g+χ. According to the
analysis in section 3, the effective coefficient can be given in terms of aε(x, ωl), g, and
χ, i.e.,

a∗(x, ωl) = aε(x, ωl)

(
I +

∂χ

∂x
(x, ωl)

∂x

∂g
(x, ωl)

)
, ωl ∈ Ωs,(4.1)

where I is the identity matrix. The effective coefficient in (4.1) is valid for each
sample ωl in the sample space Ωs. Looping over all the samples, we can obtain
effective stochastic equations of the following form:

−∇ · (a∗(x, ω)∇u∗(x, ω)) = f(x, θ), x ∈ D,ω ∈ Ωs, θ ∈ Θ,(4.2)

u∗(x, ω) = 0, x ∈ ∂D.(4.3)

According to the analysis in section 3, the solution to the effective equation (4.2) is
one order smoother than the original multiscale equation (1.1). Thus, we can solve
the effective equation (4.2) on a coarse mesh.

To save memory, we compute the M -term truncated KL expansion of each entry
of the a∗(x, ω) in (4.2),

a∗ij(x, ω) ≈ āij(x) +

M∑
m=1

√
λij,mξij,m(ω)φij,m(x), 1 ≤ i, j ≤ d.(4.4)

Then, we expand the stochastic basis ξij,m(ω) in the gPC basis Hα(ξ) with the index
given by (2.8), i.e.,

ξij,m(ω) =
∑
α∈J

ξij,mαHα(ξ(ω)), 1 ≤ i, j ≤ d.(4.5)

The expansion coefficient ξij,mα is given by ξij,mα = E[ξij,m(ω)Hα(ξ(ω))]. To com-
pute the expectation in the KL expansion (4.4) or expansion coefficient (4.5), we
choose the quadrature rules based on the sparse grids [43]. For instance,

ξij,mα = E[ξij,m(ω)Hα(ξ(ω))] ≈
L∑
l=1

ξij,m(ωl)Hα(ξ(ωl))sl, ωl ∈ Ωs,

where sl are the associated weights, and L is the number of sparse grids. If we choose
Monte Carlo method to generate the samples, we use the sample average to compute
the expectations.
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In addition, we compute the correction term (χT ∂x∂g )(x, ω) in the offline stage.
Actually, this can be done simultaneously when we derive the effective stochastic
equation. For each collocation, or sample, point ωl ∈ Ωs, after we decompose the
harmonic coordinates F into a smooth part g and a highly oscillatory part χ, we can
compute the correction vector term (χT ∂x∂g )(x, ωl). Based on these samples, we can

calculate the N -term truncated KL expansion of the correction term χT ∂x∂g (x, ω), i.e.,

χT
∂x

∂g
(x, ω) = c̄(x) +

N∑
n=1

√
λnϑn(ω)ψn(x).(4.6)

Furthermore, we expand the stochastic basis ϑn(ω) in the gPC Hα(ξ) with the index
given by (2.8), i.e.,

ϑn(ω) =
∑
α∈J

ϑαnHα(ξ(ω)),(4.7)

where the expansion coefficient ϑαn is given by ϑαn = E[ϑn(ω)Hα(ξ(ω))].

4.2. The data-driven stochastic basis for the effective stochastic equa-
tion. In this subsection, we consider the model reduction in the stochastic dimension
for the effective equation (4.2). We first summarize the assumptions that we make
for aε(x, ω) and f(x, θ) as follows:

• The coefficient aε(x, ω) in (1.1) is given in terms of r independent random
variables, i.e., aε(x, ω) = aε(x, ξ(ω)) = aε(x, ξ1(ω), . . . , ξr(ω)). Therefore, by
the Doob–Dynkin lemma, the harmonic coordinates as well as the effective
coefficient a∗(x, ω) in (4.2) can still be represented by these random variables,
i.e., a∗(x, ω) = a∗(x, ξ(ω)) = a∗(x, ξ1(ω), . . . , ξr(ω)).

• The order of the gPC basis Hα(ξ) is sufficiently high to properly represent
the stochastic coefficients and solutions in (1.1) and (4.2).

• The force f(x, θ) in (4.2) can be expanded into a finite-dimensional basis

fk(x), i.e., f(x, θ) ≈ ∑K
k=0 ck(θ)fk(x), and well-resolved on a coarse mesh,

with mesh size h� ε.
We now begin our construction of the data-driven stochastic basis for the effective
stochastic equation (4.2). In the data-driven method, we use a fine grid to discretize
the effective equation (4.2). To reduce the offline computation, we choose a much
coarser grid to select the candidate force function.

Due to limitations of space, we discuss only the data-driven stochastic basis in
stochastic collocation representation. The DSM consists of two steps, i.e., initial
leaning and update steps. See Figure 2 for the general framework of the DSM. We
refer the reader to [11] for more details.

In the initial learning step of the DSM, we first use the stochastic collocation
method to generate L collocation points ωl according to the distribution of the coef-
ficient aε(x, ω) in (1.1) as well as the associated weights sl. Then, we solve (4.2),(4.3)
with the random variable evaluated at the collocation grid points and f0(x) as the
right-hand side,

−∇ · (a∗(x, ωl)∇u∗(x, ωl)) = f0(x), x ∈ D, l = 1, . . . , L,(4.8)

u(x, ωl) = 0, x ∈ ∂D.(4.9)

By solving (4.8)–(4.9), we can obtain the values of the stochastic solution u∗(x, ω; f0)
on the collocation points, i.e., {u∗(x, ωl; f0)}Ll=1. The m1-term KL expansion of the
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for fk, k = 1, 2, ...K

{Ai}

Solve SPDE for f0

Construct inital stochastic basis

Terminated‖τk∗‖ < ε

Enrich stochastic basis {Ai}

via KLE of τk∗

Solve for residual τk

C
oarse

G
rid

max residual τk∗

F
in
e
G
rid

N

Y

Solve residual τk∗

Fig. 2. Greedy stochastic basis enriching algorithm on a coarse-fine grid hierarchy.

