Photon gating in four-dimensional ultrafast electron microscopy

Mohammed T. Hassan, Haihua Liu, John Spencer Baskin, and Ahmed H. Zewail

Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125

Contributed by Ahmed H. Zewail, September 9, 2015 (sent for review August 24, 2015; reviewed by Andrea Cavalleri and Chong-Yu Ruan)

Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanostructural scale dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon–electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a “single” light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a “second” optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM.

Photon-induced near-field electron microscopy | attosecond electron microscopy | optical-gated electron pulse | time-resolved PINEM | photon–electron gating

In ultrafast electron microscopy (UEM) (1–3), electrons generated by photoemission at the cathode of a transmission electron microscope are accelerated down the microscope column to probe the dynamic evolution of a specimen initiated by an ultrafast light pulse. The use of femtosecond lasers to generate the electron probe and excite the specimen has made it possible to achieve temporal resolution on the femtosecond time scale, as determined by the cross-correlation of the optical and electron pulses. One important method in the UEM repertoire is photon-induced near-field electron microscopy (PINEM) (4, 5), in which the dynamic response detected by the electron probe is the pump-induced charge density redistribution in nanoscale specimens (6).

Photon–electron coupling is the basic building block of PINEM, which takes place in the presence of nanostructures when the energy-momentum conservation condition is satisfied (4, 5). This coupling leads to inelastic gain/loss of photon quanta by electrons in the electron packet, which can be resolved in the electron energy spectrum (5, 7, 8). This spectrum consists of discrete peaks, spatially separated by multiples of the photon energy (hνo), on the higher and lower energy sides of the zero loss peak (ZLP) (4) (Fig. 1). The development of PINEM enables the visualization of the spatiotemporal dielectric response of nanostructures (9), visualization of plasmonic fields (4, 5) and their spatial interferences (10), imaging of low atomic number nanoscale materials (11), characterization of ultrashort electron packets (12, 13), and imaging of different biological structures (14).

As shown by Park et al. (5), the PINEM intensity (IPINEM) is given by the square modulus of the field integral $F_0$ (i.e., $I_{PINEM} \propto |F_0|^2$), in the weak interaction limit. The near field of a nanoparticle leads to the scattering of the electron packet, which can be treated rigorously using the Schrödinger equation/Mie scattering theory. It follows that PINEM images the object and displays its field characteristics depending on its shape, the polarization and wavelength of optical excitation, and the width of pulses used. For a spherical nanoparticle, the field integral at point $(x, y)$ in the specimen plane is simplified to give (6)

$$F_0 \approx -i\varepsilon_0 \cos \phi x_s 2 \pi s^3 (\Delta k)^2 K(\Delta b),$$

where $\varepsilon_0$ is the electric field amplitude of the incident light, $\phi$ the light polarization angle, $a$ the particle radius, $b = \sqrt{x^2 + y^2}$ the impact parameter, $K$ the modified Bessel function of the second type, $\Delta k$ the momentum change of the electron, and $\chi_s = (3(e - 1)/(e + 2))$, where $\chi_s$ is the material susceptibility and $e$ the dielectric function.

In previous studies of the parameters in Eq. 1, only $\varepsilon_0$ was time dependent. The PINEM intensity, at a given point in space, was a function only of the time delay between the optical and electron pulses, providing, for the pulse lengths currently used, a cross-correlation profile when this delay was scanned across the time of temporal coincidence, or $t = 0$ (4, 5, 9, 13). Hitherto, PINEM has not been used to study the ultrafast dynamics of matter. Here, we follow the strategy of using the PINEM gain electrons generated by a first optical pulse, whose delay relative to the electron pulse is maintained at $t = 0$, to probe dynamics initiated by introduction of a second optical pulse on the specimen, as proposed theoretically in ref. 15. By this approach, we were able to optically gate the electron pulse (i.e., create an electron pulse that only lasts for the duration of the optical pulse).

**Significance**

In this contribution, we demonstrate a unique concept in the use of photon-induced near-field electron microscopy—combining one electron pulse and two optical pulses—as a probe for ultrafast dynamics of matter in electron microscopy. Photon–electron coupling permits the use of a short optical pulse to gate the electron pulse, which is serving as a probe of the ultrafast dynamics triggered by another optical pulse. This technique provides the high spatial and temporal resolution of the electron pulse and optical laser pulses, respectively, both in ultrafast electron microscopy (UEM) measurements. This development paves the way for numerous studies in imaging of matter not only with few femtosecond resolution but also with the potential for attosecond imaging in UEM.

