General Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon atmosphere, using dry solvents. Solvents were dried by passage through an activated alumina column under argon. All other commercially obtained reagents were used as received unless otherwise noted. Thin layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm). Visualization of the developed chromatogram was performed by UV, cerium ammonium molybdate and ninhydrin stain as necessary. ICN silica gel (particle size 0.032 - 0.063 mm) was used for flash chromatography. Gel filtration chromatography (Sephadex G-10 and G-25 ultrafine) was used in order to achieve purification of the final products.

1H NMR and proton decoupling experiments were recorded on Varian Mercury 300 (300 MHz) and Varian Mercury 600 (600 MHz) spectrometers and are reported in parts per million (δ) relative to CDCl$_3$ (7.26 ppm), CD$_3$OD (4.87 ppm) and D$_2$O (4.80 ppm). Data for 1H are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant in Hz, and integration. 13C NMR spectra were obtained on a Varian Mercury 300 (75 MHz) spectrometer and are reported in terms of chemical shift. Mass spectra were obtained from the Protein/Peptide MicroAnalytical Laboratory and the Mass Spectrometry Facility at the California Institute of Technology.
2-(2-(Cyclooct-4-enyloxy)ethoxy)ethyl (methyl 2,3-di-O-benzoyl-4-O-tert-butyldimethylsilyl-/D-glucopyranosyluronate)-(1 → 3)-4,6-O-p-methoxybenzylidene-2-deoxy-2-trichloroacetamido-D-galactopyranoside (3): A mixture of donor 1 (0.750 g, 0.680 mmol) and acceptor 2 (0.300 g, 2.02 mmol) was co-evaporated with toluene (3 x 3 mL) and dried under vacuum overnight. The mixture was dissolved in CH₂Cl₂ (9.0 mL), and activated 4Å powdered molecular sieves were added. After stirring at rt for 30 min, the reaction was cooled to -75 °C and stirred for an additional 30 min. Trimethylsilyl trifluoromethanesulfonate (1 M in CH₂Cl₂, 125 µL, 0.123 mmol) at -75 °C was added to the reaction dropwise. The reaction mixture was warmed to -20 °C, stirred for 30 min, quenched with triethylamine, filtered through Celite® and concentrated to afford a yellow syrup. Purification by flash chromatography (30% EtOAc:toluene) afforded 3 (0.460 g, 69%) as a white solid. Rf 0.40 (30% EtOAc:toluene).

