ON THE PROPAGATION OF SOUND
IN A LIQUID CONTAINING GAS BUBBLES

by
Din-Yu Hsieh and Milton S. Plesset

Engineering Division
CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

Report No. 85-17
September 1960
ON THE PROPAGATION OF SOUND IN A LIQUID
CONTAINING GAS BUBBLES

by

Din-Yu Hsieh and Milton S. Plesset

Reproduction in whole or in part is permitted for any purpose of
the United States Government

Engineering Division
California Institute of Technology
Pasadena, California

Report No. 85-17

September, 1960
ON THE PROPAGATION OF SOUND IN A LIQUID CONTAINING GAS BUBBLES

by

Din-Yu Hsieh* and Milton S. Plesset

Abstract

In the first portion of this paper a review is given of the theory of the propagation of sound in a homogeneous gas taking into account the effect of heat conduction. This consideration is preliminary to the treatment in the second portion of the paper of the propagation of sound in a liquid with a homogeneous and isotropic distribution of gas bubbles. Again the effect of heat conduction is included. If f is the ratio of gas volume in the mixture to liquid volume, it is shown for the range of values of f of general interest that the acoustic condensations and rarefactions of the gaseous portion of the medium are essentially isothermal. It is also found that the attenuation of an acoustic disturbance by heat conduction is quite small.

* International Nickel Co., Inc. Fellow.
Introduction

The thermodynamic aspects of the propagation of sound in a liquid containing gas bubbles are considered in this paper. In particular, the velocity of sound is determined as a function of the liquid-gas mixture ratio. The gas bubbles are supposed to be small and uniformly distributed so that the resulting medium is homogeneous and isotropic. In the solution of the problem, the effect of heat conduction must be included since the present concern is with the thermodynamic behavior of the medium. The effect of viscosity is, however, not included for the sake of simplicity. The results of this analysis are not believed to be entirely new but it is hoped that the presentation is straightforward and clear. A brief discussion is also given of the propagation of sound in a uniform gas, and the results of this analysis have certainly been known for a long time. It is included here partly for completeness and partly to facilitate comparison with the behavior in the liquid with bubbles.

Propagation of Sound in a Gas

The dynamic behavior of a gas is determined by the conservation equations for mass, momentum, and energy together with the equation of state. The conservation equations are

\[\frac{\partial \rho}{\partial t} + \rho \nabla \cdot \mathbf{v} + \mathbf{v} \cdot \nabla \rho = 0 \quad (1) \]

\[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla P \quad (2) \]

\[\kappa \Delta T = \rho C_V \left[\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T \right] + P (\nabla \cdot \mathbf{v}) \quad (3) \]

where \(\rho \) is the density, \(P \) the pressure, \(\mathbf{v} \) the fluid velocity,
T the (absolute) temperature, \(\kappa \) the thermal conductivity, and \(C_V \) the specific heat at constant volume for unit mass (1 gm) of the gas. Viscosity has been neglected. The gas will be assumed to be perfect so that its equation of state is

\[
P = \frac{R}{m} \rho T ,
\]

(4)

where \(R \) is the universal gas constant and \(m \) is the gram molecular weight of the gas.

The linearization implied in acoustics is carried out by supposing that the disturbance from equilibrium is small. If one writes

\[
P = P_0 (1 + p) ,
\]

(5)

\[
\rho = \rho_0 (1 + \sigma) ,
\]

(6)

\[
T = T_0 (1 + \theta) ,
\]

(7)

then \(p, \sigma, \theta, \) as well as \(\nu \) will be treated as small quantities all of the same order, and the subscript zero denotes equilibrium quantities. The linearized equations are as follows:

\[
\frac{\partial \sigma}{\partial t} = - \nabla \cdot \nu ,
\]

(1')

\[
\frac{\partial \nu}{\partial t} = - \frac{P_0}{\rho_0} \nabla p ,
\]

(2')

\[
\Delta \theta = \frac{1}{D} \frac{\partial \theta}{\partial t} + \frac{P_0}{\kappa T_0} \nabla \cdot \nu ,
\]

(3')

and

\[
p = \sigma + \theta ,
\]

(4')

where \(D \) is the coefficient of thermal diffusion defined as \(\kappa / \rho C_V \).

