A PHYSICAL MODEL OF LIQUID HELIUM

by

Din-Yu Hsieh

Division of Engineering and Applied Science
CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

Report No. 85-43

March 1968
A PHYSICAL MODEL OF LIQUID HELIUM

by

Din-Yu Hsieh

Reproduction in whole or in part is permitted for any purpose of the United States Government

Distribution of this Document is Unlimited

Division of Engineering and Applied Science
California Institute of Technology
Pasadena, California

Report No. 85-43
March 1968
Abstract

A new physical model of liquid He⁴ based on the hypothesis that rotons behave like tiny quantized circular vortex rings is presented. It is shown that the energy of a state will not only depend on the distribution in numbers of rotons with various momenta, but also on the arrangements and orientations of the rotons. The λ-transition then can be interpreted to reveal two aspects: T_λ is both the lowest temperature at which all helium atoms partake in excitation, and the point of the initiation of the general destruction of order, i.e., the general randomization of the orientation of the rotons. Other implications from the theory are also discussed.
A Physical Model of Liquid Helium

I. Introduction

In this paper, a new physical model for liquid He\textsubscript{4} is presented. From the outset, it should be emphasized that it is far from a complete theory. Rather, it is a first step towards a complete theory. Therefore it is liable to serious objections and criticisms. But when we are facing a difficult problem and cannot make significant progress for a long time, every avenue of some promise should be explored. This is the motive behind the publishing of the theory in this preliminary form. To the author, the existing physical theory of liquid helium, stripped down to its essentials, only consists of the following few ideas: Landau's postulated spectrum of excitations(1), which he identified one part to represent phonons and the other part as rotons, and Feynman's(2) proposition of quantized vortices. Most of the voluminous arguments are just sophisticated dressings. They do make the basic hypotheses of Landau and Feynman more plausible, but they really do not improve the validity of the theories. This opinion may not be shared by everyone. However, it is with this assessment that the author ventures to present his somewhat naive theory, which he hopes may at least offer some food for thought to other workers in this field.

In the physical theory as originated by Landau(1), excitations corresponding to different parts of a single spectrum are identified with phonons and rotons. Our experience in solid state physics makes it easy for us to visualize the phonons. Not very many persons have a clear idea as to what rotons are. The nomenclature suggests that rotons are
associated with rotation. Indeed, the ordinary fluid motion can be decomposed into the dilatational and rotational parts. With phonons taking care of the dilatational aspect, we need other excitations to take care of the rotational motion; hence we have rotons. Landau borrowed the analogy that angular momenta are quantized in quantum mechanics to infer the energy gap for the roton spectrum. The argument is of doubtful validity, since Feynman(3) argued later that the energy gap results from the Bose statistics that helium atoms have to obey. Feynman(4), in constructing the wave function for rotons, found them to behave very much like tiny classical vortex rings. If they can be identified with vortex rings, they should of course be quantized vortex rings; and in Landau's original analogy, the quantization of the angular momentum should correspond to the quantization of circulation. In this sense, the quantized vortices of macroscopic size may now be interpreted as large rotons. The physical model developed in the following is based on the postulate that rotons behave essentially like quantized circular vortex rings. It should be emphasized here that this is really an independent postulate, not an extension of Feynman's ideas, and the author is solely responsible for its drawbacks and imperfections.

II. Excitations in Liquid Helium

In this model, liquid He4 is considered to consist of two distinct types of excitations, i.e. phonons and rotons, each having its own spectrum. For phonons, we have the dispersion relation

\[\epsilon(p) = cp \quad , \]

where \(p \) is the momentum and \(c \), the sound speed. For rotons, the
dispersion relation is taken to be

\[\varepsilon(r) = A p^2 \] \hspace{1cm} (2)

The last dispersion relation is borrowed from classical hydrodynamics. For a classical vortex ring, if its radius \(R \) is much greater than its core radius \(a \), the energy and momentum associated with it are given by\((5), (6) \):

\[\varepsilon = \frac{\rho}{2} \kappa^2 R \left(\eta - \frac{7}{4} \right) \] \hspace{1cm} (3)

and

\[p = \pi \rho \kappa R^2 \] \hspace{1cm} (4)

while the velocity of the vortex ring is

\[v = \frac{\kappa}{4\pi R} \left(\eta - \frac{1}{4} \right) \] \hspace{1cm} (5)

where \(\kappa \) is the circulation around the core of the vortex ring, and

\[\eta = \ln \left(\frac{8R}{a} \right) \]

Then, for this case, we have

\[A = \left(\eta - \frac{7}{4} \right) \left(\frac{\rho \kappa^3}{4\pi} \right)^{\frac{1}{3}} \] \hspace{1cm} (6)

The parameter \(\eta \) is a slowly varying function of \(R \), thus \(A \) may be treated approximately constant. The extrapolation from a classical vortex ring down to a vortex ring of interatomic dimension raises the most serious objections. So far we can not justify this extrapolation. As we stated in Section I, the nature and the dispersion relation of rotons in this theory should be taken as a hypothesis, whose merit is to be judged by whether it leads to any better understanding of the phenomena.

