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Abstract

Automatically determining facial similarity is a difficult
and open question in computer vision. The problem is com-
plicated both because it is unclear what facial features hu-
mans use to determine facial similarity and because fa-
cial similarity is subjective in nature: similarity judgements
change from person to person. In this work we suggest
a system which places facial similarity on a solid compu-
tational footing. First we describe methods for acquiring
facial similarity ratings from humans in an efficient man-
ner. Next we show how to create feature vector representa-
tions for each face by extracted patches around facial key-
points. Finally we show how to use the acquired similarity
ratings to learn functional mapping which project facial-
feature vectors into Face Spaces which correspond to our
notions of facial similarity. We use different collections of
images to both create and validate the Face Spaces includ-
ing: perceptual similarity data obtained from humans, mor-
phed faces between two different individuals, and the CMU
PIE collection which contains images of the same individ-
ual under different lighting conditions. We demonstrate that
using our methods we can effectively create Face Spaces
which correspond to human notions of facial similarity.

1. Introduction
Humans naturally perceive the similarity between dif-

ferent objects. Humans are especially sensitive to facial

similarity and it has been suggested that individuals seek

partners with similar facial attributes [6]. Facial similarity

is particularly useful in social situations such as determin-

ing familial relationships or dating preferences. The goal

of this work is to place facial similarity on a solid compu-

tational footing. We suggest to learn functions which map

measured facial features to metric spaces in which similar

looking faces are near one another.

While there is a vast amount literature devoted to facial

recognition, judging similarity is a more subtle and difficult

topic. Our challenges include: (A) obtaining reliable facial

Face Space

Figure 1. Example of typical Face Space. Perceptual ratings from

130 images were used to generate a linear map. RDMAP = 100,

DPCA = 200. MDS was performed to embed projected faces into

a 2D space. Notice that some areas do not conform well to notions

of similarity, such as the upper right of the space. Other areas con-

tain groups of similar-looking faces (these areas are highlighted

by enlarged images), such as ‘Asian’, and ’Men with Beards and

Sunken Eyes’. Overall the map seems todo a good job of creating

a metric space which preserves notions of facial similarity.

similarity judgments from human observers, (B) developing

‘objective’ approaches to similarity to supplement measure-

ments from humans, (C) automatically mapping measured

facial features to a space where the natural metric predicts

human similarity judgments.

Within the psychological literature there have been nu-
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Figure 2. Outline of proposed facial similarity algorithm. Patches are extracted from the eyes and mouth and converted to a feature vector.

A mapping function is generated using perceptual similarity training data which is used to project the feature vectors to a metric space

which reflects human similarity judgements.

merous studies on how to create metric spaces for faces

which reflect perceptual notions of similarity (see for in-

stance [1]). Multi-Dimensional Scaling (MDS) [7] is often

used to embed faces into a metric space based on percep-

tual judgements of facial similarity. Within these embed-

ded metric spaces, faces which appear similar are nearby

one another and thus these spaces are often referred to as

Faces Spaces. These methods have two major drawbacks:

(1) MDS methods are not useful when presented with new

faces as MDS does not create an explicit mapping function,

(2) The faces used were always in standard poses and con-

stant lighting conditions and do not exhibit the same statis-

tical variations found in real-world images.

The computer vision community has a long history of

mapping faces into lower dimensional representations for

recognition, such as the ‘unsupervised’ Eigenface [11] and

‘supervised’ FisherFace [3] methods. More recently Le-

Cun et al. [4] proposed an interesting supervised non-linear

mapping using contrastive divergence learning and a con-

volutional neural network which they apply to numerous

data-sets in addition to face data-sets. The goal of our work

is to explore in a principled manner the creation of facial

similarity spaces which reflect perceptual notions of simi-

larity. We generate explicit maps from extracted facial fea-

tures and use mostly real-world images obtained both from

the web and personal photo collections. Figure 2 gives an

overview of our proposed algorithm.

The paper is organized as follows: In Section 2 we de-

scribe and compare methods for effectively obtaining fa-

cial similarity data. In Section 3 we describe the various

data-collections used. In section 4 we show how to use this

training data to construct explicit functional mappings from

feature space to face spaces. Finally, in Sections 5 and 6 we

will present and discuss our experiments.