Elimination of \(\nu \) from Eqs. (1') and (2') gives
\[
\frac{\partial^2 \sigma}{\partial t^2} = \frac{P_o}{\rho_o} \Delta p ,
\]
(8)

and Eq. (3') may be written

\[
\Delta \Theta = \frac{1}{D} \frac{\partial \Theta}{\partial t} - \frac{P_o}{\kappa T_o} \frac{\partial \sigma}{\partial t}
\]
(9)

by use of Eq. (1'). One also has from Eqs. (4') and (8)

\[
\frac{\partial^2 p}{\partial t^2} = \frac{\partial^2 \sigma}{\partial t^2} + \frac{\partial^2 \Theta}{\partial t^2} = \frac{P_o}{\rho_o} \Delta p + \frac{\partial^2 \Theta}{\partial t^2} ,
\]
(10)

and from Eq. (9)

\[
\frac{\partial}{\partial t} (\Delta \Theta) = \frac{1}{D} \frac{\partial^2 \Theta}{\partial t^2} - \frac{P_o}{\kappa T_o} \frac{\partial^2 \sigma}{\partial t^2} ,
\]

\[
= \frac{1}{D} \left[\frac{\partial^2 p}{\partial t^2} - \frac{P_o}{\rho_o} \Delta p \right] - \frac{P_o}{\kappa T_o} \frac{P_o}{\rho_o} \Delta p ,
\]

or

\[
\frac{\partial}{\partial t} (\Delta \Theta) = \frac{1}{D} \frac{\partial^2 p}{\partial t^2} - \frac{P_o}{\rho_o} \left[\frac{1}{D} + \frac{P_o}{\kappa T_o} \right] \Delta p .
\]
(11)

Equation (11) now gives

\[
\frac{\partial^2}{\partial t^2} (\Delta \Theta) = \frac{1}{D} \frac{\partial}{\partial t} \frac{\partial^2 p}{\partial t^2} - \frac{P_o}{\rho_o} \left[\frac{1}{D} + \frac{P_o}{\kappa T_o} \right] \frac{\partial}{\partial t} \Delta p ,
\]

and Eq. (10) gives

\[
\frac{\partial^2}{\partial t^2} (\Delta \Theta) = \frac{\partial^2}{\partial t^2} (\Delta p) - \frac{P_o}{\rho_o} \Delta (\Delta p)
\]

so that these last two relations lead to the following:

\[
\Delta \left[\frac{\partial^2 p}{\partial t^2} - \frac{P_o}{\rho_o} \Delta p \right] = \frac{1}{D} \frac{\partial}{\partial t} \left[\frac{\partial^2 p}{\partial t^2} - \frac{P_o}{\rho_o} \left(1 + \frac{D P_o}{\kappa T_o} \right) \Delta p \right] .
\]
(12)
It may be noted that
\[1 + \frac{\Delta P_0}{\kappa T_0} = 1 + \frac{R}{MC_V} = \gamma, \]
where \(\gamma \) is the ratio of the specific heat at constant pressure, \(C_P \), to the specific heat at constant volume \(C_V \). Equation (12) may then be written
\[\Delta \left[\frac{\partial^2 P}{\partial t^2} - c_i^2 \Delta p \right] = \frac{1}{D} \frac{\partial}{\partial t} \left[\frac{\partial^2 P}{\partial t^2} - c_a^2 \Delta p \right], \] \((12') \)
where \(c_i^2 = P_0/\rho_0 \) so that \(c_i \) is the isothermal sound speed, and \(c_a^2 = \gamma P_0/\rho_0 \) so that \(c_a \) is the adiabatic sound speed.

It may be remarked that the isothermal limit is obtained if one says in Eq. (3') that
\[\left| \frac{1}{D} \frac{\partial \theta}{\partial t} \right| \ll \left| \frac{P_0}{k T_0} \nabla \cdot \mathbf{v} \right| = \left| \frac{P_0}{k T_0} \frac{\partial \sigma}{\partial t} \right|, \]
for then Eqs. (4') and (10) give
\[\frac{\partial^2 P}{\partial t^2} - c_i^2 \Delta p = 0. \] \((13) \)

On the other hand the adiabatic limit is obtained if one has
\[\left| \Delta \theta \right| \ll \left| \frac{P_0}{k T_0} \nabla \cdot \mathbf{v} \right| \]
so that the heat conduction Eq. (9) becomes approximately
\[\frac{1}{D} \frac{\partial \theta}{\partial t} = - \frac{P_0}{k T_0} \nabla \cdot \mathbf{v} = \frac{P_0}{k T_0} \frac{\partial \sigma}{\partial t}. \]