Now the circulations are quantized\(^{(6)}\). Therefore, for He\(^4\) with
atomic mass m, we have
\[\kappa = \frac{h}{m} = 0.997 \times 10^{-3} \text{ cm}^2 \text{sec}^{-1}. \]

Most rotons would have only one unit of circulation, since for the same momentum, to have two units of circulation would increase the energy by about three-fold. Formally, for an assembly of multitudes of phonons and rotons, the energy of a given state may be schematically written as
\[E = E^{(p)} + E^{(r)} + E^{(pr)} \]
where $E^{(p)}$ is the energy due to phonons if no rotons are present; $E^{(r)}$, that due to rotons if no phonons are present; and $E^{(pr)}$, the remaining part which may be called the phonon-roton interaction energy. Let us neglect $E^{(pr)}$ as a first approximation. In the same approximation, we shall neglect the interactions among phonons, then
\[E^{(p)} = \sum_i n_i^{(p)} \epsilon_i^{(p)} = \sum_i n_i^{(p)} c_p \]
where $n_i^{(p)}$ is the number of phonons with momentum p_i.

The expression of $E^{(r)}$ will not be as simple as that of $E^{(p)}$.

J. J. Thomson, more than eighty years ago, with a view to constructing a kinetic theory of fluids, had investigated in detail the motion of vortex rings in the Adam Prize essay. Among others, it is found that the energy of a system of circular vortex rings is
\[T = \sum_i \left[2 p_i V_i - R_i \cdot \frac{dp_i}{dt} \right] + \frac{\rho}{2} \int \nabla \times \mathbf{r} \cdot n \, dS \]
where V is the velocity of the fluid, R_i is the position vector of the
center of the i^{th} vortex ring, p_i is the momentum of the i^{th} vortex ring, as if it is single, and V_i the average velocity of the vortex ring in the direction of p_i.

The last term of (9) will yield a term like $\frac{1}{2} MV^2$, where M is the total mass of the fluid and V^2 is the average of V^2 over the boundary. This term will ordinarily not contribute to the internal energy of the system. The term $\sum R_i \frac{dp_i}{dt}$ may be interpreted as that due to collisional interactions, which we shall neglect also as a first approximation. Then, taking rotons to behave like these vortex rings, we have

$$E(r) = \sum_j 2p_j(v_j + w_j),$$

where v_j is the velocity of the j^{th} roton as if it is single, and w_j the average velocity in the direction of v_j induced by all the rest of the rotons. We may rewrite the last equation as

$$E(r) = \sum_i n_i^{(r)}[A p_i^{\frac{1}{2}} + 2 p_i u_i] \quad (10),$$

where $n_i^{(r)}$ is the number of rotons with momentum p_i, and u_i is the average of w's over these $n_i^{(r)}$ rotons.

From (10), we see that the energy of a state will not only depend on the distribution in numbers of rotons with various momenta, $\{n_i^{(r)}\}$, but also on the arrangements and orientations, $\{P\}$, of the rotons. We may thus write the energy of a state as

$$E(n_i^{(p)}, n_j^{(r)}, P) = E_0 + \sum_{p_i} n_i^{(p)}c p_i + \sum_{p_j} n_j^{(r)}A p_j^{\frac{1}{2}} + \sum_{p_j} 2n_j^{(r)}p_j u_j\{P\} \quad (11).$$
The partition function Q is thus

$$Q = \sum \exp \left[-\frac{\mathcal{E} \{ n_i(p), n_j(r), p \}}{kT} \right] .$$

(12)

Let us denote

$$q = \sum \exp \left[-2 \sum_{\{P\}} 2n_j(r) p_j u_j(P) / kT \right] .$$

(13)

In general, q will depend on $\{n_j(r)\}$. But it is conceivable that q may not depend on $\{n_j(r)\}$ sensitively. Rather it may only depend on the total number of rotons present, which is related directly to the density and temperature of the system. If that is the case, then q may be factored out, and (12) becomes

$$Q = q e^{-\frac{E_0}{kT}} \prod_{p_i} \frac{1}{1-e^{-\frac{cp_i/kT}{1-e^{-\frac{Ap_j^{1/2}/kT}{1-e}}}}}. $$

(14)