Author contributions: M.T.H., H.L., J.S.B., and A.H.Z. designed research, performed research, contributed new reagents/analytic tools, analyzed data, and wrote the paper.

Reviewers: A.C., Max Planck Institute; and C.-Y.R., Michigan State University.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

1To whom correspondence should be addressed. Email: zewail@caltech.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517942112/-/DCSupplemental.
and achieve significant enhancement of the temporal resolution (see the second paragraph below).

The concept of the experiment is illustrated by Fig. 1A, in which the electron pulse in blue and one optical pulse ($P_1$) in red are shown arriving at the specimen plane simultaneously. Interaction between photon and electron in the presence of the specimen "slices out" the light blue pulse of gain electrons, which are separated from all other electrons by energy dispersion or

![Concept of photon gating in 4D electron microscopy.](image)

**Fig. 1.** Concept of photon gating in 4D electron microscopy. (A) The microscope column with one electron (dark blue) and two optical (red) pulses focused onto the specimen. The wavefunctions of the three pulses are schematically shown at the top. One optical pulse is coincident with the electron pulse at the specimen to generate a PINEM signal. The resulting light blue PINEM pulse is sliced out from other electrons for detection as an energy spectrum, an image, or a diffraction signal (see the text). The second optical pulse initiates the dynamics to be probed. (B) Electron energy spectrum generated at the specimen plane when optical and electron pulses arrive simultaneously. The gain energy range is shaded light blue. (C) Illustration for the temporal pulse sequence, two optical and one electron pulse for ultrafast time-resolved PINEM measurements.

![Experimental arrangement of optical gating in UEM.](image)

**Fig. 2.** Experimental arrangement of optical gating in UEM. (A) IR $300 \pm 50$-fs laser pulses ($\lambda \sim 1,039$ nm) are frequency doubled to generate visible laser pulses ($\sim 519$ nm). UV laser pulses ($\lambda \sim 259$ nm) are obtained by a second harmonic generation of the visible laser pulses and directed to the photoemissive cathode inside the microscope to generate ultrafast electron pulses. The visible laser beam is divided into two optical pulse trains. The delays between the two optical pulses and electron pulse $(\tau_1, \tau_2)$ are controlled by linear delay stages. These optical pulses are recombined and focused onto the specimen in the microscope and the electron energy spectrum is acquired by electron energy spectrometer. (B) Time axis showing passage of pulses through the specimen plane and the delays $(\tau_1, \tau_2)$ between the pulses.
filtering to be detected according to microscope settings in spectroscopy, imaging, or diffraction mode, as illustrated schematically at the bottom of the column. Note, it is possible to obtain PINEM diffraction, but this is not the subject of this paper. A second, or pump, optical pulse \( P_2 \) is shown below the specimen, having already triggered the dynamics of interest. A series of time axes is plotted in Fig. 1C showing examples of characteristic sequences of pulse arrival times at the specimen plane during the experiment, with the pump arrival defining the zero of time.

A striking feature of this technique that was alluded to above is the potential for high temporal resolution, unlimited by the electron pulse duration, because the optical pulse acts as a temporal gate for a longer electron pulse. In the weak interaction limit, the duration of the pulse of PINEM electrons emulates that of the optical pulse that created it (15), as clearly shown in Fig. 1A. When these photon-gated electrons are used to probe dynamics triggered by a second ultrafast optical pulse, the time resolution is determined by the cross-correlation of the two optical pulses. This paves the way for the realization of attosecond electron microscopy, as done in all-optical spectroscopy (16) but with the spatial resolution being that of atomic motions. As suggested in Fig. 1A, we envisage the use of the photon-gated electron pulses, in imaging or in diffraction mode, for the study of a variety of optically initiated material processes, either of the nanostructure or its surrounding media.

The PINEM signal can be directly monitored to detect changes in any of the specimen optical or physical properties expressed in Eq. 1. Here, we demonstrate the use of the time-resolved PINEM technique where it is shown that the photoinduced dielectric response of VO\(_2\)—which is strongly related to the lattice symmetry (17)—manifests itself in a change in PINEM intensity. We relate the changes in optical properties of the polycrystalline VO\(_2\) nanoparticles to the phase transition dynamics from initial (monoclinic) insulator phase to (tetragonal) metal phase, the subject of numerous previous studies.