Equations (10) and (8) then gives
\[\frac{\partial^2 P}{\partial t^2} = \frac{P_0}{\rho_0} \Delta p + \frac{DP_0}{k T_0} \frac{\partial^2 \sigma}{\partial t^2} = \frac{\gamma P_0}{\rho_0} \Delta p = c_a^2 \Delta p. \] \((14) \)
The complete equation (12') describes an acoustic disturbance which is not only propagated but is also attenuated. This attenuation may be illustrated very simply by considering a plane wave with

\[p = A e^{i(kx-\omega t)} = A e^{ik(x-ct)} \] (15)

Then one gets from Eq. (12')

\[-k^2(-\omega^2 + k^2 c_i^2) = -\frac{i\omega}{D} \left(-\omega^2 + k^2 c_a^2\right),\] (16)

or

\[k^4 - \frac{1}{c_i^2} \left(\omega^2 + \frac{i\omega c_a^2}{D}\right) k^2 + \frac{i\omega^3}{c_i^2 D} = 0.\] (16')

Another form of this relation is

\[-k^2(-k^2 c_i^2 + k^2 c_a^2) = -\frac{ikc}{D} \left(-k^2 c_i^2 + k^2 c_a^2\right),\] (17)

or

\[c^3 + iDk c^2 - c_a^2 c - iDk c_i^2 = 0.\] (17')

It is easy to see that the terms in D in Eq. (17') are negligible over a wide range of wave number k. For example, for air $D \approx 0.29 \text{ cm}^2/\text{sec}$ and both c_i and c_a are for air of the order of magnitude of $3 \times 10^4 \text{ cm/sec}$. If one considers further a range of angular frequency from, say, 10/\text{sec to } 2 \times 10^4/\text{sec, so that } k \text{ ranges from approximately } 2 \times 10^{-3} \text{ cm}^{-1} \text{ to } 4 \text{ cm}^{-1}, \text{ then } Dk \text{ runs from about } 5 \times 10^{-4} \text{ cm/sec} \text{ to the order of } 1 \text{ cm/sec which is negligible compared with } c_i \text{ or } c_a. \text{ In the range for which } Dk \text{ is small compared with } c_i \text{ or } c_a \text{ it follows at once from Eq. (17') that the propagation velocity } c \text{ of the wave is very closely the adiabatic velocity } c_a.

The result that the velocity of sound is determined by the adiabatic response of the gas has been known for a long time and also has been correctly attributed to the small value for the thermal diffusivity. A statement
is often made, however, which is quite misleading, of the following kind:
"The condensations and rarefactions of the air concerned in the propagation
of sound take place with such rapidity that the heat and cold produced have
not time to pass away and therefore the thermodynamic processes are
essentially adiabatic."\(^1\) This statement is completely justified if radiation
only is considered as the mechanism of heat transfer. This was the pro-
cedure used by Stokes.\(^2\) When the effect of heat conduction is considered,
as has been carried through here, it is evident from (17') that an increase
in the rapidity of the process, i.e., an increase in frequency, tends to
give the isothermal rather than the adiabatic behavior. Such a result is
easily understood physically. An increase in frequency corresponds to a
decrease in wavelength, and the region that undergoes condensation and
rarefaction is measured by the wavelength. Although the time for heat to
be conducted away becomes smaller with increasing frequency, the de-
crease in the extent of the affected region is a more important effect as
is to be expected from the well-known behavior of the fundamental solutions
of the heat equation.

The attenuation of the plane wave by heat conduction may be esti-
mated in the following way. Since
\[c = \frac{c}{a}, \]
one may write
\[k = \frac{\omega}{c} (1 + \eta) \] \hspace{1cm} (18)
where \(|\eta| \ll 1\). If now the form of \(k\) given by (18) is substituted in

Eq. (16') and if terms $O(\eta^2)$ are neglected, then one obtains

$$\frac{\omega^4}{c_a} (1 + 4\eta) - \frac{\omega^2}{c_a c_i^2} \left(\omega^2 + i \omega \frac{c_a^2}{D} \right) (1 + 2\eta) + \frac{i \omega^3}{c_i D} = 0.$$ \hspace{1cm} (19)