solution u∗(x, ω; f0) gives the dominant components in the random space. We use the
decaying property of eigenvalues to select parameterm1; i.e., the number of stochastic
basism1 can be chosen such that λm1+1/λ1 is smaller than some predefined threshold,
say, 10−4. We denote the truncated KL expansion as

u∗(x, ω; f0) ≈ ū(x; f0) +

m1∑
i=1

√
λiAi(ω)φi(x; f0).(4.10)

We call the stochastic basis {Ai(ω)}m1

i=0 in (4.10) the data-driven stochastic basis,
where A0(ω) = 1. Furthermore, we would like to expand the stochastic basis Ai(ω)
in a gPC basis Hα(ξ), i.e.,

Ai(ω) =
∑
α

AαiHα(ξ(ω)).(4.11)

The expansion coefficient Aαi is given by

Aαi = E[Ai(ω)Hα(ξ(ω))] ≈
L∑
l=1

Ai(ωl)Hα(ξ(ωl))sl, α ∈ J,(4.12)

where ωl and sl are the sparse grid points and the associated weights, respectively.
We use the Np-by-(m1+1) matrix A to denote the expansion coefficient Aαi, which is
essentially the data-driven stochastic basis in the stochastic collocation representation.
In general, the stochastic basis constructed by using f0 may not be adequate to give
an accurate approximation of the SPDE for another right-hand side, f(x, θ). We need
to supplement the stochastic basis by using multiple trial functions involving other
fk.

In the preconditioning and update step of our DSM, we propose a greedy-type
algorithm and adopt a two-level preconditioning strategy [22] to enrich the stochastic
basis. First, we perform an error analysis. Given a new right-hand side f1(x) =
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f(x, θ) for some choice of θ, we expand the solution in terms of the stochastic basis,
{Ai(ω)}m1

i=0,

u∗(x, ω; f1) ≈ ū(x; f1) +

m1∑
i=1

Ai(ω)ui(x; f1) ≡
m1∑
i=0

Ai(ω)ui(x; f1).(4.13)

In the rest of this subsection, we also use ui(x) ≡ ui(x; f1) for simplification. We use
the standard stochastic Galerkin method to obtain the coefficient ui(x). Specifically,
we substitute the expansion (4.13) into (4.2), multiply both sides by Aj(ω), and take
expectations. This gives rise to a coupled PDE system for the expansion coefficient
ui(x),

−∇ · (E[a∗AiAj ]∇ui) = f1(x)E[Aj ], x ∈ D, j = 0, 1, . . . ,m1,(4.14)

ui(x) = 0, x ∈ ∂D,(4.15)

where Einstein summation is assumed. The term E[a∗AiAj ] can be calculated by the
stochastic collocation method. Solving the coupled deterministic PDE system (4.14)–
(4.15) by a finite element method (FEM) or a finite difference method (FDM), we ob-
tain the expansion coefficient {ui(x)}m1

i=0 and an approximate solution for u∗(x, ω; f1)
given by (4.13). We know that the exact solution can be written as

u∗(x, ω; f1) =
m1∑
i=0

Ai(ω)ui(x; f1) + τ(x, ω; f1),(4.16)

where τ(x, ω; f1) is the error. Simple calculations show that the error satisfies the
following equation:

−∇ · (a∗(x, ω)∇τ(x, ω; f1)) = f1(x) +

m1∑
i=0

∇ · (a(x, ω)Ai(ω)∇ui(x)).(4.17)

For a different fk, we can obtain a similar error equation for the error τ(x, ω; fk)
by replacing f1 by fk in the above error equation. To verify the effectiveness of
the stochastic basis, we solve the error (4.17) on a coarse grid for each fk(x), k =
1, . . . ,K, and obtain the error {τ(x, ω; fk)}Kk=1. If max1≤k≤K ||τ(x, ω; fk)|| < δ, then
we consider this stochastic basis complete. Here, we choose || · || as the L2 norm of the
variance of the stochastic solution. Otherwise, we identify the maximum error τk∗ =
max1≤k≤K ||τ(x, ω; fk)|| and the corresponding trial function fk∗(x). Subsequently,
we solve the residual (4.17) for this trial function fk∗(x) one more time on a fine grid.
Again, we perform the KL expansion for the residual solution τ(x, ω; fk∗), and extract
several dominant components in the random space, and use them as a supplement to
the current stochastic basis. To improve the numerical stability, we apply some stable
orthogonalization procedures, such as the modified Gram–Schmidt process, to produce
an orthogonal basis. We use {Ai(ω)}m2

i=0 to denote the updated stochastic basis. This
process is repeated until the maximum residual is below a prescribed threshold ε0. We
project the stochastic basis denoted by {Ai(ω)}mi=0 into the generalized polynomial
chaos basis according to (4.11), (4.12) and save only the Np-by-(m+1) matrix A.

In the online stage, for each query f(x, θ) in (1.1), the corresponding stochastic
solution uε(x, ω) can be approximated by the MsDSM solution in two steps. First,
with our data-driven stochastic basis {Ai(ω)}mi=0, we use the standard stochastic
Galerkin method to solve the effective stochastic equation (4.2) to obtain u∗(x, ω).
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Then we obtain the approximate solution by adding correction terms into u∗(x, ω),
i.e.,

uε(x, ω) ≈ uMsDSM (x, ω) ≡ u∗(x, ω) + χT
∂x

∂g
(x, ω)∇u∗(x, ω).(4.18)

The construction of the effective stochastic equation (4.2) and the data-driven stochas-
tic basis {Ai(ω)}mi=0 could be expensive. However, in a multiple query problem, the
MsDSM offers considerably more computational savings than traditional methods be-
cause of the model reduction in both the physical and stochastic dimensions. We will
demonstrate this through several numerical examples in section 6.

