theoretically predicted values, increasing the confidence in the experiment.

In the $\pi^0 \rightarrow 2\gamma$ case, the deviation of the form factor, $\Gamma(\pi/\mu)$, from unity was less than two standard deviations, the expansion parameter a being equal to -0.24 ± 0.16. Recently it has been shown\cite{16,17} that negative values of a can be obtained by including interference effects between 2π and other intermediate states. In the case of virtual longitudinal γ rays in the $n^+\gamma$ reaction, the data yielded a result which was consistent with a small contribution as predicted by the calculations of Joseph. It is hoped that the present project will be continued because of these two latter interesting questions, but these present results were considered to be of sufficient interest to warrant publication now.

\cite{17} H. S. Wong, Phys. Rev. (to be published).

ACKNOWLEDGMENTS

I would like to thank the Columbia Bubble Chamber Group for aid in taking the pictures; especially Dr. R. Plano who was also mainly responsible for the design and construction of the measuring engines and Professor Jack Steinberger for his advice and encouragement during the progress of the experiment; Professor Norman Kroll for many useful discussions; Dr. Don Geffen for communicating his results prior to publication; Mr. Don Burd for programming the IBM 650 Computer; and Irene Gardner, John Impeduglia, Dina Goursky, Alex Rytow, Hank Margosian, David Mauk, Alex Woskry, Galli Kaneletz, and Don McClure for finding and measuring these events. I also wish to acknowledge the help of Dr. Agnes Lecortois who collaborated in the early phases of the work. Finally, this experiment would not have been conducted nor completed in such an orderly fashion without the aid of Miss Catherine MacLeod.

PHYSICAL REVIEW
VOLUME 121, NUMBER 1
JANUARY 1, 1961

$\Sigma^0 \rightarrow \Lambda^0 + e^+ + e^-$ and the $\Sigma^0 - \Lambda^0$ Relative Parity*

NINA BYERS
Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California

AND

HUGH BURKHARDT
Department of Physics, California Institute of Technology, Pasadena, California

(Received July 14, 1960)

The $\Sigma^0 - \Lambda^0$ relative parity may be measured by observing correlation of polarizations in the process $\Sigma^0 \rightarrow \Lambda^0 + \gamma$. Internal conversion of the photon into an electron pair (Dalitz pair) serves as an analyzer which selects polarized photons. Theoretical results are presented which show that the Dalitz-pair decay mode of polarized Σ^0s may be used to measure the $\Sigma^0 - \Lambda^0$ relative parity.

KNOWLEDGE of the relative parity of the Σ^0 and Λ^0 hyperons would provide an important restriction on theoretical speculation about strong interactions. In this paper we wish to point out that there are correlations between the polarizations in the process

$\Sigma^0 \rightarrow \Lambda^0 + \gamma$,

(1)

that depend on the $\Sigma^0 - \Lambda^0$ relative parity. The direct production of an electron pair by internal conversion serves as an analyzer for the photon polarization.

The form of the correlations can be seen from the following argument. Consider first the process (1)

1 Throughout this paper the first, or upper, of two alternatives refers to the case of even $\Sigma^0 - \Lambda^0$ relative parity, and the other to odd.
\[P_2 = \tilde{k} P_2 \cdot \hat{k} = \frac{1}{\gamma_0} \left[\hat{\mathcal{E}} P_2 - \hat{\mathcal{E}} - B P_2 \cdot B^* \right], \]
(2)

where \(\hat{\mathcal{E}} \), etc., are unit vectors.

It is to be expected that \(Z_0 \) is produced at particular energies and angles in, for instance, pion-nucleon collisions will be polarized. Averaging (2) over all directions for \(\hat{k} \) and \(\hat{\mathcal{E}} \), we find in agreement with Gatto\(^3\)

\[\langle P_\lambda \rangle_{av} = -\frac{1}{2} P_2. \]
(3)

Since the directions of \(P_\lambda \) and \(\langle P_\lambda \rangle_{av} \) can be determined, apart from a common sign, by observing the favored directions for pion emission in the \(\Lambda^0 \) decays,\(^6\) it follows from (2) that determination of the sign of, for instance, \(P_\lambda \cdot \hat{\mathcal{E}} \langle P_\lambda \rangle_{av} \hat{\mathcal{E}} \) determines the \(\Sigma^- - \Lambda^0 \) relative parity.