The range of p_i and p_j in (14) can be determined by arguments like those in Debye's theory of solids. Let N be the number of atoms in the system, then we have

$$3N = \frac{V}{\hbar^3} \left[\int_0^{p_o} (\epsilon_m) \frac{4\pi p^2 dp}{4\pi p^2 dp} + \int p_o^{(r)} (\epsilon_m) \frac{4\pi p^2 dp}{4\pi p^2 dp} \right] = \frac{4\pi V}{3\hbar^3} \left[\left(\frac{\epsilon}{c} \right)^3 + \left(\frac{\epsilon}{m_A} \right)^6 \right]^{-1/2} .$$

(15)

where ϵ_m is the maximum cut-off energy and p_o is the minimum cut-off momentum for rotons, since the radius of the rotons are bounded below by the atomic dimension. This minimum cut-off momentum or energy is to be interpreted as the energy gap which Landau proposed for rotons. Denote $\theta = \frac{\epsilon}{k}$ as the cut-off temperature, then θ is related to
particle density through the equation (15). When the system is fully excited, it turns out that roton modes are dominant; thus it is a good approximation that

\[\theta = \left(\frac{9N}{4\pi V} \right)^{1/6} \frac{\hbar^2 A}{k} \]

The parameter \(A \) can now in principle be determined from thermodynamic data through \(\theta \).

III. The Nature of \(\lambda \)-transition

Despite all the advancement of the understanding of the superfluid helium, the nature of the \(\lambda \)-transition is still largely an unsolved problem. Landau's theory starts from the absolute zero and is not good as the \(\lambda \)-point is approached. The Einstein condensation of Bose gases leads to a discontinuity of slope on the specific heat curve at the \(\lambda \)-point, while observations\(^{(8)}\) indicate a logarithmic singularity in the neighborhood of \(\lambda \)-point. These are the indications that we really only have a partial knowledge about liquid helium so far. The present theory, with all its unsatisfactory features, nevertheless attempts to construct a complete picture of liquid helium. The term \(q \) in equation (14) plays a vital role in the understanding of the nature of the \(\lambda \)-transition.

Qualitatively, the term \(q \) shows the existence of an order-disorder transition quite analogous to that of the Ising problem\(^{(9)}\). For the two-dimensional Ising problem with nearest neighbor interaction only, it is well known that the transition is marked by a logarithmic singularity on the specific heat curve. The same kind of singularity at the \(\lambda \)-transition in liquid helium is also due to similar mechanisms as we can see from the expression for \(q \). At the present stage, it seems futile to attempt
quantitative correlations. The computation of q is vastly more complex than the two-dimensional Ising problem. It is a three-dimensional problem. The interactions are not limited to nearest neighbors. Moreover, the rotons with varying strength, are not fixed in space and their orientations are not necessarily quantized. However, it is still possible to see what should be the configuration that has the lowest energy. This is the configuration in which the rotons will have the greatest possible induced velocity opposite to its natural velocity; and most desirably, all of them. After trying a few, we can convince ourselves that the lowest energy configuration is the case that all rotons are aligned in the same direction. If indeed they are all lined up, a flow will appear in that direction. The bulk of the fluid can be stationary because the fluid region is divided into many domains, and rotons in different domains are lined up in different directions, just like the case of ferromagnetic materials. When different domains line up in the same direction, then there is a flow of rotons or normal component of the fluid.

We can obtain the thermodynamic quantities from (14). With neglect of the minimum cut-off momentum, the free energy of the system is given by:

$$
F = E_0 - kT \ln q + NkT \left[3\ln(1-e^{-\theta/T}) - \frac{1}{2(1+\tau)} D_6 \left(\frac{\theta}{T}\right) - \frac{\tau}{1+\tau} D_3 \left(\frac{\theta}{T}\right)\right],
$$

where

$$
D_n(x) = \frac{x^n}{n!} \int_0^x \frac{y^n dy}{e^y - 1}
$$

and

$$
\tau = \left(\frac{A^2}{ck\theta}\right)^3,
$$
which is small in comparison with unity.

The information contained in (17) is very limited, since we do not yet know how to compute \(q \). However, the comparison with experimental thermodynamic data for \(T \) far from \(T_\lambda \), the region where the contribution from \(q \) is relatively not very important can give us a rough estimate of \(\theta \). The value of \(\theta \) turns out to be of the order of 4 or 5 times \(T_\lambda \). If we take \(\theta \approx 4T_\lambda \), the number of rotons at temperature \(T \), is given by the following equation:

\[
N_r = \frac{V}{h^3} \int_{P_0}^{P_r} \left(\epsilon_m \right) \frac{4\pi p^2 dp}{e^{Ap^2/kT} - 1} \approx \frac{18N}{5} \left(\frac{T}{\theta} \right) D_5 \left(\frac{\theta}{T} \right),
\]

which will be about \(\frac{1}{10} \) of \(N \) at \(T_\lambda \). On the other hand, if we define the mass of the roton by the relation

\[
m_r = \frac{p}{v},
\]

we obtain roughly

\[
m_r \approx \frac{\pi \rho K R^2}{\frac{4\pi R}{\eta - \frac{1}{4}}} = \frac{3\pi}{\frac{4}{3} \pi \rho R^3}.
\]

Thus \(m_r \) is about 10 times the mass of helium, if \(R \) is taken to be about interatomic dimension.