2. Obtaining Facial Similarity Data

A difficult requirement inherent in creating and evaluat-

ing a facial similarity space is acquiring large amounts of

facial similarity data in an efficient manner. It is desirable

that: (1) the similarity measurements be obtained quickly,

(2) the measurements be accurate, and (3) the ratings be

collected on a large set of faces. Authors have suggested

numerous methods for comparing and rating the similarity

of faces (see for instance [8]) and here we evaluate variants

of two common paradigms which we call Absolute and Rel-
ative rating methods. Figure 3 describes and compares both

the methods.

We compared the two rating methods by asking 5 sub-

jects to rate the facial similarity of 127 face images: 100

‘random’ face images and 9 sets of 3 images of the same

person (the images of the same were photos of minor

celebrities). We included images of the same person in or-

der to ensure that each subject was accurately performing

the rating tasks (i.e. that when the subjects were presented

with two images of the same individual, they would indicate

that these images were very similar to one another). It took

subjects on average 3s to make an absolute rating and 12s

to make a relative rating.

We wish to understand how consistent subjects were in

assessing facial similarity. That is, if the subject were asked

to make the same similarity judgement twice would they

make the same judgement? For space considerations we

have included the analysis of consistency within the Sup-

plementary Materials, but note that consistency within a

subject was slightly higher than consistency between sub-

jects. However, consistency between subjects was surpris-

ingly high on this data-set.



Figure 3. (Left) Relative Rating experiment. Subjects are asked to select which of the 24 faces are most similar to the target face located on

top. (Right) Subjects are asked to rate, from 1-7, how similar the two faces are. Subjects were given a precise definition of each numerical

value, from (7) ’Same Person’ to (1) ’Completely Different’.

2.1. Synthetic Experiments using MDS

Which method, the relative or absolute rating method, is

more efficient in creating Face Spaces? The relative method

yields relative rating information: e.g., Face A is closer to

Face B than Face A is to Face C. The absolute method gives

the absolute distance between two faces as judged by the

subject: e.g. Face A and B are distance 2 apart. How can

we compare the efficiency of these two rating methods? We

proceed by using Multi-Dimensional Scaling (MDS) [7] on

both relative and absolute rating data.

First we generate a set of synthetic vectors, where each

vector represents a face. From this synthetic data we gener-

ate artificial absolute and relative ratings. We then use these

artificial ratings to re-create the original vector space using

MDS. Next we describe the steps more explicitly.

(Step 1) Generate a random set of N vectors of dimen-

sionality D. Each vector represents a face and the percep-

tual information available to the subject. (Step 2) Generate

the pairwise distances between all vectors which correspond

to perceptual distances between faces. (Step 3a) Absolute
Measurements: distances are discretized into 7 discrete val-

ues, [1..7]. An absolute measurement is indicated by the

discrete value between two vectors. I.e. if vector (image)

A and B are 2 apart, then this corresponds to an absolute

rating of 2 between these two vectors (images). (Step 3b)

Relative Measurements: Randomly generate 25 images and

set one as the target image as in Figure 3. Sort the remain-

ing images by their Euclidean distance to the target image

and chose the closest Euclidean image.

From the Supplementary Material we know that sub-

jects are not always consistent in their ratings (i.e when

presented with the same set of faces they will not always

make the same similarity judgement). We add appropriate

noise to the synthetic analysis to ensure that the synthetic

responses have the same amount of uncertainty as the sub-

ject responses.

Once the sets of absolute and relative ratings have been

generated from the synthetic data we perform MDS on both

Collection Num Sets Total Num Images

Perceptual - 180

Celebrity Morphs - 52

Celebrity 62 400
PIE 10 270

Table 1. Different data collections and the number of images/sets

of images in each collection.

sets of of ratings. For the relative ratings we assign a dis-

tance of 1 and 2 to close and far images respectively. We use

the Sammon [9] stress criteria for creating the MDS spaces

which penalizes most points which are measured as being

close to one another (i.e. faces which are perceptually simi-

lar) and which are far apart in the embedded space. Explic-

itly it minimizes the stress E , where

E =
∑

k �=l

[d(k, l) − d′(k, l)]2

d(k, l)
(1)

and d(k, l) and d′(k, l) is the distance between points k
and l in both the original and embedded space respectively.