Since $Dk \ll c$ so that $D \omega \ll c_a^2$ and $D \omega \ll c_i^2$, Eq. (19) may be approximated by

$$- \frac{2i \omega^3}{c_i D} \eta + \frac{\omega^4}{c_a} \left(\frac{1}{2} - \frac{1}{2} \right) = 0,$$

or

$$\eta = \frac{iD \omega}{2c_a^4} \left(c_a^2 - c_i^2 \right). \hspace{1cm} (20)$$

In this approximation, therefore, the plane wave of Eq. (15) is given by

$$p = e^{-\frac{D \omega^2}{2c_a^5} (c_a^2 - c_i^2)x} e^{i \omega (x - c_a t)}.$$

The attenuation factor of Eq. (20) is the familiar one.\(^3\) This attenuation is relatively slight. For example, in air the amplitude of a wave of frequency $\omega / 2\pi$ (in sec\(^{-1}\)) is decreased by the factor $1/e$ in the distance in units of the wavelength given by $10^{11} / 6 \omega$.

Propagation of Sound in a Liquid Containing Gas Bubbles

The medium to be studied is a liquid containing gas bubbles which are supposed to be uniformly distributed. The bubbles should be sufficiently small compared with the wavelength of the acoustic disturbance so that the medium may be considered homogeneous and isotropic. If one considers any element of this mixed fluid with total mass \(M = M_1 + M_2 \) and with total volume \(V = V_1 + V_2 \), where the subscript 1 refers to the liquid and the subscript 2 to the gas, then the density of the mixed fluid is

\[
\rho = \frac{M_1 + M_2}{V_1 + V_2}. \tag{21}
\]

The mass ratio is

\[
g = \frac{M_2}{M_1}, \tag{22}
\]

and the volume ratio is

\[
f = \frac{V_2}{V_1}. \tag{23}
\]

In ordinary mixtures \(g \ll 1 \) while \(f \) need not be small. The mixture density \(\rho \) may be expressed in terms of the liquid density \(\rho_1 \) and the gas density \(\rho_2 \) as follows:

\[
\frac{1}{\rho} = \frac{1}{1 + g} \left(\frac{1}{\rho_1} + \frac{g}{\rho_2} \right). \tag{24}
\]

The continuity equation and the equation of conservation of momentum for the mixture are given by Eqs. (1) and (2) above where \(\rho \) now denotes the mixture density. The gas is assumed to be perfect so that its equation of state is

\[
P = \frac{R}{m_2} \rho_2 T. \tag{25}
\]
where \(m_2 \) is the gram molecular weight of the gas. The equation of state for the liquid will be left in the general form

\[
P = \varphi (\rho_1, T) .
\]

\[(26) \]

The energy equation may be written in the form

\[
\frac{M_1 C_1 + M_2 C_2}{V_1 + V_2} \frac{\partial T}{\partial t} = \kappa \Delta T + P (\nabla \cdot \mathbf{v}) ,
\]

\[(27) \]

where \(C_1 \) is the specific heat per unit mass of the liquid and \(C_2 \) is the specific heat at constant volume per unit mass of the gas. The constant \(\kappa \) is the average coefficient of heat conduction for the mixture which may be taken to be

\[
\kappa = \frac{\kappa_1 V_1 + \kappa_2 V_2}{V_1 + V_2} = \frac{\kappa_1 + \kappa_2 f}{1 + f} .
\]

\[(28) \]

One may also define the effective average specific heat, \(C \), for the mixture to be

\[
C = \frac{1}{\rho} \frac{M_1 C_1 + M_2 C_2}{V_1 + V_2} = \frac{C_1 + g C_2}{1 + g} .
\]

\[(29) \]

The heat conduction equation (27) then may be written as

\[
\rho C \frac{\partial T}{\partial t} = \kappa \Delta T + P (\nabla \cdot \mathbf{v}) .
\]

\[(27') \]

The linearization is carried out by writing

\[
\rho = \rho_o (1 + \sigma) ; \quad \rho_1 = \rho_1^{(o)} (1 + \sigma_1) ; \quad \rho_2 = \rho_2^{(o)} (1 + \sigma_2) ;
\]

\[
P = P_o (1 + p) ; \quad T = T_o (1 + \theta) ;
\]

where \(\sigma, \sigma_1, \sigma_2, p, \text{ and } \theta \) together with \(\mathbf{v} \) are to be treated as small quantities. One then gets from Eq. (24) the approximate relation
\[\sigma \rho_0 \approx \frac{g \rho_2^{(o)}}{(1+g) \rho_2} \left(\frac{\sigma_1}{f} + \sigma_2 \right) \]

Now \(\sigma_1 \ll \sigma_2 \) and, since volume ratios \(f \) which are not small are of present interest, one may suppose that \(|\sigma_1/f| \ll \sigma_2 \) so that this further approximation may be made to give

\[\frac{\sigma}{\rho_0} \approx \frac{g}{(1+g) \rho_2^{(o)}} \sigma_2 = \frac{f}{(1+g) \rho_1^{(o)}} \sigma_2 \] \hspace{1cm} (30)

Equation (30) makes it possible to proceed without an explicit expression for the equation of state of the liquid.