¹H NMR (500 MHz, CDCl₃): δ 7.92 – 7.84 (m, 4 H, ArH), 7.54 – 7.46 (m, 2 H, ArH), 7.42 (d, J = 8.5 Hz, 2 H, C₆H₄OMe), 7.31 (dd, J = 7.5, 7.5 Hz, 2 H, ArH), 7.28 (dd, J = 7.5, 7.5 Hz, 2 H, ArH), 6.85 (d, J = 9.0 Hz, 2 H, C₆H₄OMe), 6.81 (d, J = 7.0 Hz, 1 H, NH), 5.68 – 5.51 (m, 2 H, CH=CH), 5.46 (dd, J = 8.5, 8.5 Hz, 1 H, H-3'), 5.43 (s, 1 H, MeOPhC), 5.39 (dd, J = 7.0, 7.0 Hz, 1 H, H-2'), 5.06 (d, J = 7.5 Hz, 1 H, H-1'), 5.04 (d, J = 8.0 Hz, 1 H, H-1), 4.63 (dd, J = 3.5, 11.0 Hz, 1 H, H-3), 4.34 (d, J = 4.5 Hz, 1 H, H-4'), 4.32 (dd, J = 8.5, 9.5 Hz, 1 H, H-4'), 4.26 (d, J = 12.0 Hz, 1 H, H-6), 4.09 (d, J = 9.5 Hz, 1 H, H-5'), 4.03 (d, J = 11.5 Hz, 1 H, H-7), 3.97 – 3.90 (m, 1 H, OCH₂CH₂O), 3.78 (s, 3 H, CO₂CH₃), 3.77 (s, 3 H, PhOCH₃), 3.76 – 3.62 (m, 2 H, H-2, OCH₂CH₂O), 3.60 – 3.54 (m, 2 H, OCH₂CH₂O), 3.53 – 3.39 (m, 5 H, OCH₂CH₂O), 3.32 – 3.26 (m, 1 H, OCH of COE), 2.36 – 2.22 (m, 1 H, CH₂ of COE), 2.18 – 1.84 (m, 3 H, CH₂ of COE), 1.93 – 1.82 (m, 1 H, CH₂ of COE), 1.80 – 1.58 (m, 3 H, CH₂ of COE), 1.48 – 1.28 (m, 2 H, CH₂ of COE), 0.70 (s, 9 H, SiC(CH₃)₃), -0.09 (s, 3 H, SiCH₃), -0.25 (s, 3 H, SiCH₃); ¹³C NMR (75 MHz, CDCl₃): δ 168.6, 165.5, 165.1, 162.1, 159.8, 133.2, 131.1, 130.3, 130.0, 129.8, 129.7, 129.4, 129.4, 129.0, 128.3, 128.3, 127.5, 113.4, 100.5, 100.2, 98.7, 81.0, 76.1, 75.4, 75.4, 73.4, 71.7, 70.8, 70.6, 70.4, 68.9, 68.4, 67.6, 67.6, 66.5, 55.3, 54.9, 52.5, 34.1, 34.1, 33.4, 33.4, 25.8, 25.6, 25.6, 25.4, 22.6, 17.7, -8.5, -5.2; ESI MS: m/z calcd for [C₅₅H₆₀Cl₂NO₁₇Si + H]⁺: 1150.3, obsd 1150.6.
trichloroacetamido-D-galactopyranoside (4): A solution of 3 (0.410 g, 0.356 mmol) in dry THF (5.5 mL) and pyridine (5.5 mL) was cooled to 0 °C. HF•pyridine (1.30 mL, 70% HF in pyridine) was added, and the reaction mixture was warmed to rt and stirred for 12 h. The mixture was then diluted with EtOAc and washed with 10% aqueous CuSO₄. The aqueous phase was extracted with EtOAc (3x), and the combined organics were washed with saturated aqueous NaHCO₃ and dried over MgSO₄. The solvent was removed in vacuo to afford a yellow oil, which was purified by flash chromatography (50 → 90% EtOAc:hexanes) to afford 4 (0.358 g, 95%) as a white solid. ¢H NMR (500 MHz, CDCl₃): δ 7.93 (dd, J = 1.0, 8.5 Hz, 2 H, ArH), 7.89 (dd, J = 1.5, 8.0 Hz, 2 H, ArH), 7.52 – 7.46 (m, 2 H, ArH), 7.42 (d, J = 11.5 Hz, 2 H, C₆H₄OMe), 7.39 – 7.30 (m, 4 H, ArH), 7.06 (d, J = 6.5 Hz, 1 H, NH), 6.87 (d, J = 11.5 Hz, 2 H, C₆H₄OMe), 5.68 – 5.54 (m, 2 H, CH=CH of COE), 5.48 (s, 1 H, MeOPhC=O), 5.47 (dd, J = 8.0, 8.0 Hz, 1 H, H-2), 5.44 (dd, J = 8.0, 8.0 Hz, 1 H, H-3), 5.19 (d, J = 7.0 Hz, 1 H, H-1), 5.13 (d, J = 8.0 Hz, 1 H, H-1), 4.57 (ddd, J = 1.0, 3.5, 11.0 Hz, 1 H, H-3), 4.41 (d, J = 3.5 Hz, 1 H, H-4), 4.29 (dd, J = 1.5, 12.5 Hz, 1 H, H-6), 4.21 (dd, J = 9.0, 9.0 Hz, 1 H, H-4'), 4.10 (d, J = 10.0 Hz, 1 H, H-5'), 4.04 (dd, J = 1.5, 13.5 Hz, 1 H, H-7), 3.97 (td, J = 5.0, 11.5 Hz, 1 H, OCH₂CH₂O), 3.85 (s, 3 H, CO₂CH₃), 3.81 (s, 3 H, PhOC(O)₃), 3.78 – 3.65 (m, 2 H, H-2, OCH₂CH₂O), 3.60 (t, J = 4.5 Hz, 2 H, OCH₂CH₂O), 3.55 – 3.42 (m, 6 H, H-5, OCH₂CH₂O, OH), 3.35 – 3.25 (m, 1 H, OCH of COE), 2.36 – 2.26 (m, 1 H, CH₂ of COE), 2.16 – 1.98 (m, 3 H, CH₂ of COE), 1.96 – 1.86 (m, 1 H, CH₂ of COE), 1.74 – 1.60 (m, 3 H, CH₂ of COE), 1.52 – 1.30 (m, 2 H, CH₂ of COE); ¹³C NMR (75 MHz, CDCl₃): δ 169.2, 166.5, 165.0, 162.1, 159.9, 133.4, 133.3, 130.2, 130.0, 129.9, 129.8, 129.4, 129.0, 128.8, 128.4, 128.2, 127.3, 113.4, 100.4, 100.3, 98.6, 92.2, 81.0, 77.2, 75.2, 74.0, 73.9, 71.1, 70.7, 70.4, 69.0, 68.5, 67.6, 66.5, 55.3, 55.0, 53.0, 34.1, 33.4, 25.7, 25.6, 22.6; ESI MS: m/z calcd for [C₄₉H₃₆NO₇+ Si + Na]+: 1058.2, obsd 1058.5.
The product was purified on Sephadex LH-20 and heated to 80 °C and stirred for an additional 1.5 h. The reaction was then cooled to rt and concentrated to afford a white solid. Purification by flash chromatography (50 → 90% EtOAc:hexanes) afforded acetamide 3a (0.209 g, 92%) as a white solid. Rf: 0.30 (EtOAc). \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 7.91 (d, \(J = 8.5\) Hz, 2 H, ArH), 7.90 (d, \(J = 8.5\) Hz, 2 H, ArH), 7.50 (dd, \(J = 1.0, 7.5\) Hz, 2 H, ArH), 7.46 (d, \(J = 8.5\) Hz, 2 H, C\(_6\)H\(_3\)OMe), 7.40 – 7.32 (m, 4 H, ArH), 6.89 (d, \(J = 10.0\) Hz, 2 H, C\(_6\)H\(_3\)OMe), 5.70 – 5.52 (m, 3 H, H-3', CH=CH of COE), 5.47 (s, 1 H, MeOPhC\(_6\)H\(_5\)), 5.37 (dd, \(J = 6.5, 9.0\) Hz, 1 H, H-2'), 5.08 (d, \(J = 8.5\) Hz, 1 H, H-1), 5.00 (dd, \(J = 2.0, 7.5\) Hz, 1 H, H-1'), 4.74 (td, \(J = 3.5, 7.5\) Hz, 1 H, H-3), 4.37 (dd, \(J = 8.5, 10.0\) Hz, 1 H, H-4), 4.32 (d, \(J = 3.5\) Hz, 1 H, H-4), 4.27 (dd, \(J = 1.0, 11.5\) Hz, 1 H, H-6), 4.12 (d, \(J = 9.5\) Hz, 1 H, H-5'), 4.05 (dd, \(J = 4.0, 12.0\) Hz, 1 H, H-6), 3.95 (td, \(J = 4.5, 10.0\) Hz, 1 H, OCH\(_2\)CH\(_2\)O), 3.82 (s, 3 H, CO\(_2\)CH\(_3\)), 3.79 (s, 3 H, PhOCH\(_3\)), 3.70 - 3.63 (m, 1 H, OCH\(_2\)CH\(_2\)O), 3.62 – 3.56 (m, 2 H, OCH\(_2\)CH\(_2\)O), 3.55 – 3.43 (m, 5 H, H-5, OCH\(_2\)CH\(_2\)O), 3.43 – 3.35 (m, 1 H, H-2), 3.35 – 3.28 (m, 1 H, OCH of COE), 2.38 – 2.28 (m, 1 H, CH\(_2\) of COE), 2.18 – 2.08 (m, 1 H, CH\(_2\) of COE), 2.08 – 1.98 (m, 1 H, CH\(_2\) of COE), 1.96 – 1.84 (m, 1 H, CH\(_2\) of COE), 1.82 – 1.60 (m, 4 H, CH\(_2\) of COE), 1.55 (s, 3 H, NCOCH\(_3\)), 1.50 – 1.32 (m, 2 H, CH\(_2\) of COE), 0.74 (s, 9 H, SiC(CH\(_3\))\(_3\)), -0.05 (s, 3 H, SiCH\(_3\)), -0.21 (s, 3 H, SiCH\(_3\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 171.3, 168.7, 165.6, 164.8, 159.8, 133.2, 133.1, 130.5, 129.7, 129.4, 129.3, 127.6, 113.3, 101.3, 100.5, 98.9, 81.0, 77.2, 76.0, 75.7, 75.5, 75.4, 72.1, 70.6, 70.5, 70.2, 69.1, 68.3, 67.5, 66.4, 55.2, 54.2, 52.5, 34.1, 33.4, 25.7, 25.6, 25.3, 23.2, 22.5, 17.7, -4.5, -5.2; ESI MS: \(m/z\) calcd for [C\(_{56}\)H\(_{108}\)NO\(_{17}\)Si + H]+: 1048.4, obsd 1048.5