The electron pairs produced by internal conversion of the photons in (1) provide one possible analyzer for the photon polarization\(^4\) because the largest contribution to the production of such a pair comes from photons in the intermediate state whose electric vector is normal to the plane of the pair.\(^5\) The energy denominator in this second-order process favors nearly real photons in the intermediate state whose longitudinal components make a small contribution \(\text{[see Eq. (7)]} \), so that the argument leading to (2) still applies. However, internal conversion does not provide a perfect analyzer for the photon polarization because transverse photons with both polarizations contribute to the production of the pair. We find that the \(\Lambda^0 \) polarization in internal conversion events averaged over all pairs produced with total momentum in the direction \(\hat{k} \) in a plane whose normal is \(\hat{n} \) is given by

\[P_\lambda = -\tilde{k} P_2 \cdot \hat{n} = 0.43 \left[\delta P_2 \cdot \hat{n} - i P_2 \cdot \hat{l} \right], \]
(4)

where \(\hat{l} = \hat{k} \times \hat{n} \). (Angular momentum conservation requires that the hyperon spin reverse when a transverse photon is emitted along the spin direction, so the correlation for \(P_\lambda \parallel \tilde{k} \) is complete.) The efficiency of internal conversion as an analyzer depends on the form factors for the interaction (1). We assume here that these form factors are constant.\(^6\) In this case, the conversion coefficient is \(\Gamma \langle \Lambda^0 \rangle / \Gamma \langle \Lambda^0 \rangle \),

\[\Gamma \langle \Lambda^0 \rangle = \frac{1}{\mathcal{B} \cdot \mathcal{B}^*}, \]
(5)

We take the interaction energy for (1) to have the form \(e_j A e_i \).\(^8\) Then the most general matrix element of the current \(j_\mu \) satisfying parity conservation, Lorentz and gauge invariance has the form \(\delta_{\lambda \mu} u_\lambda w_\mu \) where \(u_\lambda \) and \(w_\mu \) are the free-particle Dirac spinors and

\[j_\mu = \frac{1}{\gamma_0} \left[F_1(k^2) \left(\gamma_\mu - \frac{M_Z^2 + M_A}{p_\mu} \right) \right] + F_2(k^2) \frac{\alpha M}{2} \]
(6)

\[F_1 \) and \(F_2 \) are unknown form factors which can depend only on \(k_0^2 \); \(p_\mu \) is the \(\Sigma^0 \) 4-momentum and \(k_\mu \) the photon's 4-momentum; \(M \) is a mass chosen so that \(F_2(0) = 0 \). We here assume that \(F_1 = F_2 \) and \(F_1 = 0 \). Then the lifetime \(\tau \) for \(\Sigma^0 \) radiative decay (1) is given by

\[\tau = 3\alpha M \mu^2 \left(M_0^2 - M_\Lambda^2 \right)^2 \left(M_0^2 + M_\Lambda^2 \right)^2 \]
(7)

The transition probability for direct emission of a pair whose total 4-momentum has magnitude \(k_0^2 \) \((k_0^2 = k_0^2 - k_0^2) \) is\(^5\)

\[W(k^2) = \frac{\alpha}{3\pi} \left(\frac{1}{k^2} - \frac{4m_4^2}{k_0^2} \right) \left(\frac{k^2}{\Delta^2} \right) \left(\frac{1}{k_0^2} \right) \]
(8)

\[\times \left(1 + \frac{R_2}{2k^2} \right) \left(1 - \frac{k_0^2}{k^2} \right)^{-1} \]
(9)

where terms of order \(\Delta^2 / 2M_\Lambda \) in the phase space factors have been neglected, \(\alpha = 1 / 137, \Delta = M_0^2 - M_\Lambda^2 \), and

\[R_2 = |F_1 + F_2(k_0^2)| / |F_1 + F_2(k_0^2)|. \]
(10)

The quantity \(R_2 \) is the ratio of the longitudinal to transverse parts of the hyperon current. If \(R_2 \) is not much larger than one, pairs with \(k_0^2 << \Delta^2 \) dominate, and \(P_\lambda \) has the form (4) with analyzer efficiency given by

\[\lambda = \int_{4m_4^2}^{k_0^2} d k^2 W(k^2) (k^2 - 4m_4^2)(2k_0^2 + 4m_4^2)^{-1} = 0.43, \]
(11)

where

\[\lambda = \int_{4m_4^2}^{k_0^2} d k^2 W(k^2). \]
(12)

Note added in proof. The relation (2) between the polarizations in the process (1) has been given previously by R. Gatto, Phys. Rev. 109, 610 (1957), and G. Feldman and T. Fulton, Nuclear Phys. 8, 106 (1958).

ACKNOWLEDGMENT

One of us (N.B.) would like to acknowledge very useful discussions with Dr. J. D. Bjorken and Professor S. D. Drell.

\[\begin{array}{l}

3 We have studied pair production from real photons and have found that effects that depend on the photon's polarization are small.

6 If the form factors do not remain constant, the effect would be to change the distribution in \(k_0^2 \) of the pairs and the internal conversion rate. The polarization for a given value of \(k_0^2 \) is

\[P_\lambda(k_0^2) = -\tilde{k} P_2 \cdot \hat{n} = 0.43 \left[\delta P_2 \cdot \hat{n} - i P_2 \cdot \hat{l} \right], \]
and is independent of the form factors for \(k_0^2 \ll \Delta^2 \).

8 We use units such that \(h = c = 1 \).