The linearized equations which are obtained are the following:

\[\frac{\partial \mathbf{v}}{\partial t} = - \frac{P_0}{\rho_0} \nabla p ; \] \hspace{1cm} (31)

\[\frac{\partial \sigma}{\partial t} = - \nabla \cdot \mathbf{v} ; \] \hspace{1cm} (32)

\[p = \sigma_2 + \theta \approx \delta \sigma + \theta ; \] \hspace{1cm} (33)

and

\[\Delta \theta = \frac{1}{D_m} \frac{\partial \theta}{\partial t} + \frac{P_0}{\kappa T_0} \nabla \cdot \mathbf{v} \] \hspace{1cm} (34)

In Eq. (33), the parameter \(\delta \) is given by

\[\delta = \frac{(1+g) \rho_2^{(o)}}{g \rho_0} \] \hspace{1cm} (35)

and in Eq. (34) \(D_m \) is the effective thermal diffusivity of the mixture:

\[D_m = \frac{\kappa}{\rho_0 C} \] \hspace{1cm} (36)
As in the previous section these equations lead in a straightforward way to the following relation:

$$\Delta \left[\frac{\partial^2 P}{\partial t^2} - \frac{P_o \delta}{P_o} \Delta P \right] = \frac{1}{D_m} \frac{\partial}{\partial t} \left[\frac{\partial^2 P}{\partial t^2} - \frac{P_o \delta}{P_o} \left(1 + \frac{P_o}{C_o^2 \rho_o T_o} \right) \right] \Delta P$$

(37)

It may be noted that

$$\frac{P_o}{C_o^2 \rho_o T_o} = \frac{g}{(1+g)} \frac{P_o}{\rho_0 T_0 C} = \frac{g}{(1+g)} \frac{R}{m_2 C_2} \frac{C_2^2}{C}$$

$$\frac{(\gamma-1)g C_2}{C_1 + g C_2}, \quad (38)$$

where γ is the ratio of specific heats for the gas. It may be seen from Eq. (38) that ordinarily $P_o/(C_o^2 \rho_o T_o) << 1$. For example, for the combination of air and water one has $C_1 \approx 4.2 \times 10^7$ ergs/gm0C, $C_2 \approx 7.2 \times 10^6$ ergs/gm0C, $\gamma \approx 1.4$, and in addition one usually has $g << 1$. If the quantity $P_o/(C_o^2 \rho_o T_o)$ is neglected, then one gets from Eq. (37)

$$\frac{\partial^2 P}{\partial t^2} - \frac{P_o \delta}{P_o} \Delta P = 0$$

(39)

so that the velocity of sound propagation is essentially $(P_o \delta/P_o)^{1/2}$.

It must be kept in mind that this result for the sound velocity requires the validity of the approximation of Eq. (30) which has been used in Eq. (33). This approximation means that the volume ratio Φ must be large enough so that the gas compressibility plays the dominant role in the over-all compressibility of the mixture; at the same time Φ cannot be so large that the mass ratio becomes comparable with unity.
The velocity of sound for the fluid mixture may be derived formally in another way. If \(c \) is the sound velocity of the mixture, \(c_1 \) and \(c_2 \) the sound velocities for the liquid and the gas respectively, then one has

\[
\frac{1}{c^2} = \frac{d \rho}{dp} = \left(\frac{M_1 + M_2}{V_1 + V_2} \right) \frac{1}{V_1 + V_2} \frac{d}{dp} \left(\frac{V_1 + V_2}{p} \right),
\]

or

\[
\frac{1}{c^2} = \rho \left(\frac{M_1}{V_1 + V_2} \right) \frac{1}{\rho_1} \frac{d \rho_1}{dp} + \frac{M_2}{V_1 + V_2} \frac{1}{\rho_2} \frac{d \rho_2}{dp};
\]

where \(1/c_1^2 = d \rho_1/dp \) and \(1/c_2^2 = d \rho_2/dp \). Ordinarily \(c_1^2 > c_2^2 \), so that, if it is assumed that \(g \ll f^2 \), a good approximation to Eq. (40) is

\[
c^2 \approx \frac{\rho_2 + g \rho_1}{f \rho} c_2^2.
\]

