Supplemental Online Material for

A Default Approach Bias Following Human Amygdala Lesions

Laura A. Harrison, Rene Hurlemann, and Ralph Adolphs

Address for correspondence:
Laura A. Harrison
California Institute of Technology
Division of Engineering and Applied Sciences
Computation and Neural Systems
MC 136-93
Pasadena, CA 91125, United States of America
E-mail: lauraharrison@caltech.edu
Tel: (626) 395-3898

DS1
Methods

Figure S1. Anatomical MRI scans of the patients’ amygdala lesions. Displayed are 1mm isotropic T1-weighted magnetic resonance imaging coronal sections of the patients’ anterior medial temporal lobes. Red arrows highlight AP, AM, and BG’s focal bilateral amygdala calcification damage. Images obtained at 3T in the Caltech Brain Imaging Center at the specified timepoints. R: right.
Figure S2. 95% CI interval of mean rescaled German (red) and American (blue) threat (left) and trust (right) ratings for whole (top) and occluded (middle) faces, and for occluded minus whole scores.
Results

Figure S3. Amygdala lesion patients’ deviations from normal judgments of approachability (top) and trustworthiness (bottom) of 100 faces (circles; y-axis). Units are standard deviations of the normal control ratings. Stimuli are rank-ordered on the x-axis according to the ratings normal controls gave them. SM demonstrated a specific exaggerated impairment in her ratings of the faces rated least approachable or trustworthy by controls, but also displayed a global positive deviation from norms’ ratings for nearly all faces. SM’s panels recreated with data from Figure 2 of Adolphs, Tranel, and Damasio, *Nature*, 1998.