Acetamido-\(\beta\)-D-galactopyranoside (5): Acetamide 3a (0.030 g, 0.029 mmol) was dissolved in CH\(_2\)CN (400 µL) and H\(_2\)O (100 µL). 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (0.020 g, 0.089 mmol) was added. The reaction was stirred at rt for 2 h, quenched with MeOH and concentrated to yield a red solid. The product was purified on Sephadex LH-20 (50% CH\(_2\)Cl\(_2\):MeOH) to afford the desired diol 5 as a white solid.
solid (0.024 g, 89%). Rr 0.12 (100% EtOAc). 1H NMR (500 MHz, CDCl3): δ 7.86 – 7.78 (m, 4 H, ArH), 7.52 – 7.44 (m, 2 H, ArH), 7.36 – 7.28 (m, 4 H, ArH), 5.67 – 5.47 (m, 3 H, H-3', CH=CH of COE), 5.31 (dd, J = 9.0, 10.0 Hz, 1 H, H-2'), 5.04 (dd, J = 1.5, 8.0 Hz, 1 H, H-1'), 4.39 (d, J = 8.5 Hz, 1 H, H-1), 4.26 (dd, J = 9.0, 9.0 Hz, 1 H, H-4'), 4.20 (dd, J = 2.0, 9.5 Hz, 1 H, H-5'), 4.03 (br s, 1 H, H-4), 3.94 – 3.85 (m, 1 H, H-2), 3.85 – 3.76 (m, 2 H, H-3, OCH2CH2O), 3.77 (s, 3 H, CO2CH3), 3.70 (dd, J = 6.0, 11.5 Hz, 1 H, H-6), 3.66 (dd, J = 5.5, 11.5 Hz, 1 H, H-6), 3.63 – 3.56 (m, 1 H, OCH2CH2O), 3.50 – 3.35 (m, 7 H, OCH2CH2O, H-5), 3.32 – 3.26 (m, 1 H, OCH of COE), 2.36 – 2.24 (m, 1 H, CH2 of COE), 2.16 – 1.96 (m, 3 H, CH2 of COE), 1.92 – 1.82 (m, 1 H, CH2 of COE), 1.80 – 1.58 (m, 3 H, CH2 of COE), 1.44 – 1.32 (m, 2 H, CH2 of COE), 1.90 (d, J = 2.0 Hz, 3 H, NCOCH3), 0.70 (s, 9 H, SiC(CH3)3), -0.05 (s, 3 H, CH3Si), -0.22 (s, 3 H, CH3Si); 13C NMR (75 MHz, CDCl3): δ 170.4, 167.3, 166.6, 134.7, 134.6, 131.2, 131.1, 130.9, 130.7, 129.6, 103.7, 103.0, 82.9, 82.6, 77.4, 76.8, 76.3, 73.5, 72.3, 72.0, 71.7, 69.7, 69.4, 69.0, 68.9, 62.5, 53.4, 52.5, 35.5, 34.7, 34.6, 26.8, 26.7, 26.2, 23.7, 22.7, 18.8, -3.9, -4.6; ESI MS: m/z calcd for [C47H66NO16Si + H]+: 930.4, obsd 930.7.

\[
\text{2-(2-(Cyclooct-4-enyloxy)ethoxy)ethyl (methyl 2,3-di-O-benzoyl-4-O-tert-butyldimethylsilyl-β-D-glucopyranosylurionate)-(1 → 3)-4,6-di-O-sodium sulfonato-2-deoxy-2-acetamido-β-D-galactopyranoside (6):} \]

Diol 5 (0.145 g, 0.156 mmol) was dissolved in DMF (7 mL), and SO3·TMA (0.550 g, 3.96 mmol) was added. After stirring at 50 °C overnight, the reaction mixture was cooled to rt, quenched with MeOH and concentrated to afford a yellow solid. Purification on Sephadex LH-20 (50% CH2Cl2:MeOH) followed by silica gel chromatography (5:2:1 MeOH:EtOAc:H2O) afforded 6 (0.144 g, 85%) as a white solid. Rr 0.35 (5:2:1 MeOH:EtOAc:H2O). 1H NMR (500 MHz, CD2OD): δ 7.80 (d, J = 8.0 Hz, 2 H, ArH), 7.78 (d, J = 8.0 Hz, 2H, ArH), 7.45 (t, J = 7.0 Hz, 2 H, ArH), 7.34 – 7.26 (m, 4 H, ArH), 5.78 – 5.50 (m, 3 H, H-3', CH=CH of COE), 5.34 (dd, J = 7.5, 9.0 Hz, 1 H, H-2'), 5.05 (dd, J = 2.5, 7.0 Hz, 1 H, H-1'), 4.89 (s, 1 H, H-4), 4.40 (dd, J = 2.5, 8.0 Hz, 1 H, H-1), 4.35 (dd, J = 9.0 Hz, 1 H, H-4'), 4.33 (dd, J = 5.0, 11.5 Hz, 1 H, H-6), 4.17 (dd, J = 8.0, 11.0 Hz 1 H, H-6), 4.13 (d, J = 9.0 Hz, 1 H, H-5'), 4.00 – 3.92 (m, 1 H, H-2), 3.92 – 3.82 (m, 2 H, H-3, H-5), 3.82 – 3.74 (m, 1 H, OCH2CH2O), 3.76 (s, 3 H, CO2CH3), 3.64 – 3.56 (m, 1 H, OCH2CH2O), 3.54 – 3.34 (m, 6 H, OCH2CH2O), 3.34 – 3.26 (m, 1 H, OCH of COE), 2.34 – 2.24 (m, 1 H, CH2 of COE), 2.12 – 2.04 (m, 2 H,
CH₂ of COE), 2.04 – 1.94 (m, 1 H, CH₂ of COE), 1.92 – 1.80 (m, 1 H, CH₂ of COE), 1.78 – 1.58 (m, 3 H, CH₂ of COE), 1.42 – 1.32 (m, 2 H, CH₂ of COE), 1.38 (s, 3 H, NHCOCH₃), 0.66 (s, 9 H, Si(CH₃)₃), -0.07 (s, 3 H, Si(CH₃)), -0.23 (s, 3 H, Si(CH₃)); ¹³C NMR (75 MHz, CDCl₃): δ 170.6, 170.3, 167.3, 167.0, 134.7, 134.6, 131.1, 130.9, 130.8, 130.7, 130.6, 129.6, 129.5, 103.5, 103.1, 82.6, 82.6, 79.6, 77.4, 77.1, 74.2, 74.1, 72.0, 71.9, 71.6, 70.1, 69.1, 68.9, 53.5, 52.7, 35.4, 34.7, 34.6, 26.8, 26.7, 26.2, 23.7, 22.9, 18.8, -3.9, -4.5; ESI MS: m/z calcd for [C₄₇H₆₇NO₂₅S₂Si + Na – 2 H⁺]: 1110.3, obsd 1110.5.

