Synthesis and Exploration of Electronically Modified (\(R\))-5,5-Dimethyl-(\(p\)-CF\(_3\))\(_3\)-i-PrPHOX in Palladium-Catalyzed Enantio- and Diastereoselective Allylic Alkylation: A Practical Alternative to (\(R\))-(\(p\)-CF\(_3\))\(_3\)-t-BuPHOX

Robert A. Craig II and Brian M. Stoltz
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States

Abstract

The synthesis of the novel electronically modified phosphinoxazoline (PHOX) ligand, (\(R\))-5,5-dimethyl-(\(p\)-CF\(_3\))\(_3\)-i-PrPHOX, is described. The utility of this PHOX ligand is explored in both enantio- and diastereoselective palladium-catalyzed allylic alkylations. These investigations prove (\(R\))-5,5-dimethyl-(\(p\)-CF\(_3\))\(_3\)-i-PrPHOX to be an effective and cost-efficient alternative to electronically modified PHOX ligands derived from the prohibitively expensive (\(R\))-t-leucine.

Graphical abstract

Keywords

Allylic Alkylation; Diastereoselective; Enantioselective; Palladium-catalyzed; Phosphinoxazoline

\(^{*}\)Corresponding author. Tel.: +1-626-395-6064; fax: +1-626-395-8436; stoltz@caltech.edu.

Publisher’s Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Supplementary data
NMR spectra for new compounds (i.e., 13, 14, and (\(R\))-L5) can be found in the supporting information, which is available online at: http://
1. Introduction

Phosphinoxazoline (PHOX) ligands, developed by Helmchen, Williams, and Pfaltz, have proven to be a privileged ligand scaffold in transition metal catalysis. PHOX ligands have found application in a variety of asymmetric transition metal-catalyzed transformations including asymmetric hydrogenation, azomethine ylide cycloadditions, intermolecular Heck couplings, and hydrosilylation as well as transition metal-catalyzed allylic substitution and protonation reactions. Our lab has extensively explored the utility of the PHOX ligand scaffold in the palladium-catalyzed enantioselective allylic alkylation of carbocyclic and heterocyclic substrates. These investigations have revealed electronically modified PHOX ligands (i.e. (S)-((p-CF₃)₃-t-BuPHOX (L1), Figure 1) can profoundly enhance the rate of reaction as well as yield, enantiomeric excess (ee) and/or diastereomeric ratio of a product containing an all-carbon quaternary center (e.g. use of (S)-L1 vs. (S)-L2 to construct lactam cyclohexanone 2, cyclohexanone 4, cyclohexenone 6, and cyclohexanone diastereomers 9 and 10, Schemes 1A–1C and Scheme 2, respectively).

Most commonly, transition metal complexes employing tert-leucinol-derived PHOX ligands (e.g. (S)-L1 and (S)-L2, Figure 1) enable the formation of the corresponding products with the best enantiomeric and diastereomeric ratios. Although (R)-t-BuPHOX has been employed in natural product synthesis and explored in transition-metal catalyzed allylic alkylations, these examples are quite rare considering the nearly prohibitive cost of the requisite starting material for ligand synthesis, (R)-t-leucine. Previously, 5,5-geminally disubstituted (R)-valine-derived PHOX ligands (e.g. (R)-L3 and (R)-L4, Figure 2) have been constructed as cost-effective alternatives to (R)-t-BuPHOX ((R)-L2). We sought to extend this precedent to the synthesis of electronically modified congener (R)-5,5-dimethyl-(p-CF₃)₃-i-PrPHOX ((R)-L5, Figure 2) and explore its efficacy as a ligand in palladium-catalyzed enantio- and diastereoselective allylic alkylation reactions.