Remark 4.1. It is important to point out that since our methods involve the
computation of global harmonic coordinates, the memory consumption becomes a se-
rious issue when the ratio of the smallest scale and the largest scale in the stochastic
multiscale problem (1.1) becomes extremely small. We have proposed a multiscale mul-
tilevel Monte Carlo (MsMLMC) method [13], which is mainly based on the localized
upscaling method and multilevel Monte Carlo method, to address this issue.

4.3. The complete algorithm of the multiscale data-driven stochastic
method. In this section, we give the complete algorithm of the MsDSM to solve the
multiscale stochastic equation in a multiquery setting. Our method consists of offline
and online stages. Since the online stage is pretty straightforward and was presented
in section 4.2, we state only the offline computation algorithm as follows.

MsDSM offline computation.
• (I) (Preparations):

– Set error threshold δ; divide the spatial domain D into different grids
with size hMMR

f < ε < hMMR
c = hDSMf < hDSMc .

– Approximate f(x, θ) by a finite-dimensional basis {fk(x)}Kk=0, that is,

f(x, θ) ≈ ∑K
k=0 ck(θ)fk(x).

– Generate the gPC basis Hα(ξ), the sparse grid points ωl and its associ-
ated weights sl, l = 1, . . . , L.

• (II) (Derive the effective SPDE and calculate the correction term on the gird
with size hMMR

f ):
– Loop over all sparse grids, get harmonic coordinates, and obtain the

effective SPDE (4.2).
– Compute (4.4)–(4.5) to obtain a compact representation of the effective

stochastic coefficient.
– Compute the correction term (χT ∂x∂g ) as well as its KL expansion (4.6)–

(4.7).
• (III) (Construct the DSM basis for effective SPDE):

– Step III.1 (Initial learning on the grid with size hDSMf ):
∗ Solve (4.2) with f0(x) as a forcing function to obtain u∗(x, ω; f0).
∗ Calculate the truncated KL expansion of u∗(x, ω; f0), and use the
first m1 terms of the stochastic modes to obtain the current data-
driven basis {Ai(ω)}m1

i=0, where A0(ω) = 1.
– Step III.2 (Preconditioning on the grid with size hDSMc ):

∗ For each fk(x), solve (4.2) utilizing the current stochastic basis
{Ai(ω)}m1

i=0 and the stochastic Galerkin method to obtain the DSM
solution u∗DSM (x, ω; fk).

∗ For each fk(x), solve an error (4.17) to obtain the approximate
residual error τk = τ(x, ω; fk).
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∗ If max1≤k≤K ||τk|| < δ, then goto Step III.4; otherwise set
k∗ = argmax1≤k≤K ||τk|| and fk∗(x), and goto Step III.3.

– Step III.3 (Update on the grid with size hDSMf ):
∗ Solve the error equation associated with fk∗(x) to obtain the residual
error τk∗ = τ(x, ω; fk∗).

∗ Enrich the current stochastic basis {Ai(ω)}m1

i=0 by the KL expansion
of τk∗ , and use {Ai(ω)}m2

i=0 to denote the updated stochastic basis.
Goto Step III.2.

– Step III.4 (Termination):
∗ Save the data-driven stochastic basis {Ai(ω)}mi=0 and relevant sta-
tistical quantities.

• (IV) (Save the relevant data):
– Save the data-driven stochastic basis {Ai(ω)}mi=0 and the KL expansion

of correction term (χT ∂x∂g ).

5. Computational complexity analysis. The computational time of the
MsDSM consists of both offline and online parts. The offline computation can be
very expensive if we use a brute-force way to construct the data-driven basis. In
this section, we will demonstrate through computational complexity analysis that the
overhand time of offline computation is acceptable, and the online computation is “su-
per fast.” It is well known that the stochastic collocation method is very effective in
solving an SPDE when the stochastic solution is smooth in the stochastic dimension.
Therefore, we choose the stochastic collocation finite element method (SCFEM) as
a benchmark, and compare the computational cost of the MsDSM and the SCFEM.
We will compare the performance of the MsDSM and the DSM as well.

In [11], the authors have already done a thorough study and have explained why
DSM is superior to the traditional methods, such as the gPC, stochastic collocation,
and Monte Carlo methods in a multiquery setting. The same property still holds
for the MsDSM, since it is designed with the same technique. In our numerical
experiments, we find that the offline computational costs of the MsDSM and DSM
have the same order of magnitude. However, due to the model reduction (upscaling)
in the physical domain, the MsDSM offers more computational savings in the online
stage than the DSM.

We will demonstrate this by solving a model problem, i.e., (1.1) on D = [0, 1]×
[0, 1] with the coefficient given by

aε(x, ω) = 0.1 + ξ1(ω)
2 + 1.8 sin(2πx1/ε1)

2 + 1.8 sin(2πx2/ε1)
(5.1)

+ ξ2(ω)
2 + 1.8 sin(2πx2/ε2)

2 + 1.8 cos(2πx1/ε2)
+ ξ3(ω)

2 + 1.8 cos(2πx1/ε3)

2 + 1.8 sin(2πx2/ε3)
,

where {εi}3i=1 are multiscale parameters, and {ξi}3i=1 are independent uniform random
variables in [0, 1].

Let Nh and J denote the number of the physical grid points and sparse grid
points, respectively. We assume that in all tests, level six sparse grids in the SCFEM
will give an accurate result. Therefore, we choose J = 135. All the simulations and
comparisons were conducted on a single computing node with 16 GB memory at the
Caltech Center for Advanced Computing Research (CACR).

D
ow

nl
oa

de
d 

04
/3

0/
15

 to
 1

31
.2

15
.7

0.
23

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

188 ZHIWEN ZHANG, MAOLIN CI, AND THOMAS Y. HOU

Table 1

Computational time of the linear equation solver for one collocation point. (Time: Sec.)