Disaccharide 6 (0.030 g, 0.027 mmol) was dissolved in pyridine (150 µL) and THF (150 µL) and cooled to 0 °C. HF•pyridine (40 µL, 70% HF in pyridine) was added and the reaction was slowly warmed to rt. After 12 h, the mixture was passed through a Sephadex LH-20 column (50% CH₂Cl₂:MeOH) to obtain the crude alcohol. The alcohol (0.025 g, 0.025 mmol) was dissolved in THF (400 µL) and H₂O (200 µL), and to this was added 1 M LiOH (100 µL) and H₂O₂ (50 µL, 30 wt% solution in H₂O). After stirring at rt for 12 h, 4 M NaOH (80 µL) and MeOH (400 µL) were added, and stirring was continued for another 12 h. The reaction was neutralized with Amberlyst IR-120 resin, filtered and lyophilized to afford an orange solid. The product was purified on Sephadex G-10 (100% H₂O) and Sephadex SP C25 (100% H₂O) and lyophilized to afford 7 (0.018 g, 89%, 2 steps) as a white solid. ¹H NMR (600 MHz, CD₃OD): δ 5.62 – 5.47 (m, 2 H, CH=CH of COE), 4.68 (br s, 1 H, H-4), 4.44 (d, J = 7.8 Hz, 1 H, H-1), 4.33 (d, J = 7.8 Hz, 1 H, H-1'), 4.15 (d, J = 9.0 Hz, 1 H, H-6'), 3.98 – 3.89 (m, 3 H, H-2, H-3, H-5), 3.88 – 3.82 (m, 1 H, OCH₂CH₂O), 3.72 – 3.64 (m, 1 H, OCH₂CH₂O), 3.60 – 3.46 (m, 6 H, H-5', OCH₂CH₂O), 3.46 – 3.43 (m, 1 H, OCH₂CH₂O), 3.39 (dd, J = 9.0, 9.0 Hz, 1 H, H-4'), 3.42 – 3.34 (m, 1 H, OCH of COE), 3.31 (dd, J = 9.0, 9.0 Hz, 1 H, H-3'), 3.22 (dd, J = 8.4, 8.4 Hz, 1 H, H-2'), 2.24 – 2.16 (m, 1 H, CH₂ of COE), 2.11 – 1.90 (m, 3 H, CH₂ of COE), 1.89 (d, J = 3.0 Hz, 3 H, CH₂ of COE), 1.88 – 1.80 (m, 1 H, CH₂ of COE), 1.68 – 1.48 (m, 3 H, NCOCH₃), 1.36 – 1.24 (m, 2 H, CH₂ of COE); ¹³C NMR (75 MHz, CDCl₃): δ 178.4, 177.4, 132.8, 106.0, 103.7, 84.2, 79.0, 78.9, 77.8, 77.5, 75.4, 75.2, 75.0, 74.5, 72.7, 72.2, 71.8, 70.6, 69.4, 54.3, 36.1, 35.6, 27.9, 27.7, 25.0, 27.7; ESI MS: m/z calcd for [C₂₂H₃₆N₂O₂S₂ + 2Na – 3H⁺]: 796.1, obsd 796.2.
2-(2-(Cyclooct-4-enyloxy)ethoxy)ethyl (methyl 2,3-di-O-benzoyl-4-O-tert-butyldimethylsilyl-\(\beta\)-D-glucopyranosyluronate)-(1 → 3)-(4,6-O-p-methoxybenzylidene-2-deoxy-2-trichloroacetamido-\(\beta\)-D-galactopyranosyl)-(1 → 4)-(methyl 2,3-di-O-benzoyl-\(\beta\)-D-glucopyranosyluronate)-(1 → 3)-4,6-O-p-methoxybenzylidene-2-deoxy-2-trichloroacetamido-\(\beta\)-D-galactopyranoside (12a): A mixture of donor 1 (0.050 g, 0.048 mmol) and acceptor 4 (0.064 g, 0.058 mmol) was co-evaporated with toluene (3 x 3 mL) and dried under vacuum overnight. The mixture was dissolved in CH\(_2\)Cl\(_2\) (1.2 mL), and activated 4Å powdered molecular sieves were added. The reaction was cooled to -75 °C and stirred for 30 min. Trimethylsilyl trifluoromethanesulfonate (1 M in CH\(_2\)Cl\(_2\), 11 µL, 0.011 mmol) at -75 °C was added to the reaction dropwise. The reaction was warmed to -15 °C, stirred for 30 min, quenched with triethylamline, filtered and concentrated to afford a yellow syrup. Purification by flash chromatography (30% EtOAc:toluene) afforded the desired tetrasaccharide 12a (0.044 g, 45%) as a white solid. Rf 0.50 (60% EtOAc:hexanes). \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 7.92 – 7.88 (m, 4 H, ArH), 7.86 (dd, J = 1.0, 8.0 Hz, 2 H, ArH), 7.83 (dd, J = 1.0, 8.0 Hz, 2 H, ArH), 7.54 – 7.44 (m, 6 H, ArH, C\(_6\)H\(_5\)OMe), 7.37 – 7.26 (m, 8 H, ArH), 7.07 (d, J = 11.5 Hz, 2 H, C\(_6\)H\(_5\)OMe), 6.94 (d, J = 7.0 Hz, 2 H, C\(_6\)H\(_5\)OMe), 6.91 (d, J = 6.5 Hz, 1 H, NH), 6.74 (d, J = 6.5 Hz, 2 H, C\(_6\)H\(_5\)OMe), 6.66 (d, J = 8.5 Hz, 1 H, NH), 5.59 (dd, J = 8.0, 8.0 Hz, 1 H, H-3'), 5.70 – 5.55 (m, 2 H, CH=CH), 5.50 (s, 1 H, MeOPhCH), 5.45 (dd, J = 8.5, 8.5 Hz, 1 H, H-3'), 5.37 (dd, J = 7.0, 8.5 Hz, 2 H, H-2'), 5.20 (s, 1 H, MeOPhCH), 5.16 (d, J = 6.5 Hz, 1 H, H-1'), 5.11 (d, J = 8.0 Hz, 1 H, H-1), 5.04 (d, J = 7.0Hz, 1 H, H-1'), 4.97 (d, J = 8.5 Hz, 1 H, H-1), 4.66 (ddd, J = 1.5, 3.5, 11.0 Hz, 1 H, H-3), 4.60 (dd, J = 9.5, 9.5 Hz, 1 H, H-4'), 4.42 – 4.32 (m, 3 H, H-3, H-4, H-4'), 4.30 (d, J = 12.5 Hz, 1 H, H-6), 4.17 (d, J = 9.5 Hz, 1 H, H-5'), 4.17 (s, 1 H, H-4), 4.09 (d, J = 9.5 Hz, 1 H, H-5'), 4.05 (d, J = 11.0 Hz, 1 H, H-6), 4.02 – 3.96 (m, 1 H, OCH\(_2\)CH\(_2\)O), 3.84 (s, 3 H, OCH\(_3\)), 3.81 (s, 6 H, OCH\(_3\)), 3.79 (s, 3 H, OCH\(_3\)), 3.86 – 3.66 (m, 5 H, H-2, H-6, OCH\(_2\)CH\(_2\)O), 3.64 – 3.60 (t, J = 4.5 Hz, 2 H, OCH\(_2\)CH\(_2\)O), 3.56 – 3.44 (m, 5 H, H-5, OCH\(_2\)CH\(_2\)O), 3.36 – 3.30 (m, 1 H, OCH of COE), 3.15 (br s, 1 H, H-5), 2.40 – 2.26 (m, 1 H, CH\(_2\) of COE), 2.18 – 1.84 (m, 3 H, CH\(_2\) of COE), 1.82 – 1.60 (m, 3 H, CH\(_2\) of COE), 1.52 – 1.24 (m, 3 H, CH\(_2\) of COE), 0.73 (s, 9 H, SiC(CH\(_3\))\(_3\)), -0.80 (s, 3 H, SiCH\(_3\)), -0.23 (s, 3 H, SiCH\(_3\)); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)): \(\delta\) 168.6, 168.3, 165.5, 165.2, 165.1, 164.9, 162.1, 161.7, 159.9, 159.6, 133.2, 133.1, 132.9, 130.3, 130.0,
2-(2-(Cyclooct-4-enyloxy)ethoxy)ethyl (methyl 2,3-di-O-benzoyl-4-O-tert-butyldimethylsilyl-β-D-glucopyranosyluronate)-(1 → 3)-(4,6-O-p-methoxybenzylidene-2-deoxy-2-acetamido-β-D-galactopyranosyl)-(1 → 4)-(methyl 2,3-di-O-benzoyl-β-D-glucopyranosyluronate)-(1 → 3)-4,6-O-p-methoxybenzylidene-2-deoxy-2-acetamido-β-D-galactopyranoside (12b): To a solution of tetrasaccharide 12a (0.11 g, 0.056 mmol) in benzene (2.0 mL) were added tributylstannane (200 µL, 0.74 mmol) and 2,2’-azobisisobutyronitrile (6.0 mg). After stirring at rt for 45 min, the reaction was then heated to 80 °C and stirred for an additional 3 h. The mixture was cooled to rt and concentrated to afford a white solid. Purification by flash chromatography (50 → 100% EtOAc:hexanes) afforded the desired acetamide 12b (0.088 g, 89 %) as a white solid. Rf 0.20 (EtOAc). 1H NMR (300 MHz, CDCl3): δ 7.94 (d, J = 8 Hz, 2 H, ArH), 7.90 (d, J = 7.0 Hz, 2 H, ArH), 7.86 – 7.80 (m, 4 H, ArH), 7.50 – 7.40 (m, 6 H, ArH), 7.38 – 7.26 (m, 8 H, ArH), 7.19 (d, J = 7.5 Hz, 2 H), 6.83 (d, J = 8.5 Hz, 2 H, ArH), 6.78 (d, J = 7.0 Hz, 2 H), 5.68 (dd, J = 7.0, 12.0 Hz, 1 H), 5.68 – 5.50 (m, 4 H), 5.47 (dd, J = 8.5, 8.5 Hz, 1 H), 5.30 – 5.23 (m, 2 H, CH=CH of COE), 5.15 (s, 1 H), 5.01 (d, J = 8.5 Hz, 1 H), 4.98 (dd, J = 6.0, 12.0 Hz, 1 H), 4.96 – 4.90 (m, 1 H), 4.86 (d, J = 6.0 Hz, 1 H), 4.74 (dd, J = 6.0, 6.0 Hz, 1 H), 4.68 – 4.60 (m, 1 H), 4.53 (dt, J = 2.5, 9.1 Hz, 1 H), 4.38 (br s, 1 H), 4.26 (dd, 1 H, J = 9.0, 9.0 Hz), 4.24 (d, J = 9.0 Hz, 1 H), 4.16 (dd, J = 1.5, 9.5 Hz, 1 H, H-5′), 4.20 – 4.16 (m, 1 H), 4.03 (d, J = 10.0 Hz, 1 H, H-5′), 4.01 (d, J = 9.5 Hz, 1 H, H-6), 3.98 (d, J = 3.0 Hz, 1 H), 3.95 – 3.88 (m, 1 H, OCH2CH2O), 3.78 (s, 3 H, OCH3), 3.80 – 3.76 (m, 1 H, H-6), 3.77 (s, 3 H, OCH3), 3.71 (s, 3 H, OCH3), 3.68 (s, 3 H, OCH3), 3.66 – 3.60 (m, 1 H, OCH2CH2O), 3.58 – 3.54 (m, 3 H, OCH2CH2O), 3.50 – 3.45 (m, 3 H, OCH2CH2O, H-6), 3.45 – 3.37 (m, 3 H, H-2, H-5, OCH2CH2O), 3.37 – 3.26 (m, 2 H, OCH of COE, H-2), 2.77 (s, 1 H, H-5), 2.32 – 2.20 (m, 1 H, CH2 of COE), 2.10 – 2.02 (m, 2 H, CH2 of COE), 2.02 – 1.92 (m, 1 H, CH2 of COE), 1.92 – 1.80 (m, 1 H, CH2 of COE), 1.78 – 1.70 (m, 1 H, CH2 of COE), 1.68 – 1.58 (m, 2
H, CH$_2$ of COE), 1.55 (s, 3 H, CH$_2$ of NCOCH$_3$), 1.47 (s, 3 H, NCOCH$_3$), 1.42 – 1.36 (m, 1 H, CH$_2$ of COE), 1.36 – 1.26 (m, 1 H, CH$_2$ of COE), 0.68 (s, 9 H, Si(CH$_3$)$_3$), -0.13 (s, 3 H, SiCH$_3$), -0.28 (s, 3 H, SiCH$_3$); 13C NMR (125 MHz, CDCl$_3$): δ 171.3, 170.9, 168.6, 168.4, 165.6, 164.9, 164.8, 164.7, 159.7, 159.6, 133.2, 133.1, 130.7, 130.4, 129.9, 129.9, 129.8, 129.6, 129.5, 129.4, 129.4, 129.2, 129.1, 128.4, 128.3, 127.7, 127.6, 113.4, 113.1, 101.0, 100.6, 100.2, 99.3, 99.1, 81.0, 77.2, 75.9, 75.7, 75.5, 75.3, 75.2, 75.1, 73.7, 73.6, 72.1, 72.0, 70.6, 70.5, 70.3, 69.2, 68.4, 68.2, 67.5, 66.4, 66.2, 55.3, 55.2, 54.1, 53.2, 52.7, 52.4, 34.1, 34.0, 33.5, 33.4, 25.7, 25.6, 25.3, 23.1, 23.1, 22.5, 17.7, -4.5, -5.2; ESI MS: m/z calcd for [C$_{92}$H$_{110}$N$_2$O$_{31}$Si + H]$^+$: 1767.6, obsd 1768.1.