2. Results and discussion

2.1 Synthesis of (R)-(p-CF₃)₃-i-PrPHOXMe₂ ((R)-L5)

Synthesis of (R)-(p-CF₃)₃-i-PrPHOXMe₂ ((R)-L5) was initiated with acid chloride and the hydrogen chloride salt of (R)-valine derivative (Scheme 3). Intermolecular coupling of acid chloride and amino alcohol in the presence of excess Et₃N provides amide in 79% yield. Intramolecular cyclization of amide under acidic conditions furnishes oxazoline in 87% yield. Completion of desired ligand (R)-L5 was accomplished over two steps, beginning with the copper-mediated coupling of phosphine oxide with bromide at elevated temperature. This procedure produces phosphine oxide in 63% yield. Reduction of phosphine oxide was subsequently accomplished in neat Ph₂SiH₂ at 140 °C over 48 hours, providing the desired ligand (R)-(p-CF₃)₃-i-PrPHOXMe₂ ((R)-L5) in 81% yield in the final step of the synthetic sequence.
2.2 Use of (R)-(p-CF₃)₃-i-PrPHOXMe in Palladium-Catalyzed Asymmetric Transformations

Application of (R)-(p-CF₃)₃-i-PrPHOXMe₂ ((R)-L₅) was initially explored in the intermolecular palladium-catalyzed enantioselective allylic alkylation of silyl enol ether 17 with mesylate 18 (Scheme 4). Previously we disclosed the initial development and optimization of this transformation using (S)-t-BuPHOX ((S)-L₂), which afforded chloroallylketone (S)-19 in 82% yield and 92% ee (entry 1).¹²d Substitution of (S)-L₂ with the electronically modified (S)-(p-CF₃)₃-t-BuPHOX ((S)-L₁) provided the product ((S)-19) in a slightly diminished 91% ee (entry 2). Switching the ligand to (S)-5,5-diphenyl-i-PrPHOX ((S)-L₃) furnished chloroallylketone (S)-19 in 90% ee (entry 3). Moving into the opposite enantiomeric series, the use of (R)-5,5-dimethyl-i-PrPHOX ((R)-L₄) provided chloroallylketone (R)-19 in a somewhat diminished 89% ee (entry 4) compared to the originally optimized reaction conditions (entry 1). Alternatively, we were pleased to find that (R)-(p-CF₃)₃-i-PrPHOXMe₂ ((R)-L₅) afforded chloroallylketone (R)-19 in the same 91% ee (entry 5) in the opposite enantiomeric series compared to the use of (S)-(p-CF₃)₃-t-BuPHOX (entry 2). It is noteworthy that the required reaction time and isolated yield of chloroallylketone 19 were independent of the ligand employed. Thus, (R)-(p-CF₃)₃-i-PrPHOXMe₂ ((R)-L₅) can allow access to the enantiomeric series of products to those afforded in reactions employing (S)-L₁ without any loss in product ee in a cost-effective manner, being derived from (R)-valine, which is less than 2% of the cost of (R)-t-leucine.

The utility of (R)-(p-CF₃)₃-i-PrPHOXMe₂ ((R)-L₅) was further demonstrated in the intermolecular palladium-catalyzed diastereoselective decarboxylative allylic alkylation of β-ketoester 20 with allyl electrophile 21 (Scheme 5).¹⁶a While the system displays an inherent selectivity for the formation of diastereomer 22 in a 2:1 ratio with diastereomer 23 when achiral PHOX ligand L₆ was employed (entry 1),²¹ the use of (S)-t-BuPHOX ((S)-L₂) can override this substrate bias, providing diastereomer 23 as the major product (entry 2). Comparatively, the use of (R)-t-BuPHOX ((R)-L₂) reinforces the inherent selectivity, providing diastereomer 22 in a 12:1 ratio with minor diastereomer 23 in a combined 73% yield (entry 3). Pleasingly, the employment of (R)-(p-CF₃)₃-i-PrPHOXMe₂ ((R)-L₅) further improved this transformation, furnishing an 18:1 mixture of products in favor of diastereomer 22 in an improved 85% combined yield (entry 4). These studies revealed that (R)-(p-CF₃)₃-i-PrPHOXMe₂ ((R)-L₅) was the optimal ligand for the highly diastereoselective formation of allylic alkylation product 22. Additionally, other research groups have found (R)-(p-CF₃)₃-i-PrPHOXMe₂ ((R)-L₅) to be a uniquely effective ligand for the palladium-catalyzed diastereoselective allylic alkylation of other carbocyclic substrates.²²