Nh = 322 Nh = 642 Nh = 1282 Nh = 2562 Nh = 5122 Nh = 10242

0.0065 0.0359 0.2577 1.6490 18.6875 140.0816

5.1. The computational cost of the stochastic collocation finite element
method solver. We first show the computational cost of solving (1.1) once using the
stochastic collocation method in Table 1 (the same result can be applied to a Monte
Carlo solver). The SCFEM is very effective if the SPDE solution is smooth in the
stochastic dimension; however, when the SPDE solution has multiscale features in the
physical dimension, the SCFEM becomes very expensive as demonstrated in Table 1.
For instance, it takes about 1.89 × 104 (135 × 140.0816) seconds to obtain a single
query result on a 10242 mesh grid. Let tSCFEM denote the computational time of
the SCFEM solver for one forcing function; then tSCFEM is approximately given by

tSCFEM ≈ 2.45× 10−7JN1.5
h .(5.2)

5.2. The computational cost of the multiscale data-driven stochastic
and the data-driven stochastic solvers. Both the MsDSM and the DSM consist
of offline and online computational cost. In [11], the authors performed a complexity
analysis for the DSM and compared it with other commonly used methods in the mul-
tiquery setting, such as the gPC, stochastic collocation, and Monte Carlo methods.
They adopted the randomized singluar value decomposition (SVD) algorithm and a
two-level preconditioning method to reduce the overhead time in the offline comput-
ing. They demonstrated through computational complexity analysis and numerical
examples that with the help of all the cost-saving measures, the DSM is superior to
the traditional method if one needs to solve (1.1) with a relatively small number of
queries. The MsDSM inherits all these cost-saving measures when we construct the
DSM basis for the effective SPDE. The only extra computational cost stems from the
derivation of the effective SPDE and calculating its correction term. Roughly speak-
ing, this part of the computational cost is equivalent to solving (1.1) with two forcing
functions. In Table 2, we list the offline computational cost of the MsDSM and the
DSM on a different mesh, where we fix the basis number m = 7. We also list the cost
of SCFEM for one forcing function, where the CPU time on one collocation point
is obtained by the time model (5.2) and J=135. One can see that the offline com-
putational costs of the MsDSM and the DSM have the same order of magnitude. In
addition, the offline computational cost of the MsDSM and the DSM is approximately
equal to the cost of performing SCFEM for several different forcing functions.

We assume that the data-driven basis with seven modes gives sufficient approxi-
mation to the solution space. Let tDSMoff and tMsDSMoff denote the computational
time of DSM and MsDSM in the offline stage, respectively. Then, they are approxi-
mately given by

tDSMoff ≈ 7.65× 10−5N1.5
h ,

tMsDSMoff ≈ 1.52× 10−4N1.5
h .(5.3)D
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Table 2

Computational time of the offline computation. (Time: Sec.) m = 7.

Grid number Nh = 3362 Nh = 3602 Nh = 3842

DSM 1790.1 2341.8 2640.1
MsDSM 2092.3 2466.6 3188.3
SCFEM 664.3 811.5 978.5

Grid number Nh = 4082 Nh = 4322 Nh = 4562 Nh = 4802

DSM 3167.4 3870.5 4522.3 5138.9
MsDSM 3662.5 4305.8 4960.2 5673.5
SCFEM 1166.5 1376.7 1610.3 1868.4

In the online stage of the MsDSM or the DSM, we use the standard Galerkin
method to solve (1.1). In the multiple query setting, the stiffness matrix S for the
DSM or the MsDSM solver is fixed and the load vector b is different for each query.
We can compute the Cholesky decomposition of S in advance, and the computational
time is decided only by the forward and backward substitutions in solving the linear
equation system. Actually, we can do the Cholesky decomposition of the stiffness
matrix S = LLT in the offline stage, and save only the decomposition result L.
The computational time of Cholesky decomposition is negligible compared with the
training data-driven basis. Thus, we do not consider this part of the cost.

Let tfb denote the time of forward and backward substitutions. In Table 3, we
list the computation time of tfb for different mesh grids and basis numbers. If we
choose m = 7, then tfb is approximately given by

tfb ≈ 1.27× 10−6N1.4
h .(5.4)

Roughly speaking, if the MsDSM is applied on a coarse grid with a coarsening factor
C in each direction, the speedup would be ∼ (C2)1.4 in the online stage for each query.
For example, if C = 16, the speedup is ∼ 2352 (2561.4). This essentially reveals the
power of the upscaling method.

Remark 5.1. We do not consider the computational time of adding correction
terms to the MsDSM solution here. From numerical results in section 6, we can find
that this part of the cost is also very small compared to the SCFEM solver.

Remark 5.2. The stiffness matrix S is a sparse positive definite matrix; however,
the Cholesky decomposition matrix L is not sparse anymore. Before we perform the
Cholesky decomposition, we reorder the matrix S using the approximate minimum
degree (AMD) algorithm to ensure the least fill-in. However, when the scale of the
stiffness matrix becomes large, the fill-in will become a serious problem, and the direct
method will break down. We can find a good preconditioner, and design an effective
iterative method, but this is beyond the scope of this paper and will be reported in our
subsequent paper.

6. Numerical examples. In this section, we perform numerical experiments to
test the performance and accuracy of the proposed MsDSM. We also demonstrate the
computational efficiency of MsDSM over the traditional method, such as the stochastic
collocation finite element method (SCFEM), in solving the multiquery problems with
multiscale features. Finally, we compare the computational cost and accuracy of the
MsDSM and the DSM in solving multiscale problems.

D
ow

nl
oa

de
d 

04
/3

0/
15

 to
 1

31
.2

15
.7

0.
23

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

190 ZHIWEN ZHANG, MAOLIN CI, AND THOMAS Y. HOU

Table 3

Computational time of forward/back substitution. (Time: Sec.) m is the basis number. The
data marked with an asterisk is obtained by extrapolation.