Vanadium dioxide has been discussed as an active metamaterial (18) and one of the best candidates for solid-state ultrafast optical switches in photonics applications (19, 20) due to its unique structural photoinduced phase transition behavior (21). This phase transition has been examined by investigating the change in the heat capacity through thermal excitation (22, 23), whereas its ultrafast dynamics has been studied by optical spectroscopy (24, 25), THz spectroscopy (26, 27), X-ray diffraction (28, 29), ultrafast electron crystallography (30), and electron microscopy (31).

**Experiment and Methods**

In our experimental setup, as shown in Fig. 2A, infrared (300 ± 50 fs) laser pulses (\( \lambda \sim 1,039 \text{ nm, } 100\text{-kHz repetition rate} \)) were frequency doubled and visible laser pulses with photon energy \( (\hbar \omega) \sim 2.4 \text{ eV} \) were generated. The visible laser beam propagates through a second harmonic generation crystal to generate UV laser pulses (\( \sim 259 \text{ nm} \)). These UV pulses were directed to the photoemissive cathode to generate ultrafast electron pulses, which are accelerated (200 keV) in the electron microscope column. The microscope is equipped with an electron energy spectrometer for measurements of the electron energy spectrum of the electron pulses after their passage through the specimen. The experiment is conducted in the single-electron regime (2, 32) to reduce the space-charge effect and to attain high electron spectral and temporal resolutions. The visible laser beam was divided by another beamsplitter into two optical laser pulses \( P_1 \) and \( P_2 \). The delays \( (\tau_1, \tau_2) \) between \( (P_1, P_2) \) and the electron pulse are controlled by two linear stages. Later, these two optical pulses \( P_1 \) and \( P_2 \) were recombined and focused onto

---

**Fig. 3.** Ultrafast optical gating and PINEM of vanadium dioxide nanoparticles. (A) PINEM spectrum at \( \tau_1 = 0 \text{ fs} \), which consists of discrete peaks on the higher and lower energy sides of the ZLP separated by multiple photon-energy quanta (\( \sim 2.4 \text{ eV} \)). The shaded curve presents the normalized ZLP measured at \( \tau_1 = 1,000 \text{ fs} \). (B) PINEM spectrogram of photon–electron coupling of the first optical and electron pulse as a function of the first optical pulse delay (\( \tau_1 \)). The ZLP area between −1.5 and 1.5 eV has been reduced for visualization of the adjacent discrete peaks. Optical gating is clearly manifested in the narrow red strip corresponding to the width of the optical pulse (210 ± 35 fs; see Results and Discussion) shown in red in the vertical plane on the right, which is superimposed on the ultrafast electron pulse (1,000 fs) in blue.
The change of the PINEM spectrum intensity, which is obtained by the coupling between the first optical ($P_1$) and electron pulses onto the nanoparticles, as a function of the second optical pulse (pump) delay ($τ_2$), where the data points present the integration of the PINEM spectrum shown in Fig. 3A at time ($τ_1$). This dynamics curve represents the average of 10 data sets recorded under identical conditions. The biexponential fitting is shown in the red line. ($B$ and $C$) Electron diffraction patterns of the same sample at two different delay times $τ_2 = 50$ ps, and $+500$ ps, respectively. The diffraction pattern at $τ_2 = 50$ ps in $B$ shows Bragg spots (1–4) which are assigned to the monoclinic (low-temperature) phase of VO$_2$ (35). At $τ_2 = +500$ ps, these Bragg spots disappear after the pump pulse as shown in $C$, which indicates the phase transition to the tetragonal (rutile) phase. The Bragg spot 5 in $B$ and $C$ belongs to the graphene substrate, and shows no change at the two delay times. ($D$) The decay in the Bragg spot 2 intensity as a function of the pump laser pulse delay time ($τ_2$). The biexponential fit is presented by the red line.