Therefore the \(\lambda \)-transition reveals two aspects: \(T_\lambda \) is the lowest temperature at which all the helium atoms partake in excitation, i.e. when \(\rho_n = \rho \). Also since for further increase of temperature, no new excitation could be created due to the using up of all the unexcited helium atoms, the general destruction of order, i.e. the general randomization of the orientation of the rotons, will commence.
IV. Further Thoughts and Discussion

It would be most desirable to be able to calculate \(q \); then the validity of this model could be decided at once. For the time being, we shall be content with exploring other aspects of the present theory.

We mentioned that when different domains of ordered rotons line up in the same direction, there will be a flow of normal component, or heat flow. To cut off the heat flow means the disruption of the alignments of the domains. So there is a natural tendency to maintain the heat flow, once it is set up. In a torus, then, a persistence of heat flux can be expected. It would be interesting to explore in this direction experimentally.

The collisional interaction between rotons as well as the collisional interaction between the rotons and the macroscopic quantized vortices can now be cast in a more definite version. Some rough classical calculations yield results quite consistent with the existing experimental data. For instance, we may take the collision time between rotons

\[
\tau = \frac{1}{N_r v_r \pi \bar{\sigma}^2}
\]

where \(v_r \) is the average roton velocity, and \(\pi \bar{\sigma}^2 \) is the collision cross section. The result agrees very well with the established expression by Landau and Khalatnikov\(^{(10)}\), if we take \(\bar{\sigma} \approx 10^{-7} \) cm. This value is reasonable, since each roton consists of about 10 atoms and its radius of influence is presumably somewhat larger.

The same value of the collision diameter applies well also for the derivation of the mutual friction coefficient in the theory of Hall and
Vinen\(^{(11)},(12)\). The nature of the collision is essentially similar to the change of the state of motion of a material particle in the flow field of a vortex line. Then it is also easy to see that the collision diameter for momentum exchange perpendicular to the relative velocity, \(\overline{\sigma}_T\), is very small, since the net transfer of the transverse momentum is negligible after the roton has traversed through the entire region of influence of the vortex line. In our model, the rotons are actually identified with material particles, so its interaction with macroscopic vortex lines can be visualized quite clearly, and the extrapolation from the classical hydrodynamics also presents not too much difficulty. We may not be so at ease with phonons or like excitations.

There is tension in the vortex element. The tension in the roton is
\[
\frac{\varepsilon(x)}{2\pi R} \approx \frac{\rho k^2}{4\pi} \sim 10^{-8} \text{ dyne.}
\]

The existence of tension can be attributed to the tendency to transfer the kinetic energy of the neighboring rotating atoms to the core atoms. We may note that the Van der Waals force between the atoms in liquid helium is also of the order of \(10^{-8}\) dyne\(^{(13)}\). So the molecular force is just about enough to prevent the splitting of the core. In this connection, we may mention the still unsolved problem regarding the nuclei of ultrasonic cavitation in liquid helium\(^{(14),(15)}\). Based on the present model, then we can interpret the tensile strength not as the force needed to overcome the Van der Waals force, but the force which together with the vortex tension will overcome the Van der Waals force. This force could be much smaller than the Van der Waals force, and this could explain the low tensile strength which is observed.

In He I, the energies of the prevailing rotons become larger. The
energy could be increased either by increasing the radius or by increasing the circulation. Since all the atoms have partaken in the formation of rotons, the increase in size of one roton has to do it at the expense of other rotons. Therefore, when the temperature gets higher the increase of energy will preferably be achieved through the increase of circulations; and more and more rotons with more than one quantum of circulation will appear. Now as the temperature increases, the interatomic distance also increases, hence the Van der Waals force weakens. On the other hand, the tension of the rotons increases with the units of circulation they carry. Eventually the Van der Waals force can no longer hold the tensions in the majority of the rotons, and then vaporization starts.

