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on a Calabi-Yau 3-fold and the topological A-model on the same manifold. This duality

was conjectured recently by Iqbal, Nekrasov, Okounkov, and Vafa. We deduce it from

the S-duality of the IIB superstring. We also argue that the mirror version of this duality

relates the topological B-model on a Calabi-Yau 3-fold and a topological sector of the Type

IIA Little String Theory on the same manifold.
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1. Introduction

Recently an interesting connection has been found between Gromov-Witten invariants of

a Calabi-Yau 3-fold X and a topologically twisted noncommutative U(1) gauge theory on

X [1]. The connection is that the generating function of the Gromov-Witten invariants

(in other words, the all-genus partition function of the A-model for X) coincides with the

partition function of the topological U(1) gauge theory. According to ref. [1], the A-model

string coupling λ is related to the theta-angle of the gauge theory as follows:

e−λ = −eiθ . (1.1)

The path integral of the A-model localizes on holomorphic maps (called holomorphic

instantons) from the worldsheet to the target Calabi-Yau X. The weight of a holomorphic

instanton depends on its symplectic area. This theory is “topological” in the sense that

for a fixed symplectic form it does not depend on the choice of a Kähler metric, i.e. it is

a symplectic invariant. On the other hand, the path-integral of the gauge theory localizes

on solutions of the hermitean Yang-Mills equations (HYM) deformed by terms depending

on scalars. In a U(1) gauge theory, these equations do not have interesting nonsingular

solutions, but if one makes X noncommutative, nontrivial smooth solutions exist, which

look like four-dimensional instantons wrapping holomorphic curves inX. This gauge theory

is also “topological”, in the sense that its partition function is a symplectic invariant. This

can be made explicit by writing the action of the gauge theory as a sum of

1

2gs

∫

ω ∧ F ∧ F +
iθ

6(2π)3

∫

F ∧ F ∧ F . (1.2)

and BRST-exact terms. Thus the gauge-theory partition function depends only on g−1
s ω

and θ. As mentioned above, θ corresponds to the genus counting parameter of the dual

topological string, while the combination g−1
s ω is mapped by the duality to the symplectic
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form of the A-model. In ref. [1] the coincidence of the A-model partition function and the

gauge-theory partition function has been verified in the limit ω → ∞ (i.e. X is replaced

by flat space), and more generally for arbitrary noncompact toric Calabi-Yau manifolds.

It is not clear how to extend the arguments of ref. [1] to compact Calabi-Yau manifolds.

In ref. [2] the conjecture has been reformulated by replacing solutions of HYM equations

on the noncommutative deformation of X with ideal sheaves on X. This reformulation is

especially useful for compact X, since for such X it is not completely clear what is meant

by a noncommutative deformation of the gauge theory.

Even more recently, it was noted that the duality of ref. [1] should follow from the

S-duality of the Type IIB superstring [3]. In this note we develop further this idea and

propose a simple physical picture explaining the coincidence of the partition functions.

2. Embedding into superstring theory

In order to embed the 6d topological gauge theory into Type IIB string theory, one can

take a single Euclidean D5 brane wrapped on the Calabi-Yau manifold X. This can be

thought of as an instanton in the remaining four noncompact dimensions. The theta-angle

of the gauge theory on the D5-brane is identified with the RR 0-form C0 (which is constant

for the D5-brane solution). It is well-known that the low-energy action of the gauge theory

on the D5 worldvolume is identical to the action of the topological gauge theory in d = 6

obtained by gauge-fixing the action eq. (1.2) [4, 5]. Thus the partition functions of the

two theories coincide. They are both functions of θ and g−1
s ω. To make the gauge theory

noncommutative, one can turn on a flat NS B-field on X, as usual [8, 9].