2-(2-(Cyclooct-4-enyloxy)ethoxy)ethyl (methyl 2,3-di-O-benzoyl-4-O-tert-butyldimethylsilyl-β-D-glucopyranosyluronate)-(1 → 3)-(4,6-di-O-sodium sulfonato-2-deoxy-2-acetamido-β-D-galactopyranosyl)-(1 → 4)-(methyl 2,3-di-O-benzoyl-β-D-glucopyranosyluronate)-(1 → 3)-4,6-di-O-sodium sulfonato-2-deoxy-2-acetamido-β-D-galactopyranoside (12): Acetamide 12b (0.038 g, 0.021 mmol) was dissolved in CH$_3$CN (400 µL) and H$_2$O (40 µL). 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (0.014 g, 0.063 mmol) was added. The reaction was stirred at rt for 2 h, quenched with MeOH, and concentrated to yield a red solid. The product was purified on Sephadex LH-20 (50% CH$_2$Cl$_2$:MeOH) to afford the crude tetraol 12c as a white solid. The tetraol (0.026 g, 0.017 mmol) was dissolved in DMF (700 µL), and SO$_3$•TMA (0.024 g, 3.96 mmol) was added. After stirring at 50 °C overnight, the reaction was cooled to rt, quenched with MeOH and concentrated to afford a yellow solid. The product was purified on Sephadex LH-20 (50% CH$_2$Cl$_2$:MeOH) followed by silica gel chromatography (5:2:1 MeOH:EtOAc:H$_2$O) to afford 12 (0.022 g, 71%) as a white solid. R$_r$ 0.45 (4:1:1 MeOH:EtOAc:H$_2$O). 1H NMR (300 MHz, CD$_3$OD): δ 7.99 (d, J = 8.0 Hz, 2 H, ArH), 7.95 (dd, J = 1.0, 8.0 Hz, 2 H, ArH), 7.89 (dd, J = 1.0, 8.0 Hz, 2 H, ArH), 7.83 (dd, J = 1.0, 8.0 Hz, 2 H, ArH), 7.62 – 7.50 (m, 4 H, ArH), 7.44 (t, J = 7.0, 7.5 Hz, 4 H, ArH), 7.40 – 7.32 (m, 4 H, ArH), 5.72 – 5.54 (m, 4 H, CH=CH, H-3'), 5.42 – 5.30 (m, 2H, H-2'), 5.14 (dd, J = 3.0, 6.0 Hz, 1 H), 5.05 (s, 1 H, H-4), 4.84 (d, J = 2.0 Hz, 1 H, H-4), 4.70 – 4.62 (m, 2 H), 4.48 (dd, J = 1.5, 8.0 Hz, 1 H), 4.46 – 4.40 (m, 2 H), 4.36 (dd, J = 1.5, 9.5 Hz, 1 H), 4.28 (dd, J = 7.5, 11.5 Hz, 1 H), 4.17 (d, J = 9.0 Hz, 1 H), 4.12 (dd, J = 5.5, 10.5 Hz, 1 H), 4.09 – 4.03 (m, 1 H), 3.98 – 3.80 (m, 7 H), 3.88 (s, 3 H, OCH$_3$), 3.83 (s, 3 S9
H, OCH$_3$), 3.76 – 3.66 (m, 2 H), 3.60 – 3.45 (m, 6 H), 3.42 – 3.36 (m, 1 H, OCH of COE), 2.42 – 2.30 (m, 1 H, CH$_2$ of COE), 2.20 – 2.12 (m, 2 H, CH$_2$ of COE), 2.10 – 2.00 (m, 1 H, CH$_2$ of COE), 2.00 - 1.90 (m, 1 H, CH$_2$ of COE), 1.80 – 1.60 (m, 3 H, CH$_2$ of COE), 1.51 (s, 3 H, NCOCH$_3$), 1.52 (s, 3 H, NCOCH$_3$), 1.54 – 1.36 (m, 2 H, CH$_2$ of COE), -0.75 (s, 9 H, Si(CH$_3$)$_3$), -0.01 (s, 3 H, SiCH$_3$), -0.16 (s, 3 H, SiCH$_3$); ESI MS: m/z calcd for [C$_{76}$H$_{94}$N$_2$O$_4$S$_4$Si + Na – 2H]$^+$: 1871.4, obsd 1871.5.