Grid Number Nh = 642 Nh = 1282 Nh = 2562 Nh = 5122 Nh = 10242

m=5 0.0626 0.4102 2.4672 17.0917 (*)114.5388
m=7 0.1281 0.8383 5.4933 (*)37.5849 (*)255.0034
m=9 0.2347 1.5620 10.3214 (*)66.6531 (*) 438.6207

6.1. Comparison of the MsDSM and the SCFEM.

Example 1. We consider the following stochastic elliptic equation with multiple
scales on D = [0, 1]× [0, 1]:

−∇ · (aε(x, y, ω)∇uε(x, y, ω)) = f(x, y, θ), (x, y) ∈ D,ω ∈ Ω, θ ∈ Θ,(6.1)

uε(x, y, ω) = 0, (x, y) ∈ ∂D.(6.2)

The multiscale information is described by the multiscale coefficient matrix aε(x, y, ω) =
aε0(x, y, ω)I2×2. The scalar function aε0(x, y, ω) is given by

aε0(x, y, ω) = 0.1 +
ξ1(ω)

2 + 1.6 sin(2π(x− y)/ε1)
+

ξ2(ω)

4 + 1.8(sin(2πx/ε2) + sin(2πy/ε2))

+
ξ3(ω)

10(2 + 1.8 sin(2π(x− 0.5)/ε3))(2 + 1.8 sin(2π(y − 0.5)/ε3))
,(6.3)

where ε1 = 1/3, ε2 = 1/11, and ε3 = 1/19, and {ξi}3i=1 are independent uniform ran-
dom variables in [0, 1]. In Figure 3, we plot four samples of the coefficient aε0(x, y, ω).
One can see that the coefficient oscillates very rapidly, which will generate small-scale
features in the stochastic solution.

In our computations, we use the standard FEM to discretize the spatial dimension.
We choose a 384×384 fine mesh to well resolve the spatial dimension of the stochastic
solution uε(x, y, ω). Since the stochastic solution uε(x, y, ω) is smooth in the stochastic
dimension, we use the sparse-grid based stochastic collocation method to discretize
the stochastic dimension. First, we conduct a convergence study and find that the
relative errors of mean and STD between the solutions obtained by level seven sparse
grids in the SCFEM and higher-level sparse grids are smaller than 0.1% both in the
L2 and H1 norms. Therefore, we choose level seven sparse grids with 207 points in
the SCFEM and the MsDSM when we compare the computational cost of these two
different methods. The reference solution is obtained by using higher-level sparse
grids.

To implement the MsDSM, the coarse meshes are chosen to be 8 × 8, 16 × 16,
32 × 32, and 64 × 64, respectively, and we compare the results on different meshes
and calculate the convergence rate. We remark that in the MsDSM, the forcing
function f(x, y, θ) should be well-resolved by the coarse mesh; otherwise the numerical
error will be large. We choose F = {sin(kiπx + φi) cos(liπy + ϕi)}20i=1, where ki and
li are uniformly distributed over the interval [0, 4], while φi and ϕi are uniformly
distributed over the interval [0, 1] as the function class of the right-hand side in the
preconditioning of the MsDSM method. We use this random training strategy to
reduce the computational cost.

Multiquery results in the online stage. The MsDSM solver using 207 sparse grids
in the computation produces m = 7 modes in the data-driven stochastic basis. In
the online stage, we use them to solve the effective equation of the multiscale SPDE
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Fig. 3. Some coefficient samples of a(x, y, ω).

(6.1). We randomly generate 50 force functions of the form f(x, y) ∈ {sin(kiπx +
li) cos(miπx + ni}50i=1, where ki, li, mi, and ni are random numbers. In Figures 4
and 5, we show the relative errors of mean and STD of the MsDSM solution in the
L2 norm and the H1 norm, respectively. In Tables 4 and 5, we list the mean of the
relative errors for these 50 force functions on different coarse mesh grids. One can
observe that the MsDSM solution converges approximately at a rate of O(h1.5) in the
L2 norm and O(h1) in the H1 norm.

In Figure 6, we show the mean and STD of the solution corresponding to f(x, y) =
sin(3.1πx+0.2) cos(0.5πy−0.3). It can be seen that the mean and STD of the MsDSM
solution match the exact solution very well. We also show the contour plot of the
mean of the solution corresponding to f(x, y) = sin(3.1πx + 0.2) cos(0.5πy − 0.3) in
Figure 7. One can see the heterogeneous structures of the multiscale solution.

To further test the performance of the MsDSM, we compare the solutions on
a coarse grid obtained with and without numerical upscaling. Specifically, on the
coarse grid with Nc = 64, we calculate the finite element solution of (6.1) (where the
coefficient is chosen as the local average of aε(x, y, ω) around these coarse mesh grids)
and interpolate these solutions from coarse grids to fine grids. We also calculate the
MsDSM solution with small scale correction. In Figure 8, we plot the relative errors
of mean and STD of these two solutions in the H1 norm. Clearly, the MsDSM solver
can effectively capture the small scale of the SPDE solutions.

Comparison of the MsDSM solver with the SCFEM solver. For the SCFEM
solver, it will take 1648.38 seconds to solve (6.1) with one specific forcing term
f(x, y, θ). Thus in a multiquery problem, if we need to solve (6.1) with n differ-
ent forcing terms f(x, y, θ), the total computational cost will be tSCFEM = 1648.38n.
If we choose Nc = 64 in the MsDSM solver, the offline computation will cost 4732.66
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Fig. 4. The mean and STD error of the MsDSM in the L2 norm. Nc is the coarse grid number
in each direction.
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Fig. 5. The mean and STD error of the MsDSM in the H1 norm. Nc is the coarse grid number
in each direction.

seconds, which includes the computational time for deriving an effective SPDE, cal-
culating correction term, and constructing DSM basis for the effective SPDE. In the
online stage of the MsDSM, it takes 1.27 seconds to compute each query, and thus
the total computational cost will be tMsDSM = 4732.66 + 1.27n. We plot the total
computational time in Figure 9. One can see that the MsDSM offers considerable
computational savings over the SCFEM and is helpful if we need to solve the same
SPDE many times with multiple forcing functions. Simple calculation shows that if
we need to solve the original SPDE with more than three different forcing functions,
the MsDSM will be superior to the SCFEM.