One may ask about the significance of the partition function of the D5 brane from the

point of view of the effective field theory in four dimensions. Type IIB superstring com-

pactified on X gives rise to N = 2 supergravity which contains h2,1(X) vector multiplets,

h1,1 + 1 hypermultiplets, and the gravity multiplet. Out of h1,1 + 1 hypermultiplets, the

first h1,1 come from the Kähler moduli of X and their superpartners. The last one, called

the universal hypermultiplet, contains the dilaton, the dual of the NS B-field (the axion),

the RR 0-form C0, and the dual of the RR 2-form C2. These modes are constant along X,

i.e. they come from h0,0(X).

There are two kinds of F-terms in N = 2 supergravity: the ones depending only on

the vector multiplets and the gravity multiplet (the latter is described by a chiral Weyl

superfield), and the ones depending only on the hypermultiplets. Since the dilaton sits in

a hypermultiplet, the former F-term cannot receive quantum corrections and is tree-level

exact. In fact it can be computed in terms of the all-order partition function of the B-

model on X [6, 7], where the genus expansion of the B-model corresponds to the expansion

of the F-terms in powers of the Weyl superfield. On the other hand, the hypermultiplet

F-terms can receive corrections, both perturbative and nonperturbative. Nonperturbative

corrections come from Euclidean D-branes or NS5-branes wrapping X. One expects that

the contribution of the D5-instanton to the F-terms is proportional to the D5 partition

function.
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3. The derivation of the duality

The main object of interest will be the partition function of Type IIB string theory in a

background with a D5-brane instanton, in the limit when the string coupling gs goes to

zero. Closed-string degrees of freedom decouple in this limit and can be regarded as a

fixed classical background. On the other hand, the effective coupling of the gauge theory

on the D5-brane is ω/gs, so we will also let ω go to zero, with the ratio ω/gs fixed.

The limit ω → 0 is the opposite of the zero-slope limit, where the 6d super-Yang-Mills

action is applicable. However, we will argue below, using S-duality and supersymmetric

nonrenormalization theorems, that higher-derivative terms in the D5-brane action do not

contribute to the partition function, so in the limit we are considering the open-string

partition function coincides with the partition function of the topological gauge theory

with an action eq. (1.2).

We now propose a different way to compute the same partition function. First we

perform S-duality which turns the D5-brane into an NS5-brane wrapped on the same

Calabi-Yau. From the point of view of N = 2 supergravity, the D5-instanton is a singular

field configuration involving the fields of the universal hypermultiplet. After S-duality, the

situation is slightly better: the field configuration corresponding to the NS5-brane instanton

is nonsingular, because of the famous “throat behavior” of the metric, but the dilaton

grows without bound as one goes down the throat. Therefore we compactify one direction

transverse to the NS5-brane and perform a further T-duality on it. This transformation

turns the NS5-brane into a Kaluza-Klein monopole. In other words, we end up with Type

IIA string theory on the direct product of X and the Taub-NUT space Y .1 After T-duality

the string coupling becomes constant (and large). It is also important to determine the

mapping of the RR 0-form. It is easy to check that a constant RR 0-form is mapped by S

and T-dualities to the RR 1-form C1 with an anti-self-dual field-strength. Explicitly, it is

given by

C1 = aV −1(dt+ ωidx
i) .

Here V = 1 + 1/r is a harmonic function on R3 which appears in the Gibbons-Hawking

ansatz for the metric, and ωi satisfies curl ~ω = grad V . This is a unique U(1) instanton on

the Taub-NUT space. The overall factor a parametrizes the asymptotic Wilson loop of C1

in the t-direction. S and T-dualities identify

a = C0

(

1

g2
s

+ C2
0

)−1

,

where C0 is the asymptotic value of the RR 0-form, and gs is the asymptotic string coupling

in the original Type IIB background.

1If C0 6= 0, then this statement is precisely true only in the limit gs → 0. For general gs the Type IIA

geometry is a warped product, i.e. one has a fiber bundle with fiber X, such that the metric restricted to

any fiber is conformally related to a fixed Calabi-Yau metric, and the conformal factor depends on the base

coordinates. We are interested in the limit where C0 is fixed and gs goes to zero. In this limit there is no

warping (the conformal factor becomes constant).
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Now note that C1 in Type IIA superstring compactification is the graviphoton. Thus

the composition of S and T dualities maps the D5 instanton to a smooth four-dimensional

Type IIA background with an anti-self-dual (ASD) metric (the Taub-NUT metric) and an

ASD graviphoton field-strength. The partition function of this background is the exponen-

tial of the quantum effective action of the N = 2 d = 4 supergravity.