Other stress functions yielded qualitatively similar results.

Figure 4 compares the two rating techniques and we find

relative ratings re-create the original target space more ac-

curately than absolute ratings. We thus chose to use relative

ratings to obtain perceptual facial similarity data.

3. Data Collections
We wish to create a Face Space by training a mapping

function using a set of perceptual training data. After the

perceptual space has been generated we would like to eval-

uate its performance. We use 4 different collections of im-

ages, shown in Figure 5, to evaluate and create Face Spaces.

We describe each below:

Perceptual Measurements We collect perceptual data

from subjects by asking two subjects (one Caucasian male

and female US native) to rate the similarity of 180 face im-

ages using the relative rating technique shown in Figure 3.



Figure 5. Different data collections used to train perceptual mappings. (Top Row) Images from two individuals from the PIE collection,

note the controlled variations in lighting but little pose variation. (Middle Row) Images of two celebrities, they exhibit some pose, lighting,

and facial affect variations. (Bottom Row) Example of three sets of morphed images, center is the morphed image, the sides are the images

used to generate the morph. Note that the morphed image appears perceptually similar to the faces used to generate the morph, making this

collection potentially useful for training a perceptual similarity map.

CMU Pie Collection We selected 10 unique individu-

als from the CMU PIE Collection [10] and used 27 frontal

poses for each individual, which contain variations in light-

ing and some facial emotions in a controlled environment.

Celebrity Images We wished to obtain multiple images

of individuals in more diverse lighting and pose conditions

than available in the PIE collection. For this we downloaded

62 sets of images from the web. Each collection had be-

tween 3-11 images. These individuals tended to be Celebri-

ties.

Celebrity Morphs 1 We wish to artificially create similar

faces using a morphing program. We randomly chose two

images of different individuals from our celebrity collection

and morphed the images together. We chose the percep-

tual middle point of the morph when the morph face looked

equally similar to the two faces (see Figure 5 for examples

of the morphs). The generated morphs do indeed look very

similar to the two faces which generated them.

4. Creating a Perceptual Mapping

Next we discuss how to use to create an explicit mapping

from features extracted from face images to a space which

conforms to facial similarity.

4.1. Facial Feature Representation

First we describe how to obtain a feature (vector) repre-

sentation for each face. We manually annotated points at

the corners and above/below the eyes and mouth. We note

that automatic detectors for these particular facial locations

1We used the program FaceMorpher Multi by Luxand Development to

create facial morphs.

have been shown to be successful on similar data [5], but for

this study we preferred more controlled data. We extracted

patches around both eyes and the mouth at the size shown in

Figure 6 and resized them to be 17×24 and 25×14 respec-

tively. The patches were combined into one vector and used

to represent each face. Each patch was normalized to have

zero mean and unit variance. We also conducted experi-

ments which included the area around the nose, but found

no noticeable change in performance. The dimensionality

of all feature vectors was reduced to DPCA = 200 dimen-

sions using PCA which typically encompassed > 99% of

the variance. We also experimented using kPCA with an

RBF kernel to reduce dimensionality and found no notice-

able change in performance.

4.2. Representing Ratings using ‘Triplets’

In Section 2 and Figure 3 we discussed how to obtain rel-

ative facial similarity measurements. Here we discuss how

to represent relative measurements so they can be used to

optimize a perceptual map. Each relative rating tells us that

the image which is picked (i.e. image B) is more similar

to the target image A than any other image in the set of 24

images, indexed C. We can represent this information using

a triplet [A,B, C]. For any triplet, the subject has indicated

that D(A,B) < D(A, C) where D is some perceptual dis-

tance metric used by the subject. It is easy to see that each

relative rating generates 23 such triplets.