If this picture applies to He I, it may also apply to ordinary simple liquids. It is indeed very intriguing to ask whether the rotons are the primary excitations even in the ordinary liquid. If we can by any means find that the result of interactions among the rotons are not very important, then it will enhance greatly our understanding of the liquid state.
References

(1) L. D. Landau, J. Phys., Moscow 5, 71 (1941); 11, 91 (1947).
DISTRIBUTION LIST FOR UNCLASSIFIED TECHNICAL REPORTS
ISSUED UNDER
CONTRACT N00014-67-0094-0009
(Single copy unless otherwise specified)

Officer in Charge
Annapolis Division
Naval Ship Research & Development Center
Annapolis, Maryland 21402

Commander
Boston Naval Shipyard
Boston, Mass. 02129

Commanding Officer
Office of Naval Research Branch Office
495 Summer Street
Boston, Mass. 02210

Commanding Officer & Director
Naval Applied Science Lab.
Naval Base, Attn: Code 930
Brooklyn, New York 11252

Naval Applied Sci. Lab.
Technical Library
Building 1, Code 222
Flushing & Washington Aves.
Brooklyn, N. Y. 11251

Commanding Officer
NROTC and Naval Administrative Unit
Mass. Inst. of Technology
Cambridge, Mass. 02139

Department of Naval Architecture
and Marine Engineering
Room 5-228
Massachusetts Inst. of Technology
Cambridge, Massachusetts 02139

Commander
Charleston Naval Shipyard
U. S. Naval Base
Charleston, S. C. 29408

Commander
Naval Weapons Center
China Lake, California 93555

Commanding Officer
Office of Naval Research Branch Office
219 South Dearborn St.
Chicago Ill. 60604

Commander
Naval Weapons Laboratory
Attn. Technical Library
Dahlgren Va. 22418

Commander
Naval Weapons Laboratory
Attn: Computation & Analysis Lab.
Dahlgren, Virginia 22448

Commanding Officer
Army Research Office
Attn: ESD - AROD
Box CM, Duke Station
Durham, North Carolina 27706

Commanding Officer
Army Research Office
Box CM, Duke Station
Durham, North Carolina 27706

Commanding General
Army Engineering R & D Labs.
Tech. Documents Center
Fort Belvoir, Virginia 22060

Commander
Long Beach Naval Shipyard
Long Beach, Calif. 90802

Commanding Officer & Director
Underwater Sound Lab.
Fort Trumbull
Attn: Technical Library
New London, Conn. 06321

Commanding Officer
USN Underwater Weapons and
Research & Engrg Station
Attn: Technical Library
Newport, Rhode Island 02840

Office of Naval Research
New York Area Office
207 W. 24th St.
New York, N. Y. 10011

Commanding Officer
Office of Naval Research Branch Office (25)
Box 39
FPO New York, N. Y. 09510

Commander
Naval Undersea Warfare Center
3203 E. Foothill Blvd.
Pasadena, California 91107
National Academy of Sciences
National Research Council
2101 Constitution Ave., N. W.
Washington, D. C. 20360

Director, Engineering Science Division
National Science Foundation
Washington, D. C. 20550

Director of Research Code RR
National Aeronautics & Space Admin.
600 Independence Ave., S. W.
Washington, D. C. 20546

Division of Engineering
Maritime Administration
441 G. Street, N. W.
Washington, D. C. 20235

Division of Ship Design
Maritime Administration
441 G. Street, N. W.
Washington, D. C. 20235

Commander, R & T Divisions
Air Force Systems Command
Attn: L. M. Medgepeth (APIP-1)
Wright-Patterson AFB, Ohio 45433

AFOSR (SREM)
1400 Wilson Boulevard
Arlington, Va. 22209

National Science Foundation
Engineering Division
1800 G. Street, N. W.
Washington, D. C. 20550

Defence Research & Dev. Attache
Australian Embassy
1735 Eye Street, N. W.
Washington, D. C. 20006

Superintendent
Naval Academy
Attn: Library
Annapolis, Md. 21402

Defense Documentation Ctr.
Cameron Station
Alexandria, Virginia 22314 (20)

Dr. R. E. Wilson
Assoc. Tech. Dir. (Aeroballistics)
Naval Ordnance Laboratory
White Oak
Silver Spring, Md. 20910

Librarian
Department of Naval Architecture
University of California
Berkeley, California 94720

Engineering Library
Plant 25
Grumman Aircraft Engineering Corp.
Bethpage, Long Island, N. Y. 11714

NASA Lewis Research Center
Attn: Library MS 60-3
21000 Brookpark Road
Cleveland, Ohio 44135

Technical Library
Webb Institute of Naval Architecture
Glen Cove, Long Island, N. Y. 11542

Lorenz G. Straub Library
St. Anthony Falls Hydraulic Lab.
Mississippi River At 3rd Ave., S. E.
Minneapolis, Minnesota 55414

Engineering Societies Library
345 East 47th Street
New York, N. Y. 10017

NASA, Langley Research Center
Langley Station
Attn: Library MS 185
Hampton, Virginia 23365