The full supergravity action is known only to leading order in the derivative expansion.

However, for anti-self-dual metric and the anti-self-dual graviphoton the exact action can

be expressed in terms of the partition function of the topological A-model of the Calabi-

Yau [6, 7], at least if one restricts to terms polynomial in the curvatures. Namely, for Type

IIA theory, only gravitational F-terms of the form
∫

R− ∧R−(g̃
2
sF−)

2g−2d4x (3.1)

contribute. Here R− is the ASD part of the Riemann tensor (in the string frame), F−
is the ASD part of F2 = dC1, and g̃s is the Type IIA string coupling. If one passes to

the Einstein frame, then this terms becomes independent of g̃s, and since g̃s sits in the

universal hypermultiplet, which cannot appear in gravitational F-terms, we see that the

coefficient of this term should be g̃s-independent. This result follows from constraints of

supersymmetry, and therefore is valid nonperturbatively. This is very important for us,

since we are interested in the limit gs → 0, which corresponds to the Type IIA string

coupling

g̃s = gs

(

1

g2
s

+ C2
0

)

going to infinity.

According to refs. [6, 7], the coefficient of the F-term eq. (3.1) is proportional to Fg, the

genus-g partition function of the A-model on X. For our purposes, the precise coefficient

will not be very important. What is important is that F− ∼ a, and therefore the F-term

eq. (3.1) is proportional to

(g̃2
sF−)

2g−2 ∼ (g̃2
sa)

2g−2 =
(

C0

(

1 + g2
sC

2
0

))2g−2
.

Therefore in the limit gs → 0 the expansion of the Type IIA free energy in powers of g̃2
sF−

is the same as the expansion of the D5-brane free energy in powers of C0.

The string partition function Fg is a function of the Kähler form ω̃ of X. We can relate

it to the Kähler form before S and T-dualities. Under S-duality the Calabi-Yau metric gets

multiplied by
√

1

g2
s

+ C2
0 ,

while under T-duality in a transverse direction it remains unchanged. Thus the Type IIA

Kähler form ω̃ is related to the Kähler form ω in the original set-up (with a D5-brane) by

ω̃ =
ω

gs

√

1 + g2
sC

2
0 .

In the limit gs → 0, ω → 0 the Type IIA Kähler form ω̃ tends to a definite limit g−1
s ω,

which is precisely the effective coupling of the topological gauge theory.

– 4 –



J
H
E
P
0
9
(
2
0
0
4
)
0
3
4

Now we equate the C0-dependent terms in the free energy of the original Type IIB

background (with a D5-brane wrapped onX) and the free energy of the effective field theory

obtained by compactifying Type IIA string on X and turning on R− and F−. Taking into

account the identifications of the parameters of the Type IIA and Type IIB backgrounds,

we come to the following conclusion. Let θ0 be the value of the θ-angle on the D5-brane

for vanishing C0. (It is usually assumed that θ0 = 0, but we will allow for a more general

possibility). Let us expand the free energy of the topological gauge theory on X in powers

of θ − θ0, where θ0 is the value of the θ-angle for vanishing C0:

logZD5 =
∞
∑

g=1

(θ − θ0)
2g−2Rg .

The coefficients Rg are functions of g−1
s ω. Then for g > 1 we must have

Rg

(

ω

gs

)

= b(g)Fg(ω̃) ,

where ω̃ = g−1
s ω, and bg is some g-dependent number.

Note that we only compared C0-dependent parts of the free energies. This is the reason

we restricted the range of g to g > 1. Thus in essence we are comparing the contributions

to the free energy which are nonperturbative from the gauge theory viewpoint.