Example 2. In this example, we consider the SPDE (6.1)–(6.2) on D = [0, 1] ×
[0, 1] with the coefficient given by aε(x, y, ω) = aε0(x, y, ω)I2×2. The scalar function
aε0(x, y, ω) is a random linear combination of five fixed coefficient fields plus a constant,
i.e.,

aε0(x, y, ω) =
5∑
i=1

ξi(ω)ki(x, y) + 0.5,(6.4)

where {ξi}5i=1 are independent uniform random variables in [0, 1], and ki(x, y), i =
1, . . . , 5, are fixed coefficient fields without scale separation. Specifically, ki(x, y) =
|θi(x, y)|, where θi(x, y), i = 1, . . . , 5 are defined on 3 × 3, 5 × 5, 9 × 9, 17 × 17, and
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Table 4

The relative error of mean in the L2 and H1 norms.

Mesh size L2 rate H1 rate

hc = 1
8

0.0698 0.2253

hc = 1
16

0.0221 1.6592 0.1114 1.0161

hc = 1
32

0.0078 1.5025 0.0552 1.0130

hc = 1
64

0.0031 1.3312 0.0223 1.3076

Table 5

The relative error of STD in the L2 and H1 norms.

Mesh size L2 rate H1 rate

hc = 1
8

0.0763 0.3305

hc = 1
16

0.0230 1.7300 0.1880 0.8139

hc = 1
32

0.0076 1.5976 0.1059 0.8280

hc = 1
64

0.0036 1.0780 0.0465 1.1874

31× 31 grids over the domain D. For each grid cell, the value of θi(x, y) is normally
distributed. In Figure 10, we show four samples of the coefficient aε0(x, y, ω). One can
see that the coefficients are very rough and do not satisfy scale separation or have any
periodic structure. The implementations of the SCFEM and the MsDSM are exactly
the same as in the previous example.

Multiquery results in the online stage. The MsDSM solver using 903 sparse grids
in the computation produces m = 8 modes in the data-driven stochastic basis. In
the online stage we use them to solve the effective equation of the multiscale SPDE
(6.1). We randomly generate 50 force functions of the form f(x, y) ∈ {sin(kiπx +
li) cos(miπx + ni}50i=1, where ki, li, mi, and ni are random numbers. In Figures 11
and 12, we show the relative errors of mean and STD of the MsDSM solution in the
L2 norm and the H1 norm, respectively. In Tables 6 and 7, we list the mean of the
relative errors for these 50 force functions on different coarse mesh grids. One can
observe that the MsDSM solution converges approximately at a rate of O(h1.5) in the
L2 norm and O(h1) in the H1 norm.

Comparison of the MsDSM solver with the SCFEM solver. For the SCFEM
solver, it will take 7626.34 seconds to solve (6.1) with one specific forcing term
f(x, y, θ). Thus in a multiquery problem, if we need to solve (6.1) with n differ-
ent forcing terms f(x, y, θ), the total computational cost will be tSCFEM = 7626.34n.
If we choose Nc = 64 in the MsDSM solver, the offline computation will cost 21231.56
seconds. In the online stage of the MsDSM, it takes 1.82 seconds to compute one
query, and thus the total computational cost will be tMsDSM = 21231.56 + 1.82n.
The MsDSM offers considerable computational savings over the SCFEM and is help-
ful if we need to solve the same SPDE with more than three different forcing functions.

Example 3. We consider the SPDE (6.1)–(6.2) on D = [0, 1] × [0, 1] with a
high-contrast random coefficient. The elliptic coefficient is given by aε(x, y, ω) =
aε0(x, y, ω)I2×2, with aε0(x, y, ω) given by a random high-contrast field. Specifically,
aε0(x, y, ω) is a random linear combination of inclusion fields and channel fields plus a
constant, i.e.,

aε0(x, y, ω) =

3∑
i=1

ξi(ω)ki(x, y) + 1.0,(6.5)

where {ξi}3i=1 are independent uniform random variables in [0, 1], k1(x, y) is an in-
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Fig. 6. Profiles of the mean and STD solution.
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Fig. 7. Contour plot of the mean solution.

clusion field, and k2(x, y) and k3(x, y) are two channel fields. In Figure 13(a)–(c),
we show the inclusion field and channel field, respectively, while in Figure 13(d)–(f)
we show three samples of the coefficient aε0(x, y, ω). One can see the diversity of the
random high-contrast coefficients. This presents a challenging test problem for the
MsDSM. The implementations of the SCFEM and the MsDSM are exactly the same
as in the previous examples.

Multiquery results in the online stage. The MsDSM solver using 207 sparse
grids in the computation produces m = 10 modes in the data-driven stochastic basis.
In the online stage we use them to solve the effective equation of the multiscale SPDE
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Fig. 8. The effectiveness of the numerical upscaling.
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Fig. 9. The computation time comparison.

(6.1). We randomly generate 50 force functions of the form f(x, y) ∈ {sin(kiπx +
li) cos(miπx + ni}50i=1, where ki, li, mi, and ni are random numbers. In Figures 14
and 15, we show the relative errors of mean and STD of the MsDSM solution in the
L2 norm and theH1 norm, respectively. One can observe that the MsDSM solution
converges in both the L2 norm and the H1 norm.

In Figure 16, we show the mean and STD of the solution corresponding to
f(x, y) = sin(0.7πx + 0.2) cos(3.3πy + 0.2). It can be seen that the mean and STD
of the MsDSM solution match those of the exact solution very well. Due to the in-
clusions and channels in the permeability field, the mean and STD of the stochastic
solution possess some interesting structures. In Figure 17, we plot the STD error of
the MsDSM solution. One can see that large uncertainty exists around the boundary
of the inclusion or channel field.