**Results and Discussion**

In preparation for the pump-probe PINEM experiments, the first optical pulse ($P_1$), with fluence of 1.3 mJ/cm$^2$, was directed onto the specimen of VO$_2$ nanoparticles (diameter $∼$200 nm; see Supporting Information, section S1, Fig. S1A) and the electron energy spectrum was measured as a function of time delay ($τ_1$) to determine the temporal overlap at which the PINEM coupling is maximized ($τ_1 = 0$ fs). The acquired “PINEM spectrogram” is shown in Fig. 3B. At $τ_1 = 0$ fs, the electron energy spectrum (red line, Fig. 3A) carries the signature of photon–electron coupling. It consists of discrete peaks at integer multiples of the 2.4-eV photons on both sides of the ZLP, which is shown as a shaded area in Fig. 3A, measured at $τ_1 = 1,000$ fs. The PINEM image of the sample can be obtained by energy filtering of the electrons that have only gained photon quanta (Supporting Information, section S1, Fig. S1B).

Henceforth, the first optical (gating) pulse ($P_1$) is preserved at spatiotemporal overlap ($τ_1 = 0$ fs). Then, the second optical pulse ($P_2$) (pump pulse), with fluence 5.7 mJ/cm$^2$, has been used to induce the phase transition in the VO$_2$ nanoparticles. The PINEM spectrum, generated by the coupling of $P_1$ and electron pulses (Fig. 3A), was measured as a function of the second optical (pump) pulse delay ($τ_2$). The change of the PINEM spectrum intensity due to the photoinduced insulator–metal phase transition is traced and shown in Fig. 4A, where the data points present the integration of the PINEM spectrum at each delay time ($τ_2$). The data points acquired from $τ_2 = -1$ to 1 ps have been excluded due to the contribution of the PINEM spectrum generated by the coupling of the second optical pulse ($P_2$) and the electron pulse, which is not relevant to the phase transition measurement.

Additional tests of gating were made by replacing $P_2$ with a 3.6-eV UV pulse. Consistent with the expected gating, we detected a new PINEM band at 6 eV, which is the sum of the $P_1$ and UV photon energies, indicating that $P_1$ is slicing or gating the electron pulse for interaction with the UV pulse (see Fig. 1). We also have interferometry measurements on the optical pulses used in the vanadium dioxide study and find, from a preliminary analysis, including chirp, that the pulse length did not exceed 210 fs. Experiments on silver and ZnO nanowires are in progress to accurately determine the temporal response.

The change in PINEM intensity (Fig. 4A) reflects the dielectric response of VO$_2$ during the phase transition process (Eq. 1). For negative time delay (before arrival of the pump pulse), the PINEM spectrum intensity remains unchanged, whereas after the pump pulse, the phase transition of the VO$_2$ nanoparticles takes place, and consequently the dielectric properties (17) of the nanoparticles change owing to the change of the lattice structure during the phase transition. The result is the decay of PINEM intensity after $τ_2 = 0$ ps that is significant at 20 ps, followed by a slow decay lasting hundreds of picoseconds to about the specimen inside the microscope. The general case of arbitrary times of arrival of the two optical pulses at the specimen relative to that of the electron pulses is illustrated on the time axis of Fig. 2A.

**Fig. 4.** Phase transition in vanadium dioxide nanoparticles. (A) The change of the PINEM spectrum intensity, which is obtained by the coupling between the first optical ($P_1$) and electron pulses onto the nanoparticles, as a function of the second optical pulse (pump) delay ($τ_2$), where the data points present the integration of the PINEM spectrum shown in Fig. 3A at time ($τ_1$). This dynamics curve represents the average of 10 data sets recorded under identical conditions. The biexponential fitting is shown in the red line. (B and C) Electron diffraction patterns of the same sample at two different delay times $τ_2 = 50$ ps, and $+500$ ps, respectively. The diffraction pattern at $τ_2 = 50$ ps in B shows Bragg spots (1–4) which are assigned to the monoclinic (low-temperature) phase of VO$_2$ (35). At $τ_2 = +500$ ps, these Bragg spots disappear after the pump pulse as shown in C, which indicates the phase transition to the tetragonal (rutile) phase. The Bragg spot 5 in B and C belongs to the graphene substrate, and shows no change at the two delay times. (D) The decay in the Bragg spot 2 intensity as a function of the pump laser pulse delay time ($τ_2$). The biexponential fit is presented by the red line.