It follows from the identity \(f = g \rho_1 / \rho_2 \) and from Eq. (24) that

\[
\frac{\rho_2 + g \rho_1}{f \rho} = \frac{(1+g)}{g} \frac{\rho_2^2}{\rho^2}
\]

and Eq. (41) then becomes

\[
c^2 \approx \frac{(1+g)}{g} \frac{\rho_2^2}{\rho^2} c_2^2.
\]

Now the preceding analysis which led to Eq. (39) gave the result

\[
c^2 = \frac{P_0}{\rho_0} \delta = \frac{(1+g)}{g} \frac{\rho^{(o)}_2}{\rho^{(o)}_0} P_0.
\]
or, dropping the index (o), one has

$$c^2 = \frac{(1+g)}{g} \frac{\rho_2^2}{\rho^2} \frac{P}{\rho_2}$$ \hspace{1cm} (42)

Now in Eq. (41') \(c_2^2 \) stands for \(\frac{dP}{d\rho_2} \) and the comparison of Eq. (41') with Eq. (42) shows that in the present approximation

$$c_2^2 = \frac{dP}{d\rho_2} = \frac{P}{\rho_2}$$

It follows that the appropriate derivative, \(\frac{dP}{d\rho_2} \), must be the isothermal one. It is in the sense of this result that the gas phase of the mixture may be described as behaving isothermally for the condensations and rarefactions of acoustic waves.

The attenuation coefficient for an acoustic wave travelling through the gas-liquid mixture may be immediately calculated in the same way as in the treatment of the previous section for a homogeneous fluid. One takes, as before, a plane wave of the form

$$p = A \ e^{i(kx-\omega t)}$$

with the notation

$$c^2 = \frac{P_o \delta}{\rho_o} , \quad \alpha = \frac{P_o}{C \delta \rho_o T_o} ,$$ \hspace{1cm} (43)

one finds from Eq. (37)

$$-k^2 \left[-\omega^2 + k^2 c^2 \right] = -\frac{i \omega}{D_m} \left[-\omega^2 + k^2 c^2 (1+\alpha) \right]$$ \hspace{1cm} (44)

One may write

$$k = \frac{\omega}{c} (1 + \eta) ,$$ \hspace{1cm} (45)
where it is assumed that $|\eta| \ll 1$. It has already been remarked that $\alpha \ll 1$. A good approximation to Eq. (44) is, therefore

\[- 2 \frac{\omega^2}{c^2} \eta \approx - \frac{i}{D_m} (\alpha + 2\eta)\]

so that

\[
\eta \approx \frac{1}{2} \left[\frac{-\alpha + i\alpha D_m \omega/c^2}{1 + (D_m \omega/c^2)^2}\right]
\]

The real part of η, as given in Eq. (46), represents a correction of $O(\alpha)$ to the propagation velocity c, and the imaginary part is the attenuation coefficient.

A numerical example will serve to illustrate the behavior of a mixture and the example chosen is an air-water mixture at standard conditions with $f = 1/10$.

Then

\[\frac{\rho_2}{\rho_1} \approx \frac{1}{800}; \quad g = \frac{\rho_2}{\rho_1} f \approx \frac{1}{8000};\]

and

\[\rho = \frac{\rho_1^{(o)}}{1 + f} + \frac{\rho_2^{(o)} f}{1 + f} \approx \frac{\rho_1^{(o)}}{1 + f} \approx 0.9 \text{ gm/cm}^3.\]

One then has

\[\delta = \frac{1 + g}{g} \left(\frac{\rho_2^{(o)}}{\rho}\right) \approx 11;\]

and

\[c^2 = \frac{P_0 \delta}{\rho \rho_0} \approx \frac{1}{80} c_2^2\]

so that

\[c \approx \frac{1}{9} c_2 \approx 3 \times 10^3 \text{ cm/sec},\]
and
\[\alpha = \frac{P_0}{C \delta \rho_o T_0} \approx 10^{-5} , \]
so that \(\alpha \) is indeed small. Finally
\[C = \frac{C_1 + g C_2}{1 + g} \approx C_1 \approx 4 \times 10^7 \text{ ergs/gm}^\circ \text{C} ; \]
\[\kappa = \frac{K_1 + K_2 f}{1 + f} \approx \kappa_1 \approx 6 \times 10^4 \text{ ergs/cm sec}^\circ \text{C} ; \]
and
\[D_m = \frac{\kappa}{\rho_o C} \approx \frac{\kappa_1}{\rho_1 (o) C_1} \approx 1.4 \times 10^{-3} \text{ cm}^2/\text{sec} . \]