Polymerization Procedure for Unprotected CS Monomer 7: In a typical polymerization experiment, a small vial was charged with CS monomer 7 (15 mg, 0.20 mmol) and a small stir bar under the flow of argon. To this was added 200 µL of MeOH (for catalyst 8) or H$_2$O (for the water-soluble catalyst, H$_2$IMes-poly(ethyleneglycol)(Cl)$_2$-Ru=CH(o-PrOC$_6$H$_4$)).3 The desired amount of bis-pyridine catalyst 8 (0.013 M stock solution in (CH$_2$Cl)$_2$) or water-soluble catalyst (0.013 M stock solution in water) was added, and the reaction mixture was heated to 55 °C. After stirring at 55 °C for 24 h, the reaction was quenched by the addition of ethylvinyl ether (150 µL), passed through a Sephadex G10 UF column (H$_2$O), and lyophilized to obtain 9a or 9b as an off-white solid. The lyophilized materials were characterized by 1H NMR. The integrations of the phenyl peaks at 7.2 – 7.0 ppm and olefinic peaks at 5.4 – 5.2 ppm (cyclooctene) and 5.6 – 5.4 ppm (polymerized cyclooctene) were used to obtain the DP values and the extent of conversion. For the polymerization with 8 (2.5 mol%), 36% conversion was observed with a DP value of 21. For the polymerization with the water-soluble catalyst (2.5 and 5.0 mol%), incomplete conversion (7 and 60%, respectively) was observed with DP values of 8 and 28, respectively.

Polymerization Procedure for Protected CS Monomers: In a typical polymerization experiment, a small vial was charged with CS monomer (5, 6 or 12; 0.018 mmol) and a small stir bar under the flow of argon. To this was added a solution of 5:1 (CH$_2$Cl)$_2$/MeOH (600 µL). The desired amount of bis-pyridine catalyst 8 (0.013 M stock solution in (CH$_2$Cl)$_2$) was then added via syringe at rt. The reaction mixture was heated to 55 °C and stirred at this temperature for 24 h. At this point, TLC of the crude reaction mixture showed complete consumption of starting material. The polymerization process was quenched by the addition of ethyl vinyl ether (0.3 mL), and the resultant precipitate was filtered and washed with diethyl ether. The 1H NMR of the crude product showed the disappearance of the cyclooctene methylene protons between 2.4-
2.2 ppm, indicating the completion of the polymerization reaction. Further confirmation of the polymerization reaction was established by \(^1\)H NMR of the crude product after desilylation and saponification, followed by salt removal using Sephadex G10 UF (H\(_2\)O). The \(^1\)H NMR of the deprotected product showed a shift of the olefinic protons from 5.6 – 5.4 ppm (sharp multiplet corresponding to cyclooctene olefinic protons) to 5.4 – 5.2 ppm (broad peak corresponding to the poly(cyclooctene) backbone protons).

Small CS oligomers were removed from the glycopolymer by dialysis at rt against 0.2 M LiBr in DMSO (Spectra/Por Biotech Dialysis Membranes RC MWCO 8000, 25000 or 50000; 2 x 12 h). The polymer was then dialyzed at rt against DMSO without LiBr (3 x 6 h) and lyophilized to dryness to yield a white solid. All glycopolymers were characterized by \(^1\)H NMR spectroscopy and gel permeation chromatography (GPC). GPC was carried out in 0.2 M LiBr in DMF on two I-series Mixed Bed Low MW ViscoGel columns (Viscotek) connected in series with a DAWN EOS multangle laser light scattering (MALLS) detector and an Optilab DSP differential refractometer (both from Wyatt Technology). No calibration standards were used, and dn/dc values were obtained for each injection assuming 100% mass elution from the columns. The polymerization yield and \(M_w\), \(M_n\) and PDI values for different CS monomers and different catalyst loadings are shown in Table 1.

CS-E disaccharide protected polymer (10): 53 – 88% yield for 0.5 – 5.0 mol% catalyst. \(^1\)H NMR (500 MHz, D\(_2\)O): \(\delta\) 8.10 – 7.45 (m, 10 H), 5.60 – 5.02 (m, 6 H, H-1', H-2', H-3', \(CH=CH\)), 4.65 – 4.00 (m, 6 H, H-1, H-4, H-5, H-6, H-4'), 4.00 – 3.20 (m, 11 H, H-2, H-3, H-5, \(CH_2CH_2O\)), 3.76 (s, 3 H, COOC\(\text{H}_3\)), 3.20 – 3.10 (m, 1 H, OC of COE), 2.04 – 1.80 (m, 3 H), 1.49 (s, 3 H), 1.43 – 1.11 (m, 7 H), 0.66 (s, 9 H, SiC(\(CH_3\))), -0.06 (s, 3 H, SiCH\(_3\)), -0.24 (s, 3 H, SiCH\(_3\)).