National Research Council
Aeronautical Library
Attn: Miss O. M. Leach, Librarian
Montreal Road
Ottawa 7, Canada

Redstone Scientific Information Center
Attn: Chief, Document Section
Army Missile Command
Redstone Arsenal, Alabama 35809

Tech. Library, Code H245C-3
Hunters Point Division
San Francisco Bay Naval Shipyard
San Francisco, California 94135

Fenton Kennedy Document Library E
The Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Ave.
Silver Spring, Maryland 20910

Engineering Library
Dept. 218, Bldg 101
MC Donnel Aircraft Corp.
P.O. Box 516
St. Louis, Missouri 63166

Shipyard Technical Library
Code 130L7 Bldg. 746
San Francisco Bay Naval Shipyard
Vallejo, California 94592
Library
The Marquardt Corporation
16555 Saticoy
Van Nuys, California 91409

Science & Technology Division
Library of Congress
Washington, D. C. 20540

Librarian Station 5-2
Coast Guard Headquarters
1300 E. Street, N. W.
Washington, D. C. 20226

Attn: Acquisitions BR (S-AK/DL)
P. O. Box 33
College Park, Maryland 20740

Library
Aerojet-General Corp.
6352 N. Irwindale Ave.
Azusa, California 91702

The Bonker-Ramo Corporation
Attn: Technical Library
8433 Fallbrook Ave.
Canoga Park, California 91804

Professor L. N. Milne-Thomson
Mathematics Department
University of Arizona
Tucson, Arizona 85721

Professor Finn C. Michelson
Naval Architecture & Marine Engineering
450 West Engineering Building
University of Michigan
Ann Arbor, Michigan 48106

Dr. E. J. Skudrzyk
Ordnance Research Laboratory
Pennsylvania State University
University Park, Pennsylvania 16801

Dr. C. S. Yih
Department of Engineering Mechanics
University of Michigan
Ann Arbor, Michigan 48108

Professor F. G. Hammitt
University of Michigan
Ann Arbor, Michigan 48108

Professor A. Kuethe
Dept. of Aeronautical Engineering
University of Michigan
Ann Arbor, Michigan 48108

Dr. R. B. Bouch
General Dynamics
Quincy Division
97 E. Howard
Quincy, Mass. 02169

Dr. J. Menkes
Institute for Defense Analyses
400 Army-Navy Drive
Arlington, Virginia 22204

Prof. W. W. Willmarth
Dept. of Aero/space Engineering
University of Michigan
Ann Arbor, Michigan 48104

Professor J. Foa
Dept. of Aeronautical Engineering
Rennselaer Polytechnic Institute
Troy, New York 12180

Professor R. C. Di Prima
Department of Mathematics
Rennselaer Polytechnic Institute
Troy, New York 12180

Dr. M. Sevik
Ordnance Research Laboratory
Pennsylvania State University
University Park, Pa. 16801

Dr. J. M. Robertson
Dept. of Theoretical & Applied Mechanics
University of Illinois
Urbana, Illinois 61803

Professor J. K. Vennard
Dept of Civil Engineering
Stanford University
Stanford, California 94305

Dr. G. F. Wislicenus
Ordnance Research Laboratory
Pennsylvania State University
University Park, Pennsylvania 16801

Dr. Byrne Perry
Department of Civil Engineering
Stanford University
Stanford, California 94305

Professor E. Y. Hsu
Dept. of Civil Engineering
Stanford University
Stanford, California 94305

Professor D. Gilbarg
Stanford University
Stanford, California 94305
Professor W. R. Sears
4927 Pacifica Drive
San Diego, California 92109

Professor F. Zwicky
Department of Physics
California Institute of Technology
Pasadena, California 91109

Professor A. Ellis
University of Calif. San Diego
La Jolla, Calif. 92037

Professor J. M. Killen
St. Anthony Falls Hydraulic Lab.
University of Minnesota
Minneapolis, Minnesota 55414

Professor A. G. Strandhagen
Department of Engineering Mechanics
University of Notre Dame
Notre Dame, Indiana 46556

Professor A. Peters
Institute of Mathematical Sciences
New York University
251 Mercer Street
New York, New York 10003

Professor R. E. Little
University of Michigan Dearborn Campus
4901 Evergreen Road
Dearborn, Michigan 48128

Professor John Laufer
Dept. of Aerospace Engineering
University Park
Los Angeles, California 90007

Dr. Martin H. Bloom
Polytechnic Institute of Brooklyn
Graduate Center, Dept. of Aerospace Eng. & Applied Mechanics
Farmingdale, N. Y. 11735

Professor J. J. Foody
Chairman, Engineering Department
State University of New York
Maritime College
Bronx, New York 10465

Professor John Miles
% I. G. P.
University of Calif. San Diego
La Jolla, Calif. 92038