As \(\omega \) runs, say, from 10/sec to 2\times10^4/sec, \(D_m \omega/c^2 \) ranges from 10^{-8} to 2\times10^{-5}. If \(\eta \) is written as \(\eta_1 + i \eta_2 \), then
\[\eta_2 \approx \frac{\alpha}{2} \frac{D_m \omega}{c^2} \approx 7 \times 10^{-16} \omega \]
where \(\omega \) is in \text{sec}^{-1}. It may be noted that this attenuation coefficient is much smaller than the value for air alone which was found to be \(6 \times 10^{-11} \omega \).
DISTRIBUTION LIST FOR UNCLASSIFIED REPORTS ON CAVITATION
Contract Nonr-220(28)

Chief of Naval Research
Navy Department
Washington 25, D.C.
Attn: Code 438 (3)
 Code 463 (1)

Commanding Officer
Office of Naval Research
Branch Office
The John Crerar Library Bldg.
86 E. Randolph Street
Chicago 1, Ill. (1)

Commanding Officer
Office of Naval Research
Branch Office
346 Broadway
New York 13, N.Y. (1)

Commanding Officer
Office of Naval Research
Branch Office
1030 E. Green Street
Pasadena 1, California (1)

Commanding Officer
Office of Naval Research
Branch Office
100, Fleet Post Office
New York, N.Y. (25)

Director
Naval Research Laboratory
Washington 25, D.C.
Attn: Code 2021 (6)

Chief, Bureau of Aeronautics
Navy Department
Washington 25, D.C.
Attn: Research Division (1)
 Aero and Hydro Branch
 (code Ad-3) (1)
 Appl. Mech. Branch
 (Code DE-3) (1)

Commander
Naval Ordnance Test Station
Inyokern, China Lake, Calif.
Attn: Technical Library (1)

Commander
Naval Ordnance Test Station
3202 E. Foothill Blvd.
Pasadena, California
Attn: Head, Underwater Ord.
 Head, Research Div. (1)

Chief, Bureau of Weapons
Navy Department
Washington 25, D.C.
Attn: Asst. Chief for Research
 (Code Re) (1)
 Systems Director, Underwater Ord. (Code Rexc) (1)
 Armor, Bomb, Projectile, Rocket, Guided Missile Warhead and Ballistics Branch
 (Code Re3) (1)
 Torpedo Branch (Code Re6) (1)
 Research and Components
 Section (Code Re6a) (1)
 Mine Branch (Code Re7) (1)

Chief, Bureau of Ships
Navy Department
Washington 25, D.C.
Attn: Research and Development
 (Code 300) (1)
 Ship Design (Code 410) (1)
 Preliminary Design and Ship Protection (Code 420) (1)
 Scientific, Structural and Hydrodynamics (Code 442) (1)
 Submarines (Code 525) (1)
 Propellers and Shafting
 (Code 554) (1)

Chief, Bureau of Yards and Docks, Navy Department
Washington 25, D.C.
Attn: Research Division (1)

Commanding Officer and Director
David Taylor Model Basin
Washington 7, D.C.
Attn: Hydromechanics Lab.
 Seaworthiness and Fluid Dynamics Div.
 Library (1)
Commanding Officer
Naval Ordnance Laboratory
White Oak, Maryland
Attn: Underwater Ord. Dept. (1)

Commanding Officer
Naval Underwater Ordnance Station
Newport, Rhode Island (1)

Director
Underwater Sound Laboratory
Fort Trumbull
New London, Connecticut (1)

Librarian
U.S. Naval Postgraduate School
Monterey, California (1)

Executive Secretary
Research and Development Board
Department of Defense
The Pentagon
Washington 25, D.C. (1)

Chairman
Undersea Warfare Committee
National Research Council
2101 Constitution Avenue
Washington 25, D.C. (1)

Dr. J. H. McMillen
National Science Foundation
1520 H Street, N.W.
Washington, D.C. (1)