Unsulfated CS disaccharide protected polymer (11): 69% yield. \(^1\)H NMR (500 MHz, D\(_2\)O): \(\delta\) 7.97 (d, \(J = 7.5 \text{ Hz}, 2 \text{ H, ArH}\)), 7.88 (d, \(J = 7.5 \text{ Hz}, 2 \text{ H, ArH}\)), 7.72 (dd, \(J = 7.0, 7.0 \text{ Hz}, 1 \text{ H, ArH}\)), 7.67 (dd, \(J = 7.0, 7.0 \text{ Hz}, 1 \text{ H, ArH}\)), 7.59 (dd, \(J = 7.5, 7.5 \text{ Hz}, 2 \text{ H, ArH}\)), 7.53 (dd, \(J = 7.5, 7.5 \text{ Hz}, 2 \text{ H, ArH}\)), 5.75 (dd, \(J = 9.0, 9.0 \text{ Hz}, 1 \text{ H, H-3'}\)), 5.56 – 5.52
(m, 2 H, CH=CH), 5.38 (dd, J = 8.0, 8.0 Hz, 1 H, H-2’), 5.34 (d, J = 7.5 Hz, 1 H, H-1’), 4.56 – 4.50 (m, 2 H, H-5’), 4.46 – 4.40 (m, 1 H), 4.37 (dd, J = 9.0, 9.0 Hz, 1 H, H-4’), 4.06 – 4.00 (m, 1 H, H-4), 3.98 – 3.70 (m, 3 H, H-2, H-3, OCH₂CH₂O), 3.90 (s, 3 H, OCH₃) 3.72 – 3.40 (m, 9 H), 3.38 – 3.28 (m, 1 H, OCH of COE), 2.20 – 2.00 (m, 4 H), 1.62 – 1.40 (m, 6 H), 1.36 (s, 3 H, NCOCH₃), 0.84 (s, 9 H, SiC(CH₃)₃), 0.09 (s, 3 H, SiC(CH₃)₃), -0.08 (s, 3 H, SiC(CH₃)₃).

CS-E tetrasaccharide protected polymer (13): 51% yield.

1H NMR (500 MHz, D₂O): δ 8.00 – 7.20 (m, 20 H), 5.60 – 4.92 (m, 9 H, H-1, H-1’, H-2’, H-3’, CH=CH), 4.60 – 4.02 (m, 11 H, H-1, H-4, H-5, H-6, H-4’), 3.85 (s, 3 H, COOC(CH₃)₃), 3.77 (s, 3 H, COOC(CH₃)₃), 3.20 (m, 3.90, 14 H, H-2, H-3, H-5, OCH₂CH₂O), 3.20 – 3.10 (m, 1 H, OCH of COE), 2.03 – 1.80 (m, 3 H), 1.53 (s, 3 H), 1.42 (s, 3 H), 1.50 – 1.10 (m, 7 H), 0.66 (s, 9 H, SiC(CH₃)₃), -0.07 (s, 3 H, SiCH₃), -0.27 (s, 3 H, SiCH₃).

Polymer Deprotection Procedure: The glycopolymer (10, 11 or 13; 0.018 mmol) was dissolved in pyridine (120 µL), THF (120 µL) and H₂O (28 µL). The reaction was cooled to 0 °C, and HF•pyridine (33 µL, 70% HF in pyridine) was added. After stirring at 0 °C for 1 h and at rt overnight, the reaction was quenched with methoxytrimethylsilane to obtain a brown precipitate. The precipitate was filtered, washed with ether and subjected to saponification conditions. The alcohol was deprotected in a manner similar to a procedure from Lucas et. al. To a solution of the alcohol in THF (152 µL) and H₂O (75 µL) at 0 °C were added 1 M aq. LiOH (60 µL) and 30% H₂O₂ (30 µL). The reaction was stirred at 0 °C for 1 h and at rt for 12 h. At this time, 4 M NaOH (45 µL) and MeOH (224 µL) were added, and the reaction was stirred for another 12 h. It was then neutralized with Amberlyst IR-120 resin, filtered and lyophilized to afford an orange solid. The product was purified by Sephadex G-25 UF (0.9 % NaCl in H₂O) and desalted with Sephadex G-25 UF (100% H₂O) to afford 14 (87 – 95% yield), 15 (69% yield) or 16 (87% yield) as a white solid upon lyophilization.
Treatment of Hippocampal Neurons with the CS-E Polysaccharide and CS Glycopolymers.

Hippocampal neuronal cultures were prepared using a procedure modified from Goslin and Banker. Briefly, hippocampi of embryonic day 18 (E18) rats were dissected and transferred to 4.5 mL of ice-cold Calcium and Magnesium Free-Hank’s Balanced Salt Solution (CMF-HBSS). Trypsin (2.5%, no EDTA) was added to 5 mL, and the tissue was incubated for 15 min at 37 °C. The trypsin solution was removed.

CS-E disaccharide polymer (14): 87 – 95% yield for 0.5 – 5.0 mol% catalyst. 1H NMR (500 MHz, D$_2$O): δ 5.46 – 5.30 (m, 2 H, CH=CH), 4.71 (s, 1 H, H-4), 4.46 (d, $J = 5.0$ Hz, 1 H, H-1), 4.37 (d, $J = 7.5$ Hz, 1 H, H-1’), 4.17 (d, $J = 10.5$ Hz, 1 H, H-6), 4.07 (dd, $J = 9.5$, 9.5 Hz, 1 H, H-6), 4.02 – 3.82 (m, 4 H, H-2, H-3, H-5, OCH$_2$CH$_2$O), 3.74 – 3.48 (m, 8 H, H-5’, OCH$_2$CH$_2$O), 3.41 (dd, $J = 8.5$ Hz, 1 H, H-4’), 3.36 (dd, $J = 8.0$, 8.5 Hz, 1 H, H-3’), 3.40 – 3.30 (m, 1 H, OCH of COE), 3.23 (dd, $J = 8.0$, 8.0 Hz, 1 H, H-2’), 1.91 (s, 3 H, NCOCH$_3$), 2.08 – 1.80 (m, 4 H, CH$_2$ of COE), 1.70 – 1.10 (m, 6 H, CH$_2$ of COE).

Unsulfated CS disaccharide polymer (15): 69% yield. 1H NMR (500 MHz, D$_2$O): δ 5.60 – 5.20 (m, 2 H, CH=CH), 4.34 (d, $J = 8.0$ Hz, 1 H, H-1), 4.30 (d, $J = 7.0$ Hz, 1 H, H-1’), 4.11 (d, $J = 2.0$ Hz, 1 H, H-4), 4.00 – 3.90 (m, 2 H, H-2, H-6), 3.80 – 3.50 (m, 13 H, H-3, H-5, H-6, H-5’, OCH of COE, OCH$_2$CH$_2$O), 3.44 (dd, $J = 9.0$, 9.0 Hz, 1 H, H-3’), 3.41 (dd, $J = 9.5$, 9.5 Hz, 1 H, H-2’), 3.28 (dd, $J = 8.0$, 8.0 Hz, 1 H, H-1’), 1.96 (s, 3 H, NCOCH$_3$), 2.40 – 1.80 (m, 4 H), 1.70 – 1.00 (m, 6 H).