Comparison of the MsDSM solver with the SCFEM solver. For the SCFEM
solver, it will take 1648.04 seconds to solve (6.1) with one specific forcing term
f(x, y, θ). Thus in a multiquery problem, if we need to solve (6.1) with n differ-
ent forcing terms f(x, y, θ), the total computational cost will be tSCFEM = 1648.04n.
If we choose Nc = 64 in the MsDSM solver, the offline computation will cost 7782.68
seconds, which includes the computational time for deriving the effective SPDE, cal-
culating the correction term, and the constructing DSM basis for the effective SPDE.
In the online stage of the MsDSM, it takes 2.95 seconds to compute one query; thus
the total computational cost will be tMsDSM = 7782.68 + 2.95n. We plot the total

D
ow

nl
oa

de
d 

04
/3

0/
15

 to
 1

31
.2

15
.7

0.
23

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

196 ZHIWEN ZHANG, MAOLIN CI, AND THOMAS Y. HOU

x

y

a(x,y,ω)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

a(x,y,ω)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1.5

2

2.5

3

3.5

x

y

a(x,y,ω)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1.5

2

2.5

3

3.5

4

x

y

a(x,y,ω)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

4

5

6

Fig. 10. Some coefficient samples of a(x, y, ω).
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Fig. 11. The mean and STD error of the MsDSM in the L2 norm. Nc is the coarse grid
number in each direction.

computational time in Figure 18. One can see that the MsDSM offers considerable
computational savings over the SCFEM and is helpful if we need to solve the same
SPDE with more than five different forcing functions.

6.2. Comparison of the MsDSM and the DSM. As the authors have
demonstrated in [11], the DSM offers considerable computational savings over some
traditional methods such as the gPC, stochastic collocation, and Monte Carlo meth-
ods in solving the multiquery problem. Finally, we compare the computational cost
and accuracy of the MsDSM and the DSM in solving multiscale problems.
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Fig. 12. The mean and STD error of the MsDSM in the H1 norm. Nc is the coarse grid
number in each direction.

Table 6

The relative error of mean in L2 and H1 norm.

Mesh size L2 Rate H1 Rate

hc = 1
8

0.1889 0.3464

hc = 1
16

0.0521 1.8583 0.1684 1.0405

hc = 1
32

0.0158 1.7214 0.0796 1.0811

hc = 1
64

0.0051 1.6314 0.0339 1.2315

Table 7

The relative error of STD in L2 and H1 norms.

Mesh size L2 Rate H1 Rate

hc = 1
8

0.1936 0.2764

hc = 1
16

0.0589 1.7167 0.1755 0.6553

hc = 1
32

0.0216 1.4472 0.1018 0.7857

hc = 1
64

0.0082 1.3973 0.0514 0.9859
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Fig. 13. Inclusions, channels, and random coefficients.
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Fig. 14. The mean and STD error of the MsDSM in the L2 norm. Nc is the coarse grid
number in each direction.
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Fig. 15. The mean and STD error of the MsDSM in the H1 norm. Nc is the coarse grid
number in each direction.

Example 4. We consider the SPDE (6.1)–(6.2) on D = [0, 1] × [0, 1] with the
coefficient given by

aε0(x, y, ω) = 0.1 + ξ1(ω)
2 + 1.8 sin(2πx/ε1)

2 + 1.8 sin(2πy/ε1)
(6.6)

+ ξ2(ω)
2 + 1.8 sin(2πy/ε2)

2 + 1.8 cos(2πx/ε2)
+ ξ3(ω)

2 + 1.8 cos(2πx/ε3)

2 + 1.8 sin(2πy/ε3)
,

where ε1 = 1/3, ε2 = 1/11, and ε3 = 1/19, and {ξi}3i=1 are independent uniform
random variables in [0, 1].

In our computations, we use the standard FEM to discretize the spatial dimen-
sion. We choose a 384 × 384 fine mesh to well resolve the spatial dimension of the
stochastic solution uε(x, y, ω). We choose level six sparse grids in the discretization
of the stochastic dimension, which has 135 points. The reference solution is obtained
by using higher-level sparse grids. The coarse mesh of the MsDSM is chosen to be
64× 64. We implement the DSM on a 384× 384 fine mesh and 64× 64 coarse mesh,
respectively.

The MsDSM generatesm = 7 modes in the data-driven stochastic basis, while the
DSM generates m = 9 modes. In the online stage we use them to solve the effective
equation of the multiscale SPDE (6.1) with the coefficient given by (6.6). We randomly
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Fig. 16. Profile of the mean and STD solution.
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Fig. 17. The error of the STD.

generate 50 force functions of the form f(x, y) ∈ {sin(kiπx + li) cos(miπx + ni}50i=1,
where ki, li, mi, and ni are random numbers. In Figures 19 and 20, we show the
relative errors of mean and STD of the MsDSM and DSM solutions in the L2 norm
and the H1 norm, respectively. Here DSMf and DSMc denote the DSM solution
obtained on the fine and coarse grids, respectively. We conclude that the accuracy of
the MsDSM is comparable with that obtained by the DSM on the fine mesh grid. In
addition, applying the DSM on a coarse mesh grid without any numerical upscaling
will generate large errors in the numerical solution.

For the SCFEM solver, it will take 1132.94 seconds to solve (6.1) with one specific
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Fig. 18. The computation time comparison.
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Fig. 19. The mean and STD error of the MsDSM and the DSM in the L2 norm.

forcing term f(x, y, θ). Thus in a multiquery problem, if we need to solve (6.1) with
n different forcing terms f(x, y, θ), the total computational cost will be tSCFEM =
1132.94n. The offline computation of the MsDSM and the DSM costs 3254.17 and
2898.32 seconds, respectively. In the online stage of the MsDSM, it takes 1.89 seconds
to compute one query, and thus the total computational cost will be tMsDSM =
3254.17+1.89n. For the DSM solver on the fine grid, it takes 33.29 seconds to compute
one query, and thus the total computational cost will be tMsDSM = 2898.32+33.29n.
It turns out that both the MsDSM and the DSM offer considerable computational
savings over the SCFEM and are helpful if we need to solve the same SPDE with
more than three different forcing functions. The offline cost of the MsDSM is more
expensive than the DSM, since we have to derive the effective equation. However,
the online cost will be much cheaper than the DSM because we solve the effective
equation on a coarse grid.