We can represent data collections containing images of

the same person, such as the Celebrities and PIE collections,

using triplets as well. We consider that images of each in-

dividual are more similar to one another than to any of the

other images in any collection. In this case, in the triplet
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Figure 4. Synthetic comparison of Absolute and Relative measure-

ments using MDS. (Top) Nearest Neighbors. For a vector (image)

A we find the nearest neighbor to A (let this be B). These two

vectors (images) are embedded into an MDS space which is cre-

ated using a set of either absolute or relative ratings. We then

calculate the rank distance of these two vectors in the embedded

MDS space: r = rank(A,B). The y-axis is the average rank dis-

tance between all images in the MDS space. The best possible

performance would be a value of 1 as this would indicate every

nearest neighbor in the original space was a nearest neighbor in

the embedded space. A lower rank distance is better. Solid lines:

absolute ratings, dashed lines: relative ratings. Different colors in-

dicate different numbers of acquired ratings. The number of abso-

lute/relative ratings were chosen such that they took an equivalent

amount of time. The dimensionality of the embedded space is var-

ied on the x-axis. (Bottom) Farthest Neighbor. Same as top but

instead of looking at the rank of the closest point we look at the

rank of the furthest point. In this case larger ranks r indicate that

the MDS embedding is performing better. 200 random vectors of

dimensionality 10 were generated for these experiments. Relative

ratings seem to re-create the vector space more effectively over all

parameter initializations.

[A,B, C], A and B are images of the same person and C is

an image of a different individual. For example if we have

2 images of the same individual, and 100 images of other

individuals, we can generate 2 ∗ 100 = 200 triplets.

We follow similar logic for the morphed images. In this

case the morphed image is similar to both of the individuals

Figure 6. Examples of the average visual features extracted from a

set of faces. Note the relatively large size of the extracted feature.

used to generate the morph, but dissimilar to other individu-

als. For instance, if we generate a morph from two individ-

uals where we have 2 images of each individual, as well as

100 images of other people, we can generate 4 ∗ 100 = 400
different triplets.

4.3. Perceptual Map

How can we generate a perceptual map which projects

the feature vectors extracted in Section 4.1 to a space con-

forming to our notions of similarity? Explicitly, we would

like a mapping f which takes feature vectors representing

each face of dimensionality DPCA and projects them into

a space of dimensionality DMAP such that f : RDPCA →
RDMAP , where DMAP is typically 100. Results are not par-

ticular sensitive to small changes in the dimensionality of

DMAP: we found qualitatively similar results for DMAP =
50−200. Here we assume a linear map, although the frame-

work is applicable to any differentiable function f . We can

represent our mapping function as �y = f(�x), or, since we

are assuming a linear map, �y = M�x, where M is a matrix

of RDMAP × RDPCA , and �x is a feature representation for a

face, and �y is the projected representation after the linear

map.

Consider a particular triplet t = [A,B, C] as described

in the previous section. Now consider a feature represen-

tation for the images A,B, C which we denote by �a,�b,�c.

For a particular triplet, we would like that the distance be-

tween �a and �b be less than the distance between �a and �c
in the projected space. Thus we would like a cost func-

tion which penalizes inequalities when the following is true:

D(M�a,M�b) > D(M�a,M�c) where M is the projection

matrix to be optimized. We use the squared L2 metric to

calculate distances in the projected space and penalize in-

equalities using:

St = ||M�at − M�bt||2 − ||M�at − M�ct||2 (2)

St = (�at −�bt)M(�at −�bt)t − (�at − �ct)M(�at − �ct)t (3)

The mapping is linear, so the derivative of the penalty term

w.r.t. the linear mapping is a matrix and can be written as:

∂St

∂M
= (�at −�bt)t(�at −�bt) − (�at − �ct)t(�at − �ct) (4)



Exponential Sigmoid Rank [2]
20 Celeb Train .25 ± .04 .25 ± .03 .27 ± .04
40 Celeb Train .2 ± .03 .21 ± .03 .23 ± .04
60 Celeb Train .17 ± .04 .18 ± .05 .20 ± .04

Table 2. Comparison of different cost functions when different

numbers of celebrities are used for training. Rank performance on

celebrity data-sets shown, see Figure 9 for details on calculating

rank performance. Lower is better. Averaged over 20 iterations.

