ESR spectra of PF2 and SF3 radicals

Citation: The Journal of Chemical Physics 61, 1247 (1974); doi: 10.1063/1.1682004
View online: http://dx.doi.org/10.1063/1.1682004
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/61/3?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
PF3, PF2, and PF on Ni(111): Theoretical aspects of their chemisorption

ESR Spectra of the Fluorinated Silyl Radicals
J. Chem. Phys. 56, 2353 (1972); 10.1063/1.1677541

Structure and ESR Spectra of RCONH Radicals

ESR Spectra of Methyl Radicals in γ-Irradiated Crystals of Sodium Acetate 3D2O
J. Chem. Phys. 54, 3229 (1971); 10.1063/1.1675317

Isotropic ESR Spectra of Fluorine-Containing Radicals in SF6 Matrices
Several years ago two of the present authors reported almost simultaneously the detection and identification of the radical PF$_2$ by ESR spectroscopy. Fessenden and Schuler1 detected the radical during irradiation at $-135\, ^\circ \text{C}$ of nominally pure SF$_6$ with 2.8 MeV electrons, and found its spectrum to be considerably enhanced by the addition of small quantities of PF$_3$. Wan, Morton, and Bernstein,5 on the other hand, detected the radical in γ-irradiated ND$_4$PF$_2$. The parameters describing this latter spectrum were $g=2.0108\pm0.0002$, $a_p=36.0\pm0.5$ G, and $a_y=60.5\pm0.5$ G. In 1970, Wei, Current, and Gendell3 also claimed to have observed the ESR spectrum of PF$_2$ formed by the thermal decomposition and photolysis of P$_2$F$_4$ and PF$_3$H. In spite of discrepancies in the g values, there was no suggestion that the earlier work12 was suspect until Nelson, Jackel, and Gordy4 obtained an isotropic spectrum of PF$_2$ by γ irradiation of PF$_3$ trapped in a xenon matrix. Their parameters were quite different from those of preceding workers, $g=2.0020$, $a_p=84.6$ G, and $a_y=32.5$ G.

In order to resolve the issue we have sought new and unequivocal methods of preparing the radical PF$_2$: (a) The irradiation of 5 mole% PF$_3$ in a CF$_2$F$_2$ matrix with 2.8 MeV electrons5,6 and (b) The UV photolysis of PF$_3$Cl in the liquid phase.7 Both of these methods were successful, and yielded ESR spectra of PF$_2$ whose parameters (Table I) were consistent with those of Nelson, Jackel, and Gordy. Unfortunately our13 previous identifications of the radical appear to have been incorrect. It would appear that Wei, Current, and Gendell3 had also detected PF$_2$, although it was probably frozen into the matrix. Specifically, we feel that their "perpendicular" features might well be due to freely rotating radicals, suggesting the following isotropic parameters for PF$_2$ in an argon matrix, $g=1.9922$, $a_p=83.0$ G, and $a_y=33.5$ G.

Wan, Morton, and Bernstein's radical is almost certainly PO$_2$F$_2$. It has already been shown4 that NH$_4$PO$_2$F$_2$ is susceptible to hydrolysis, and doubtless some conversion to ND$_3$PO$_2$F$_2$ occurred during the deuteration procedure. Furthermore, Begum, Subramanian, and Symons8 have reported parameters for PO$_2$F$_2$ ($g=2.0100$, $a_p=43.8$ G, and $a_y=52.5$ G) which are similar to those of the radical detected6 in irradiated ND$_3$PF$_6$.

The radical labelled PF$_2$ by Fessenden and Schuler1 must also be reidentified. Since its spectrum can be observed when pure10 SF$_6$ is irradiated, it must arise from a sulfur-centered radical, now believed to be SF$_3$. The spectrum of SF$_3$ is considerably enhanced by certain additives, notably PF$_3$. For example, the intensity of the published spectrum1 (1% PF$_3$ in SF$_6$) is approximately ten times stronger (relative to that11 of SF$_3$) than that observed in irradiated pure SF$_6$. The PF$_3$ seems either to participate in reactions involving SF$_3$ or to modify the matrix to make stabilization of SF$_3$ more likely.

The radical SF$_3$ is the prototype of certain sulfanyl radicals which have recently been studied.12 These radicals, of the general type $(R_2O)S$, where $R_2=CF_3$ or SF$_3$, possess two equivalent ligands whose 19F hyperfine interactions exceed those of the unique ligand. In other words these derivatives of SF$_3$ do not possess a threefold axis, but a plane of symmetry. Consequently one would also expect SF$_3$ to exhibit a spectrum showing hyperfine interactions with two equivalent 19F nuclei, and a somewhat smaller interaction with a unique 19F nucleus. The parameters in Table II a, which were obtained from the aforementioned spectrum, accord very well with these deductions.

We have also succeeded in observing the spectrum of SF$_3$ in the liquid phase, by photolyzing a solution13 of H$_2$S or D$_2$S and CF$_3$OF in Freon 13 at $-110\, ^\circ \text{C}$. The spectrum of SF$_3$, whose parameters appear in Table II b, persisted for only a few minutes. It is curious to note that the hyperfine interaction of the two equivalent 13F nuclei is slightly less in solution than in an SF$_3$ matrix, presumably the result of a slight change in the radical geometry.

Table I. ESR parameters of PF$_2$ in (a) CF$_2$F$_2$ matrix at $-140\, ^\circ \text{C}$ and (b) in PF$_3$Cl dissolved in Freon 13 at $-100\, ^\circ \text{C}$.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>1.9994 ± 0.0003</td>
</tr>
<tr>
<td>a_p</td>
<td>81.3 ± 0.2 G</td>
</tr>
<tr>
<td>a_y</td>
<td>32.1 ± 0.2 G</td>
</tr>
</tbody>
</table>

Table II. ESR parameters of SF$_3$ in (a) SF$_3$ matrix at $-135\, ^\circ \text{C}$ and (b) Freon 13 at $-110\, ^\circ \text{C}$.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>2.0054 ± 0.0001</td>
</tr>
<tr>
<td>a_p (one nucleus)</td>
<td>40.4 ± 0.1 G</td>
</tr>
<tr>
<td>a_p (two nuclei)</td>
<td>54.3 ± 0.1 G</td>
</tr>
</tbody>
</table>
Letters to the Editor

*NRCC No. 14127.
†Work supported, in part, by the U. S. Atomic Energy Commission.
‡NRCC Postdoctoral Fellow 1974.
5The experimental technique was similar to that described in Ref. 1. Solid C₂F₆ (m. p. −94°C) allows free rotation of small radicals down to about −165°C as shown by the isotropic spectra observed for CF₃ and C₂F₅ in this matrix (R. W. Fessenden and R. H. Schuler, J. Chem. Phys. 43, 2704 (1965) and in Advances in Radiation Chemistry, edited by M. Burton and J. L. Magee (Wiley-Interscience, New York, 1970), Vol. 2, p. 90.

6In addition to the ESR lines of PF₂ there were lines of PF₄ (the same spectrum as in SF₆) and weak lines of C₂F₅.

11Mass spectroscopic analysis of the SF₆ used in that work shows CF₄ to be the only significant impurity (~1%) and that PF₃ cannot be present to over about 0.01 mole%.
12This spectrum was originally assigned by Fessenden and Schuler to SF₆. See J. R. Morton and K. F. Preston, Chem. Phys. Lett. 18, 98 (1973) for the present assignment.
14100µl each of liquid H₂S and CF₃OF, separated by 100µl of Freon 13, were allowed to warm up to −96°C. If the sample did not explode, the spectrum of SF₃ could be detected upon photolysis at −110°C.