3. Conclusion

Herein, we have disclosed the synthesis of a new, electronically modified phosphinooxazoline (PHOX) ligand, (R)-5,5-dimethyl-(p-CF₃)₃-i-PrPHOX ((R)-(p-CF₃)₃-i-PrPHOXMe₂, (R)-L₅). Derived from (R)-valine, this cost-effective alternative to (R)-(p-CF₃)₃-t-BuPHOX ((R)-L₁) has proved effective in both palladium-catalyzed enantio- and diastereoselective allylic alkylations, furnishing the alkylation products in comparable ee and improved diastereomeric ratio. Efforts to further explore the utility of the readily

Tetrahedron Lett. Author manuscript; available in PMC 2016 August 05.
available (R)-(p-CF3)3-i-PrPHOXMe2 ligand in palladium-catalyzed stereoselective transformations are currently underway.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors wish to thank the NIH-NIGMS (R01GM080269), Amgen, the Gordon and Betty Moore Foundation, and Caltech for financial support. R.A.C. gratefully acknowledges the support of this work provided by a fellowship from the National Cancer Institute of the National Institutes of Health under Award Number F31A17435.

References

17. The cost of (R)-t-leucine ranges between $350 and $400 per gram, depending on the size of the order from Sigma-Aldrich, as advertised on their sigmaaldrich.com, accessed 30 April, 2015. The synthesis of t-BuPHOX ligands, however, can be accomplished with ease on large scale, Mohr JT, Krout MR, Stoltz BM. Org. Synth. 2009; 86:194–211. [PubMed: 21197146]

19. Acid chloride 11 was synthesized in two steps from 2-bromo-5-(trifluoromethyl)benzonitrile by a known procedure, see: reference 13b.

20. The procedure for the coupling of phosphine oxide 15 with oxazoline 14 and sequential reduction was adapted from reference 13a.

21. Control experiments were performed using achiral PHOX ligand L6, bearing no substituent on the oxazoline ring, see reference 16a for full details.

22. Professor Stephen F. Martin, University of Texas at Austin, personal communication.
Figure 1.
Electronically Modified and Unmodified (S)-t-BuPHOX Ligands
Figure 2.
5,5-Geminally Disubstituted (R)-Valine-Derived PHOX ligands
Scheme 1.
Comparison of Electronically Modified (S)-(p-CF_3)$_3$-t-BuPHOX ((S)-L1) and Unmodified (S)-t-BuPHOX ((S)-L2) in Intramolecular Palladium-Catalyzed Enantioselective Allylic Alkylation

A.

\[
\begin{align*}
\text{Bz} & \quad \text{O} \quad \text{K} \quad \text{O} \quad \text{O} \quad \text{CH} \quad \text{CH} \\
& \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \\
& \quad \text{Bz} & \quad \text{O} \quad \text{K} \quad \text{O} \quad \text{O} \quad \text{CH} \quad \text{CH} \\
& \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \\
\end{align*}
\]

\[\text{Pd}_2\text{(dba)}_3 \text{ (5 mol %)} \quad \text{LIGAND (12.5 mol %)} \quad \text{toluene, 40 °C} \]

\[
\begin{align*}
(S)-L1: & \quad 99\% \text{ ee} \\
(S)-L2: & \quad 86\% \text{ ee} \\
\end{align*}
\]

Stoltz, et. al. REFERENCE 12(e)

B.

\[
\begin{align*}
& \quad \text{O} \quad \text{K} \quad \text{O} \quad \text{O} \quad \text{CH} \quad \text{CH} \\
& \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \\
& \quad \text{Bz} & \quad \text{O} \quad \text{K} \quad \text{O} \quad \text{O} \quad \text{CH} \quad \text{CH} \\
& \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \\
\end{align*}
\]

\[\text{Pd}_2\text{(dba)}_3 \text{ (5 mol %)} \quad \text{LIGAND (12.5 mol %)} \quad \text{THF, 25 °C} \]

\[
\begin{align*}
(S)-L1: & \quad 87\% \text{ ee}, 99\% \text{ yield, 10 min} \\
(S)-L2: & \quad 88\% \text{ ee}, 96\% \text{ yield, 120 min} \\
\end{align*}
\]