The exponential cost seems to perform the best.

and if we impose an exponential cost function, Ce and sum

over all triplets t:

Ce =
∑

t

exp(
−St

β
) (5)

∂C
∂M

=
1
β

∑

t

exp(
−St

β
)
∂St

∂M
(6)

where β controls the sensitivity of the penalty (we usually

set β = 1 for our experiments), i.e. the steeper the exponen-

tial distribution (smaller β), the more we penalize triplets in

which the inequality is not respected. We considered other

cost functions including a sigmoid function, Cs:

Cs =
∑

t

Sig(−St) (7)

where Sig(x) = 1
1+exp−x . We also considered the cost func-

tion proposed by the authors of [2] derived from the statis-

tical estimate of the rank correlation between two variables.

We found the exponential cost function to, in general, yield

slightly better results for most simulations (see Table 2 for a

comparison of different cost functions). In addition we ex-

perimented using a non-linear one-layer Radial Basis Func-

tion network as our mapping function. These mappings ex-

hibited severe problems with over-fitting due to the large

number of parameters in our map and the relatively small

amount of training data available and hence we used the

linear map M for our experiments.

We optimize the map using the conjugate gradient algo-

rithm. We initialize the matrix M at multiple starting points

to avoid local minima and chose the experiment resulting

in the lowest cost. We find that convergence usually occurs

after 100 iterations. We witnessed only minor fluctuations

in cost due to local minima during optimizations.

5. Experiments
In the previous sections we described how to acquire per-

ceptual judgements efficiently and how to generate a per-

ceptual map. In this section we describe our experiments.

First, we explicitly indicate how we divide up our training

and test set of data so as not to contaminate training data

with test data.
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Figure 7. How accurately can we reproduce human perceptual

judgements? We train mappings using 4 different collections of

images (the training collection used to create the mapping is indi-

cated in the title of each sub-plot). x-axis: clockwise from the top

left, number of images for which perceptual data was acquired,

the number of morph images, the number celebrity individuals,

and the number of pie individuals used to train the mapping. y-

axis: performance on human perceptual measurements using the

metric described in Section 5.3. Higher is better. Red line is the

performance expected by chance. The best performance is ob-

tained when the map is trained with perceptual data (about 4×
better than baseline performance), although morphed images per-

form well as well. Training a mapping using either the Celebrity

and PIE data-sets results in poor performance: these collections do

not seem appropriate for training mappings which predict human

perceptual judgements.

5.1. Creating Train / Test Sets

Perceptual Ratings: We collected relative ratings on 180

face images which we call this set E . For training, we se-

lected a subset E as a train set and found all the triplets

indexing these training images. The test set consisted of the

remaining images and the triplets associated to those test

images.

Celebrity/Pie Images: Of the 62 sets of celebrities we

chose a subset to train with and the remainder was used as a

test set. 120 additional images from the set E were used as

‘far’ images, e.g. in the triplet [A,B, C], A and B referenced



Pie Before Map Pie After Map

Figure 8. Distance between PIE individuals before and after map-

ping. Note the tighter clusters after the mapping, the right image,

than before the mapping, the left image. This mapping was gen-

erated by training on 54 sets of Celebrities, no PIE images were

used for training the map. (Left) The blue stars represent non-PIE

images. Each color represents a single PIE individual, and each

dot represents 1 of 27 different images of this person under differ-

ent with different lighting and facial affects. The embedding was

generated using MDS on the PCA reduced representations of each

feature vector. (Right) The same set of points after being mapped

into face space and embedded using MDS. Pictures indicate the

identity of each cluster. Note that each PIE individual is now clus-

tered in a particular area of space and that the points representing

each individual are now closer to one another. The mapping has

learned invariance to lighting and facial affect. This is somewhat

remarkable considering that the map was trained on only Celebri-

ties and generalized similarity information across data-sets to the

PIE images.

an image of the same celebrity while C indexed one of the

images from the set E . For PIE experiments, we used 10

sets of PIE people in a paradigm identical to the Celebrity

Images.