Director
National Bureau of Standards
Washington 25, D.C.
Attn: Fluid Mechanics Section (1)

Dr. G. H. Keulegan
National Hydraulic Laboratory
National Bureau of Standards
Washington 25, D.C. (1)

Director of Research
National Advisory Committee for Aeronautics
1512 H Street, N.W.
Washington 25, D.C. (1)

Director
Langley Aeronautical Laboratory
NACA
Langley Field, Virginia (1)

Mr. J. B. Parkinson
Langley Aeronautical Laboratory
NACA
Langley Field, Virginia (1)

Commander
Air Research and Development Command
P.O. Box 1395
Baltimore 18, Maryland
Attn: Fluid Mechanics Div. (1)

Director
Waterways Experiment Station
Box 631
Vicksburg, Mississippi (1)

Beach Erosion Board
U.S. Army Corps of Engineers
Washington 25, D.C. (1)

Office of Ordnance Research
Department of the Army
Washington 25, D.C. (1)

Office of the Chief of Engineers
Department of the Army
Gravelly Point
Washington 25, D.C. (1)

Commissioner
Bureau of Reclamation
Washington 25, D.C. (1)

Director
Oak Ridge National Laboratory
P.O. Box P
Oak Ridge, Tenn. (1)

Director
Applied Physics Division
Sandia Laboratory
Albuquerque, New Mexico (1)

Professor Carl Eckart
Scripps Institute of Oceanography
La Jolla, California (1)

Documents Service Center
Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia (10)

Mr. Wing G. Agnew, Chief
Spokane Field Office, Region I
U.S. Dept. of the Interior
Bureau of Mines
1201 N. Division Street
Spokane 2, Washington (1)
Office of Technical Services
Department of Commerce
Washington 25, D. C.

Polytechnic Institute of Brooklyn
Department of Aeronautical
Engineering and Applied Mech.
99 Livingston Street
Brooklyn 1, New York
Attn: Prof. H. Reissner

Division of Applied Mathematics
Brown University
Providence 12, Rhode Island

California Institute of Technology
Pasadena 4, California
Attn: Professor A. J. Acosta
Professor A. Hollander
Professor C. B. Millikan
Professor M. S. Plesset
Professor V. A. Vanoni
Professor T. Y. Wu

University of California
Department of Engineering
Berkeley 4, California
Attn: Professor H. A. Einstein
Professor H. A. Schade
Professor J. V. Wehausen

Case Institute of Technology
Dept. of Mechanical Engineering
Cleveland, Ohio
Attn: Professor G. Kuerti

Cornell University
Grad. School of Aeronautical
Engineering
Ithaca, New York
Attn: Prof. W. R. Sears

Harvard University
Cambridge 38, Mass.
Attn: G. Birkhoff, Dept. of
Mathematics
G. Carrier, Div. of
Eng. and Appl. Physics

University of Illinois
Dept. of Theoretical and Applied
Mechanics
College of Engineering
Urbana, Illinois
Attn: Dr. J. M. Robertson

State University of Iowa
Iowa Institute of Hydraulic
Research
Iowa City, Iowa
Attn: Dr. Hunter Rouse

University of Maryland
Inst. for Fluid Dynamics and
Applied Mathematics
College Park, Maryland
Attn: Prof. M. H. Martin
Prof. J. R. Weske

Massachusetts Institute of Technology
Cambridge 39, Mass.
Attn: Prof. W. M. Rohsenow,
Prof. A. T. Ippen
Hydrodynamics Laboratory

Michigan State College
Hydraulics Laboratory
East Lansing, Michigan
Attn: Prof. H. R. Henry

University of Michigan
Ann Arbor, Michigan
Attn: Director, Engineering Re-
search Institute
Prof. V. L. Streeter,
Civil Engineering Dept.

University of Minnesota
St. Anthony Falls Hydraulic Lab.
Minneapolis 14, Minn.
Attn: Dr. L. G. Straub

New York University
Institute of Mathematical Sciences
25 Waverly Place
New York 3, New York
Attn: Prof. R. Courant

University of Notre Dame
College of Engineering
Notre Dame, Indiana
Attn: Dean K. E. Schoenherr

Pennsylvania State University
Ordnance Research Laboratory
University Park, Pennsylvania
Attn: Prof. G. F. Wislicenus
Dr. J. Kotik
Technical Research Group
17 Union Square West
New York 3, N. Y.