Stoltz, et. al. REFERENCE 13(c)

C.

\[
\begin{align*}
& \quad \text{O} \quad \text{K} \quad \text{O} \quad \text{O} \quad \text{CH} \quad \text{CH} \\
& \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \\
& \quad \text{i-BuO} & \quad \text{i-BuO} \quad \text{i-BuO} \quad \text{i-BuO} \quad \text{i-BuO} \quad \text{i-BuO} \\
& \quad \text{Bz} & \quad \text{O} \quad \text{K} \quad \text{O} \quad \text{O} \quad \text{CH} \quad \text{CH} \\
& \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \\
\end{align*}
\]

\[\text{Pd(dmdba)}_2 \text{ (10 mol %)} \quad \text{LIGAND (12.5 mol %)} \quad \text{benzene} \]

\[
\begin{align*}
(S)-L1: & \quad 99\% \text{ ee}, 82\% \text{ yield, 11 °C} \\
(S)-L2: & \quad 81\% \text{ ee}, 23\% \text{ yield, 24 °C} \\
\end{align*}
\]

Stoltz, et. al. REFERENCE 13(b)
Scheme 2.
Comparison of Electronically Modified \((S)-(p\text{-}CF_3)_3\text{-}t\text{-}BuPHOX ((S)-L1) and Unmodified \((S)\text{-}t\text{-}BuPHOX ((S)-L2) in Diastereoselective Decarboxylative Alkylation Cascade
Scheme 3.
Synthesis of (R)-(p-CF$_3$)$_3$-i-PrPHOXMe_2 ((R)-L5)
Scheme 4.
Ligand Comparison in Enantioselective Palladium-Catalyzed Intermolecular Allylic Alkylation.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Amino Acid Ligand Precursor</th>
<th>Amino Acid Cost per gram ($)(^a)</th>
<th>Product ee (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S)-L2</td>
<td>tert-Leucine</td>
<td>33</td>
<td>-92</td>
</tr>
<tr>
<td>2</td>
<td>(S)-L1</td>
<td>tert-Leucine</td>
<td>33</td>
<td>-91</td>
</tr>
<tr>
<td>3</td>
<td>(S)-L3</td>
<td>Valine</td>
<td>0.60</td>
<td>-90</td>
</tr>
<tr>
<td>4</td>
<td>(R)-L4</td>
<td>Valine</td>
<td>0.60</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>(R)-L5</td>
<td>Valine</td>
<td>0.60</td>
<td>91</td>
</tr>
</tbody>
</table>

\(^a\) Cost per gram of amino acid from Sigma-Aldrich, accessed 4/30/2015.

\(^b\) Enantiomeric excess (ee) measured by analytical chiral GC.
Scheme 5.
Diastereoselective Decarboxylative Allylic Alkylation Employing \((R)-(\rho\text{-CF}_3)_3i\text{-PrPHOX}^\text{Me}_2\) ((\(R\))-L5).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>% yield</th>
<th>dr ((22:23))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(L6)</td>
<td>79</td>
<td>2:1</td>
</tr>
<tr>
<td>2</td>
<td>((S))-L2</td>
<td>79</td>
<td>1:2</td>
</tr>
<tr>
<td>3</td>
<td>((R))-L2</td>
<td>73</td>
<td>12:1</td>
</tr>
<tr>
<td>4</td>
<td>((R))-L5</td>
<td>85</td>
<td>18:1</td>
</tr>
</tbody>
</table>

\(\text{a Isolated yield of } 22 \text{ and } 23\). \(\text{b Determined by } ^1\text{H NMR analysis of the crude reaction mixture and analytical GC analysis}\)