CS-E tetrasaccharide polymer (16): 87% yield. 1H NMR (500 MHz, D$_2$O): δ 5.60 – 5.30 (m, 2 H, CH=CH), 4.74 – 4.72 (m, 2 H, H-4), 4.62 – 4.52 (m, 2 H, H-1), 4.48 (d, $J = 7.0$ Hz, 1 H, H-1’), 4.46 (d, $J = 7.0$ Hz, 1 H, H-1’), 4.30 – 3.90 (m, 11 H, H-2, H-3, H-5, H-6, OCH$_2$CH$_2$O), 3.84 – 3.52 (m, 12 H, H-3’, H-4’, H-5’, OCH of COE, OCH$_2$CH$_2$O), 3.49 (dd, $J = 8.5$, 8.5 Hz, 1 H, H-4’), 3.43 (dd, $J = 8.0$, 8.0 Hz, 1 H, H-3’), 3.36 (dd, $J = 8.5$, 8.5 Hz, 1 H, H-2’), 3.30 (dd, $J = 8.0$, 8.0 Hz, 1 H, H-2’), 1.94 (s, 3 H, NCOCH$_3$), 1.91 (s, 3 H, NCOCH$_3$), 2.20 – 1.60 (m, 4 H, CH$_2$ of COE), 1.60 – 1.10 (m, 6 H, CH$_2$ of COE).
and the tissue sample washed three times with 5 mL of CMF-HBSS. Cells were then dissociated from the tissue in 1 mL of CMF-HBSS by passing through a P1000 pipette tip twenty times. The cells were counted, diluted into Minimal Eagle’s Medium (MEM) plus 10% fetal bovine serum, and seeded on glass coverslips (Carolina Biological) coated with 15 µg/mL poly-DL-ornithine at a density of 70 cells/mm² for 30 min. After this time, 500 µL of supplemented Neurobasal medium (47.5 mL Neurobasal medium without L-glutamine; 0.5 mL L-glutamine (200 mM); 0.5 mL penicillin/streptomycin (10,000 U/mL); 0.5 mL antibiotic-antimycotic (100X stock); 1.0 mL B-27 serum-free supplement (50X stock); 50 µL of 0.5 M kynurenic acid in 1 N NaOH) was added to each coverslip. The cultures were incubated in 5% CO₂ at 37 °C for 24 h. The media was then removed, and a 1.25 µL solution of CS-E polysaccharide (Seikagaku; ~60% of the polysaccharide is estimated to contain the CS-E motif) or glycopolymer in 3.5 M aq. NaCl was added to supplemented Neurobasal medium (498.75 µL) on each coverslip. A fixed uronic acid concentration of 0.5 µg/mL was used in each case to compare the effects of multivalency. This concentration corresponded to molar concentrations of 14.3 nM for the natural CS-E polysaccharide and 53.0 nM, 33.2 nM, 22.9 nM, and 16.6 nM for glycopolymer 14 with DP values of 25, 40, 58 and 80, respectively. The molar concentrations of glycopolymers 11 and 16 were 43.2 nM and 12.1 nM, respectively. Importantly, no cellular toxicity was observed at the concentrations used for each compound, as demonstrated by adherence of the cells to the coverslip and healthy cellular morphology. The cultures were incubated for an additional 24 h in 5% CO₂ at 37 °C and analyzed as described below.

Concentrations of the CS-E polysaccharide and glycopolymers were determined by measuring their relative uronic acid contents using the carbazole reaction. Briefly, the acid borate reagent (1.5 mL of 0.80 g sodium tetraborate, 16.6 mL H₂O, and 83.3 mL H₂SO₄) was added to 15-mL glass test tubes. The polysaccharide and glycopolymers (5 µL of a 10 mg/mL stock in 3.5 M NaCl) were added and the solution placed in a boiling H₂O bath for 10 min. Following addition of the carbazole reagent (50 µL of 0.1% w/v carbazole in 100% EtOH), the solution was boiled for 15 min. The absorbance was read at 530 nm and compared to a D-glucuronolactone standard in H₂O. From these readings, stock solutions containing 200 µg/mL uronic acid in 3.5 M aq. NaCl were made for each compound and used for treatments of neurons.
Determining the Relative Potencies of the Natural Polysaccharide and Glycopolymer 16.

Hippocampal neurons were grown for 24 h before medium was replaced with fresh supplemented Neurobasal medium, and compounds were added at various uronic acid concentrations ranging from 0.01 to 0.5 µg/mL. Neurons were incubated with the compounds for 24 h and then analyzed as described below. To determine the IC₅₀ values, the concentrations of the CS-E polysaccharide were calculated based on an average molecular weight of 70,000 g/mol, as provided by the manufacturer. For glycopolymer 16, a molecular weight of 84,096 g/mol, as determined by GPC, was used. The concentration values were plotted against the % inhibition of neurite outgrowth relative to untreated neurons, and the IC₅₀ values represent molar concentrations of compound needed for 50% inhibition of neurite outgrowth. IC₅₀ values of 1.2 ± 0.1 nM and 1.3 ± 0.1 nM were determined for the natural polysaccharide and glycopolymer 16, respectively (1.2 ± 0.1 nM and 1.6 ± 0.1 nM if calculated based on the saccharide content of each molecule).

Immunocytochemistry of Hippocampal Neuronal Cultures. After 48 h in culture, the hippocampal neurons on coverslips were rinsed one time with PBS, fixed in 4% paraformaldehyde for 20 min at rt, washed twice with PBS, permeabilized in 0.3% Triton X-100 for 5 min at rt, and washed twice with PBS. Non-specific binding was blocked by incubating with 3% BSA for 1 h at rt and then rinsing once with PBS. Cells were then incubated with anti-tubulin antibodies (rabbit polyclonal, 1:500; Sigma) in 3% BSA overnight at 4 °C. Excess antibody was rinsed away 5 times with PBS. Secondary antibody, anti-rabbit IgG AlexaFluor 488 (1:500; Molecular Probes), was added for 1 h at 37 °C in 3% BSA. Excess secondary antibody was washed off 5 times with PBS. The coverslips were mounted onto glass slides using Vectashield mounting medium (Vector Labs) and sealed with clear nail polish. Cells were imaged on a Nikon Eclipse TE2000-S inverted microscope. The images were captured with MetaMorph 6.1 software using a 40x plan fluor oil objective.

Morphometric Analysis. All experiments were performed in triplicate. For each experiment, 25 randomly selected cells were analyzed per coverslip. To ensure accurate measurements, only neurites longer than ~10 µm and not in contact with other cells were measured using MetaMorph 6.1 software. The
mean neurite lengths were compared among the different conditions by the ANOVA test using the statistical analysis program in KaleidaGraph 4.0.
Figure S1. A monovalent CS-E tetrasaccharide displays no inhibitory activity, whereas the CS-E terasaccharide glycopolymer 16 completely inhibits neurite outgrowth. Hippocampal neurons were treated with 0.5 µg/mL uronic acid equivalents of a monovalent tetrasaccharide or glycopolymer 16.
References