Example 5. Finally, we consider the SPDE (6.1)–(6.2) on D = [0, 1] × [0, 1]
with the coefficient given by (6.6). This time, we choose ε1 = 1/3, ε2 = 1/19, and
ε3 = 1/65, and {ξi}3i=1 are independent uniform random variables in [0, 1]. We choose
a 1024×1024 fine mesh to well resolve the spatial dimension of the stochastic solution
uε(x, y, ω). We choose level six sparse grids in the discretization of the stochastic
dimension, which has 135 points. The reference solution is obtained by using higher-
level sparse grids. In this example, due to memory overflow, the DSM easily breaks
down. However, MsDSM still works, owing to the upscaling in the physical dimension.
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Fig. 20. The mean and STD error of the MsDSM and the DSM in the H1 norm.

The MsDSM solver using 135 sparse grids in the computation produces m = 8
modes in the data-driven stochastic basis. In the online stage we use them to solve
the effective equation of the multiscale SPDE (6.1). We randomly generate 50 force
functions of the form f(x, y) ∈ {sin(kiπx + li) cos(miπx + ni}50i=1, where ki, li, mi,
and ni are random numbers. In Figure 21, we show the relative errors of mean and
STD of the MsDSM solution in the L2 norm and the H1 norm, respectively.

For the SCFEM solver, it will take 18620.01 seconds to solve (6.1) with one specific
forcing term f(x, y, θ). Thus in a multiple query problem, if we need to solve (6.1)
with n different forcing term f(x, y, θ), the total computational cost will be tSCFEM =
18620.01n. If we choose Nc = 64 in the MsDSM solver, the offline computation
will cost 49258.59 seconds, which includes the computational time for deriving the
effective SPDE, calculating the correction term, and constructing the DSM basis
for the effective SPDE. In the online stage of the MsDSM, it takes 18.25 seconds
to compute one query, and thus the total computational cost will be tMsDSM =
49258.59+18.25n. MsDSM offers considerable computational savings over the SCFEM
and is helpful if we need to solve the same SPDE with more than three different forcing
functions. We conjecture that the time model obtained in section 5.2 may still be valid
for the DSM. Actually, due to the fill-in, the real computation time and memory cost
will be larger. The total computational cost for the DSM can be extrapolated as
tDSM = 47700.90 + 438.62n. We plotted the total computational time in Figure 1.
One can observe that the MsDSM offers huge savings over other methods in solving
multiscale problems.

Remark 6.1. When the input dimension of the random variables is high, the
stochastic collocation method will be very expensive or even infeasible. In this case,
most of the existing methods are expensive, especially for the problems with multi-
scale features. As demonstrated in [11], one can develop MsDSM with the ensem-
ble representation, since the accuracy of the Monte Carlo method does not depend
on the dimension of the input random variables. One can also adopt the adaptive
ANOVA (analysis of variation) decomposition technique to decompose the original
high-dimensional multiscale problem into a set of low-dimensional subproblems, and
can apply the MsDSM on each subproblem accordingly; see [44].

7. Conclusion remarks. In this paper, we developed a novel multiscale data-
driven stochastic method (MsDSM) to solve multiscale stochastic partial differential
equations (SPDEs) in a multiquery setting. These SPDEs arise from various appli-
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Fig. 21. The mean and STD error of the MsDSM in the L2 and H1 norms.

cations such as heterogeneous porous media flow problem in a water aquifer and oil
reservoirs simulation. Our method consists of offline and online stages. In the offline
stage, we first derive the effective SPDE on coarse grids by adopting the multiscale
model reduction approach proposed in [12]. Then, we construct a data-driven stochas-
tic basis {Ai(ω)}mi=1 by using the Karhunen–Loève (KL) expansion and a two-level
optimization approach based on multiple trial functions. In the online stage, we use
the standard Galerkin projection method (with our data-driven stochastic basis) to
solve the effective SPDE for a class of forcing functions. We can also improve the ac-
curacy of the MsDSM solution by adding the small-scale correction term saved in the
offline stage. By the model reduction from both stochastic and physical dimensions,
the MsDSM offers considerable computational savings over some traditional methods
such as the stochastic collocation finite element method (SCFEM).

We presented several numerical examples for the two-dimensional stochastic el-
liptic PDEs with random multiscale or high-contrast coefficients to demonstrate the
accuracy and efficiency of the proposed method. These numerical examples indicate
the following advantages of the proposed MsDSM: (1) by integrating the DSM with
the multiscale model reduction, the MsDSM can effectively solve stochastic multiscale
PDEs with desirable accuracy on a coarse grid; (2) the optimal data-driven stochas-
tic basis can be used for the multiscale SPDEs with a class of deterministic forcing
functions; (3) compared to classic numerical solvers such as the Monte Carlo method
and SCFEM, the MsDSM offers considerable computational savings and is helpful if
one needs to solve the same SPDE many times with multiple forcing functions.

It is important to point out that since our methods involve the computation of
global harmonic coordinates, the memory consumption becomes a serious issue when
the ratio of the smallest scale and the largest scale in the stochastic multiscale problem
(1.1) is very small. In this case, we may use a localized upscaling method such as the
MsFEM [18] developed by Hou and Wu. to reduce the memory consumption. We
are currently adopting the localized upscaling method and multilevel Monte Carlo
method in the study of this class of problems.

Acknowledgment. We thank Sydney Garstang for proofreading the manuscript.
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