Professor T. Y. Wu
California Institute of Technology
Pasadena, California 91109

Mr. C. S. Song
St. Anthony Falls Hydraulic Lab.
University of Minnesota
Minneapolis, Minnesota 55414

Professor M. A. Abkowitz
Dept. of Naval Architecture and Marine Engineering
Massachusetts Inst. of Technology
Cambridge, Massachusetts 02139

Professor M. S. Uberoi
Department of Aeronautical Engineering
University of Colorado
Boulder, Colorado 80303

Professor G. L. Von Eschen
Dept. of Aeronautical Astronautical Engrg.
Ohio State University
Columbus, Ohio 43210

Professor R. F. Probstein
Department of Mechanical Engineering
Massachusetts Inst. of Technology
Cambridge, Massachusetts 02139

Professor A. T. Ippen
Massachusetts Inst. of Technology
Cambridge, Massachusetts 02139

College of Engineering
Office of Research Services, Univ. of Calif.
Berkeley, California 94720

Professor M. Holt
Division of Aeronautical Sciences
University of California
Berkeley, California 94720

Prof. J. V. Wehausen
Department of Naval Architecture
University of California
Berkeley, California 94720

Professor G. Birkhoff
Harvard University
Cambridge, Massachusetts 02138

Dr. E. E. Sechler
Executive Officer for Aero.
California Institute of Technology
Pasadena, California 91109

Professor A. Acosta
California Institute of Technology
Pasadena, California 91109

Dr. Irving C. Statler, Head
Applied Mechanics Department
Cornell Aeronautical Lab. Inc.
P. O. Box 235
Buffalo, N. Y. 14204
School of Applied Mathematics
Indiana University
Bloomington, Indiana 47401

Dr. John E. Mayer, Jr.
Research & Engineering Center
Ford Motor Company
P.O. Box 2053
Dearborn, Michigan 48123

C. A. Gongwer
Aerojet General Corporation
9100 E. Flair Drive
El Monte, California 91734

J. D. Malloy, President
Hydrosystems, Inc.
19 Engineers Lane
Farmingdale, New York 11735

Mr. J. Z. Lichtman, Code 937
Naval Applied Science Lab.
Brooklyn, New York 11251

Mr. J. M. Wetzel
St. Anthony Falls Hydraulic Lab.
University of Minnesota
Minneapolis, Minnesota 55414

Professor J. Ripkin
St. Anthony Falls Hydraulic Lab.
University of Minnesota
Minneapolis, Minnesota 55414

Professor M. V. Morkvin
Aeronautics Building
Johns Hopkins University
Baltimore, Maryland 21218

Professor A. F. Charwat
Department of Engineering
University of California
Los Angeles, California 90024

Dr. Ronald Smelt
Vice President & Chief Scientist
Lockheed Aircraft Corporation
Burbank, California 91503

Dr. H. Reichardt, Director
Max Planck Institut fur Stromungsforschung
Bottingerstrasse 6-8
Gottingen, Germany

Dr. H. W. Lerbs
Hamburgische Schiffbauversuchsanstalt
Bramfelder Strasse 164
Hamburg 33, Germany

Dr. H. Schwaneche
Hamburgische Schiffbauversuchsanstalt
Bramfelder Strasse 164
Hamburg 33, Germany

Dipl. Ing. A Gross
Versuchsanstalt fur Wasserbau & Schiffbau
Schleuseninsel IM Tiergarten
Berlin, Germany

Professor Dr. -Ing. S. Schuster
Versuchsanstalt fur Wasserbau & Schiffbau
Berlin, Germany

Dr. K. Eggers
Institute fur Schiffbau
University of Hamburg
Laemmersieth 90
2 Hamburg 33, Germany

Prof. Dr. Ir. J. D. Van Manen
Netherlands Ship Model Basin
Haagsteeg 2, Postbox 28
Wageningen, The Netherlands

Mr. C. E. Bowers (2)
St. Anthony Falls Hydraulic Lab.
University of Minnesota
Minneapolis, Minnesota 55414

Mr. J. P. Breslin
Stevens Institute of Technology
Davidson Laboratory
Hoboken, New Jersey 07030
Professor S. Siestrunck
Bureau D'Analyse de Recherches
Appliquées
6 Rice Louis Pasteur
92 Boulogne, France

The Principal
College of Engineering
Guindy, Madras-25
India

Ir. W. Spuyman
Netherlands Ship Research Centre
Mekelweg 2
Delft, The Netherlands

Prof. Ir. J. Gerritsma
Head Shipbuilding Lab., Tech. Univ.
Mekelweg 2
Delft, The Netherlands