Celebrity Morphs: Each morph image was generated

from two celebrity images and the triplets, [A,B, C] were

generated such that A corresponded to the morphed image,

B to an image of a celebrity from which the morph was gen-

erated, and C an image from E . We used morphs and their

associated celebrities for training and the rest of the images

for testing.

5.2. Assessing Map Performance: Rank

How should we measure performance before and after

the perceptual mapping(s)? Since the learned map M can

scale the space arbitrarily, a Euclidean distance metric is

not appropriate. We chose instead to measure performance

using the rank between images. The rank r between two

images is the number of images in between two images.

Consider a set of N face images. Let nc
i indicate that image

i is of celebrity c. Finally let M c be the number of images

of celebrity c in the set N . We can measure the average rank

of celebrity c as:

rc =
1

M c(M c − 1) × N

∑

i,j∈c,i�=j

rank(�nc
i , �n

c
j) (8)

5.3. Assessing Map Performance: Closest

We would also like to quantify the performance of the

perceptual ratings obtained from humans. This is a bit trick-

ier thank using the rank distance. We proceed as follows.

For each image A, find the 10% closest L2 distance images.

Now consider all triplets of the form [A,B, C]. Calculate

the percentage of times B is in the set of closest images.

The higher this percentage, the better the metric space is at

predicted perceptual judgements. By chance we would ex-

pect on average 10% of triplets to have an image B in the

top 10% closest images (a perfect map would yield roughly

19%). See Figure 7 for experiments evaluated using this

performance metric.

6. Results

The different collections of data exhibit different statis-

tical variations as shown in Figure 5. Not surprisingly, we

found that a mapping had the highest success when tested

on the same collection as it was trained with (see Figures 7

and 9): the map learned robustness to the statistical varia-

tions within the training data-set which it generalized to the

testing set. Figure 1 shows a nice example of a face-space

generated using perceptual data.

There are several interesting observations from our ex-

periments: (1) Training using the morphed images gen-

erated Face Spaces which predicted user similarity judge-

ments well (although not as well as training on facial sim-

ilarity judgements from subjects). However training using

either the Celebrity or PIE collections did not generalize to

good performance on the human data. The latter two col-

lections exhibit mostly variations in lighting and facial af-

fect and the variability inherent there did not generalize to

facial similarity. (2) Our performance curves, although lev-

eling out, do not seem to have saturated, indicating that by

acquiring more training data we might be able to improve

performance further (see Figures 7 and 9. (3) The Celebrity

collection generalized well to the PIE collection although

the PIE did not generalize well to the Celebrity collection

(Figures 8 and 9). Presumably the PIE collection, which

was obtained in a highly controlled environment, did not

exhibit enough variability to generalize to the other collec-

tions.
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Figure 9. Rank performance of both the Celebrity and PIE collections after training mappings using different data. (Top Row) Rank

performance of the celebrity collection. X-axis: the number of celebrities/PIE individuals/morphs used for training. Y-axis: the rank

performance on the celebrity data-set (lower=bettter). Training with celebrities results in the best performance. Dotted red line is the rank

performance before the mappings are applied. Green line is the performance when we train a mapping using Fisher Linear Discriminants

(see [3]). Fisher seems to yield slightly worse performance when compared to our mapping. Note that increasing the number of individuals

used for training yields better rank performance as the mapping over-fits less and generalizes more. (Bottom Row) Same but measuring

rank performance on the PIE data-set. Training on PIE individuals results in the best performance. For both the top and bottom row,

training on the same data-set as one tests on yields the best performance. Training using morph images seems to create good mappings for

both PIE and Celebrity collections. Note that we create distinct train/test sets for all experiments (see Section 5.1). All results averaged 25

times.

7. Discussion

We have shown how to construct and evaluate facial

similarity spaces which mimic human perceptual judge-

ments on real data. In addition we show the flexibility

of the approach: training the mapping with different data-

collections results in different Face Spaces. This work takes

the first steps towards creating metrics and mappings for

faces which correspond to human perceptual judgements.
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