**Fig. 5.** Fluence dependence of PINEM intensity for the phase transition of vanadium dioxide. Shown are the PINEM intensity change as a function of the excitation fluence at two different delay times of the pump pulse: $τ_2 = -10$ ps, which is depicted in blue points, and $τ_2 = +500$ ps, which is shown as red points. The blue dashed line and solid black line are guidelines. The data points present the average integration of five PINEM spectra at the corresponding fluence. The decrease in the PINEM intensity at $τ_2 = +500$ ps shows the phase transition occurs around a threshold of 2 mJ/cm$^2$ and increases with fluence (see the text).
1% total change in PINEM intensity. A biexponential fitting of the PINEM intensity change (red line, Fig. 4A) reveals two time constants: first, an ultrafast dynamic (occurring within 10 ps), which is attributed to vanadium atom motion within the unit cell; second, a slower dynamic on the order of ~170 ps, which is attributed to long-range shear rearrangement essential in the rutile phase transformation process. These two distinct processes (30, 32) can be described by an energy landscape (34) as illustrated by Cavalleri (34).

To ensure that the dynamic change of the PINEM intensity, as retrieved from the time-resolved PINEM measurements in Fig. 4A, is related to the dynamics of the photoinduced phase transition in VO₂ nanoparticles, we have conducted time-resolved electron diffraction experiments on the same specimen, under the same condition, but with the diffraction pattern being recorded as a function of the second optical (pump) pulse delay (τ₂). The electron diffraction patterns at two different delay times (τ₂ = 50 and 500 ps) are shown in Fig. 4B and C, respectively. The diffraction pattern at the negative delay time (τ₂ = -50 ps) shows the Bragg spots 1, 2, 3, and 4, which persist only in the monoclinic (low-temperature) phase of VO₂ (35), and Bragg spot 5, which belongs to the graphene substrate. After the pump pulse (τ₂ = 500 ps), Bragg spots 1, 2, 3, and 4 disappear, which indicates a phase transition of VO₂ from the monoclinic to the tetragonal (rutile) phase, whereas the Bragg spot 5 intensity remains unchanged, indicating that the graphene substrate does not have influence on the measured dynamics depicted in Fig. 3D (see the Supporting Information, section S2).

To investigate the phase transition dynamics, we have traced the intensity change of Bragg spot 2 as it evolves with time (delay τ₂), which is shown in Fig. 4D. A fit of this intensity decay (red line, Fig. 4D) again reveals two time constants, here on the order of 10 and 140 ps. The pattern indicates a dynamic behavior comparable to that observed in the time-resolved PINEM measurement in Fig. 4A and quite similar to results from previous study in this laboratory (30). The results suggest that the photoinduced dielectric response of VO₂ is dominated by its atomic unit cell and lattice arrangements in the phase transition process. With the reported PINEM technique, we have also studied the excitation fluence dependence of the phase transition in the nanoparticles studied. The first optical pulse (P₀) (1.3 mJ/cm²) has been set at τ₀ = 0 ps, with two settings of the second optical (pump) pulse (P₂) at τ₂ = -10 ps and +500 ps, respectively, then the change in the intensity of the PINEM spectrum (generated by the coupling of P₀ and electron pulses, Fig. 3A) as a function of the excitation pulse fluence was measured at these two time delays. When probing after the pump laser pulse for τ₂ = 500 ps, the PINEM intensity remains unchanged until reaching a certain fluence threshold value near 2 mJ/cm², above which the phase transition of the system ensues, with increase in the change, as shown in the red data points and the black guideline in Fig. 5. The low fluence threshold is consistent with the recent study of the same crystalline structure system (36). (More details can be found in Supporting Information, section S3.)

In conclusion, we have demonstrated a UEM variant, using PINEM probing, but with two optical pulses (instead of one), thus enabling four-dimensional (4D) imaging of dynamics and with optically gated electron pulses. The technique was demonstrated using the nanoscale insulator–metal phase transition of vanadium dioxide. It should now be possible to map dynamics of structures, dielectric response, and charge carriers in other strongly correlated materials. Moreover, this demonstration of using the optical gating of ultrashort electron pulses promises to attain overall temporal resolution in UEM of few femtoseconds and possibly attoseconds for 4D imaging; here, we achieved 3x improvement in temporal resolution by the optical pulses available in our UEM-2.

ACKNOWLEDGMENTS. We thank Dr. S. T. Park for very helpful discussion and Dr. B.-K. Yoo for his help in the initial studies of photon-induced near-field electron microscopy (PINEM) on ZnO nanowires. This work was supported by the National Science Foundation Grant DMR-0964886 and the Air Force Office of Scientific Research Grant FA9550-11-1-0055S for research conducted at The Gordon and Betty Moore Center for Physical Biology at the California Institute of Technology.