Professor Carl Prohaska
Hydro-og Aerodynamisk Laboratorium
Lyngby, Denmark

Mr. Alfonso Alcedan L., Director
Laboratorio Nacional de Hydraulics
Antiguo Cameno A. Ancon
Casilla Jostal 682
Lima, Peru

Professor J. K. Lunde
Skipmodelltanken
Trondheim, Norway

Dr. K. Taniguchi
Mitsubishi Shipbuilding & Eng. Co.
Nagasaki, Japan

Research Committee in Information
The American Society of Mechanical Engs.
345 East 47th Street
New York, New York 10017 (2)

Society of Naval Architects and
Marine Engineers
74 Trinity Place
New York, New York 10006

Convair Division of General Dynamics
P. O. Box 12009
Attn: Library (128-00)
San Diego, Calif. 92112

Editor
Applied Mechanics Review
Southwest Research Institute
8500 Culebra Road
San Antonio, Texas 78206

The Western Company
Research Division
2201 North Waterview Parkway
Richardson, Texas 75080

Chrysler Corporation
MGR. Advance Projects Organ.
P. O. Box 1827
Detroit, Michigan 48231

Director
Hudson Laboratories
Dobbs Ferry, New York 10522

Ocean Systems
North American Aviation, Inc.
12214 Lakewood Blvd.
Downey, California 90241

Mr. Eugene F. Baird
Chief of Dynamic Analysis
Grumman Aircraft Eng. Corp.
Bethpage, Long Island, N. Y. 11714

Dr. B. Sternlicht
Mechanical Technology Incorporated
968 Albany-Shaker Road
Latham, New York 12110

Mr. P. Eisenberg, President
Hydronautics, Inc.
Pindell School Rd.
Howard Conuty
Laurel, Md. 20810

Dr. Jack Kotik
TRG. Incorporated
Route 110
Melville, New York 11746

Mr. R. E. MacPherson
Oak Ridge National Laboratory
P. O. Box Y
Oak Ridge, Tennessee 37831

Dr. F. R. Hama
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91103

Dr. Ralph A. Burton
Southwest Research Institute
San Antonio, Texas 78212

Dr. H. N. Abramson
Southwest Research Institute
8500 Culebra Road
San Antonio, Texas 78228
Mr. Warren Bloomfield
Manager, Systems Engineering
Lycoming Division Avco Corporation
Stratford, Connecticut 06497

Dr. F. W. Boggs
U. S. Rubber Company
Research Center
Wayne, New Jersey 07470

Mr. A. Silverleaf
National Physical Laboratory
Teddington, Middlesex, England

Mr. R. W. Kermeen
Lockheed Missiles & Space Company
Department 57101 Bldg. 150
Sunnyvale, California 94086

Otto Decker, Manager
Friction & Lubrication Lab.
Franklin Institute 20th & Parkway
Philadelphia, Penna 19103

Dr. Paul Kaplan
Oceanics, Inc.
Plainview, Long Island, N. Y. 11803

Mr. Ross Hatte, Chief
Marine Performance Staff
The Boeing Co., Aero-Space Division
P. O. Box 3707
Seattle, Washington 98124

Dr. A. Powell
Code 900
N. S. R. D.
Washington, D. C. 20007

Mr. H. Stern
Manager, Fluids Branch
General Electric Company
P. O. Box 8
Schenectady, New York 12301

Mr. Schuyler Kleinhans
Vice President - Engineering
Douglas Aircraft Company, Inc.
Santa Monica, California 90406

R. H. Oversmith, Mgr. Ocean Engrg
General Dynamics Corp./E. B. Div.
Marine Technology Center
P. O. Box 911
San Diego, Calif. 92112

W. B. Barkley
General Dynamics Corp.
Electric Boat Division
Marine Tech. Center
P. O. Box 911
San Diego, California 92112

Commanding Officer
Attn: Tech. Lib. (Bldg) 313
Aberdeen Proving Ground, Md. 21005

Commander
Portsmouth Naval Shipyard
Portsmouth, New Hampshire 03801
A new physical model of liquid He4 based on the hypothesis that rotons behave like tiny quantized circular vortex rings is presented. It is shown that the energy of a state will not only depend on the distribution in numbers of rotons with various momenta, but also on the arrangements and orientations of the rotons. The λ-transition then can be interpreted to reveal two aspects: T_λ is both the lowest temperature at which all helium atoms partake in excitation, and the point of the initiation of the general destruction of order, i.e. the general randomization of the orientation of the rotons. Other implications from the theory are also discussed.
Low temperature physics
Superfluid

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

(1) "Qualified requesters may obtain copies of this report from DDC."

(2) "Foreign announcement and dissemination of this report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through _______."

(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through _______."

(5) "All distribution of this report is controlled. Qualified DDC users shall request through _______."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U). There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.