An L-band Vector Vortex Coronagraph for NACO: the AGPM Project

O. Absil¹, C. Delacroix², C. Hanot¹, D. Mawet³, S. Habraken¹, J. Surdej¹, M. Karlsson⁴

¹ Institut d’Astrophysique et de Géophysique, University of Liège, Belgium
² HOLOLAB, University of Liège, Belgium
³ Jet Propulsion Laboratory, NASA, USA
⁴ Ångström Laboratory, University of Uppsala, Sweden

Why the L band?

- Planet/star ratio much more favourable than in near-IR
 - See e.g. detection of β Pic b (Lagrange et al. 2010)
- Strehl ratio increases as $\lambda^{6/5}$
 - As high as 70-80% in L band on AO-assisted 10-m class telescope
- Background is still OK
 - L=17 in 1 hour \rightarrow 10 Myr old 1 M$_{Jup}$ planet reachable at 30 pc

BUT ... Lower angular resolution

Need an L-band coronagraph with a small Inner Working Angle on a 10-m class telescope

The NACO-AGPM project

- The NAOS-CONICA (NACO) instrument at VLT
 - The sole 10-m class AO-assisted L-band camera in the Southern hemisphere
- The Annular Groove Phase Mask (AGPM) coronagraph
 - Vector vortex coronagraph (VVC, see D. Mawet’s poster)
 - Made of zero-order (sub-lambda) grating (ZOG)
 - 360° discovery space down to 1 λ/D
- Manufacturing (see C. Delacroix’s talk)
 - Transparent substrate in L-band \rightarrow diamond
 - Etching of the grating with dry plasma at Ångström Laboratory

End-to-end simulations of NACO-AGPM

- Large gain in the 0.1-0.5” region

Estimated sensitivity in Jupiter masses at 0.2”

- E.g. young K and M dwarfs
 - From 8 to 200 Myr, d < 50 pc
- NACO: near-IR WFS
 - K < 9 \rightarrow 40 targets
 - Pupil tracking, 10 mas rms pointing, ADI (angle > 45°)
- SPHERE: visible WFS
 - V < 10 \rightarrow 25 targets

Excellent complementarity

- L-band NACO-AGPM could be as good as H-band SPHERE at 0.2”, provided that AGPM is to specs