It remains to argue that the partition function of the D5-brane can be computed using

the topological gauge theory with the action eq. (1.2). First of all, we expect that quantum

corrections contribute only to the BRST exact terms and can be ignored. As for stringy

tree-level corrections, they are of order g−1
s , but have fewer powers of ω than the first term

in eq. (1.2) (the net power of ω can be negative). In the limit we are considering, such

terms would blow up, and then Rg would not have a well-defined limit. On the other

hand, Fg(ω̃) does have a well-defined limit, which means that higher-derivative terms may

contribute only to the BRST-exact terms in the gauge theory action.

One can determine the numerical coefficients bg, as well as θ0, by computing both Rg

and Fg in some particular case and comparing them. In ref. [1] this has been done for

X = C3, and it was found that the topological string coupling and the θ-angle are related

by eq. (1.1). This means that

Rg = (−1)g−1Fg , θ0 = π .

This seems to suggest that for vanishing C0 the theta-angle of the D5-brane theory is π,

rather than 0. Note that θ = π does not break parity-invariance of the worldvolume theory,

so there is no obvious contradiction here.

4. Discussion

We showed that S-duality of Type IIB string theory implies the conjecture of ref. [1].

An interesting question is the role of noncommutativity of the D5 worldvolume. In the

gauge theory computation, it serves as a regulator which gives U(1) instantons (i.e. D-

strings) finite size. From the string theory viewpoint, noncommutativity comes from the
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NS B-field [8, 9]. From the viewpoint of the worldvolume theory of the D-strings, it

is a Fayet-Iliopoulos term which lifts the Coulomb branch on the D-string worldvolume

theory. Ordinarily, this Coulomb branch describes the motion of D-strings in the directions

transverse to the D5-brane. Thus turning on noncommutativity makes D-strings “stick” to

the D5-brane. Upon S-duality, the NS B-field turns into a (flat) RR 2-form C2. Thus one

expects that a flat C2 makes the F-strings “stick” to the Type IIB NS5-brane. This may

seem strange, since flat RR fields usually do not have any effect on F-strings. However, this

is only true for vanishing NS field H3. In general, C2 ∧H3 serves as a source for the RR

5-form flux F5 = dC4, which can affect F-strings. It would be interesting to understand

this effect in detail. Here we only make the following simple observation: the fact that flat

B-field gives D-strings a finite size can be explained after S-duality in terms of the Myers

effect [10, 11]. Namely, the RR 5-form flux makes F-strings expand into D3-branes stuck

to the D5 worldvolume. It appears that this effect is responsible for the “sticking” of the

F-strings to the NS5 worldvolume.

Another interesting topic is the mirror version of this duality. This issue has been

raised and discussed in ref. [3]. We would like to point out that the answer to this ques-

tion is essentially contained in a paper by Dijkgraaf, Verlinde, and Vonk [12]. The mirror

statement is that the all-order B-model partition function on X computes the partition

function of the Type IIA NS5-brane wrapped on X. The topological string coupling is

dual to the expectation value of the RR 3-form on X (which is proportional to the holo-

morphic 3-form on X). The derivation of this duality in ref. [12] is almost the same

as above: one starts with a Type IIA NS5-brane on X, performs T-duality, and ends

up with a IIB Kaluza-Klein monopole wrapped on X. Then one identifies the gravita-

tional F-terms in Type IIB string evaluated on a Kaluza-Klein monopole with the free

energy of the Type IIA NS5-brane. One difference with the above derivation is that

one does not have to appeal to S-duality. Another difference is that we have no inde-

pendent way of computing the quantum partition function of the Type IIA NS5-brane.

Type IIA NS5-brane in the limit g̃s → 0 is described by Little String Theory, which

loosely speaking describes self-dual strings. The results of ref. [12] show that the topo-

logical sector of the Little String Theory is equivalent to the topological string theory of

type B.

Nekrasov, Ooguri, and Vafa proposed [3] that the B-model partition function of X

is dual to the partition function which “counts” special lagrangian submanifolds in X.

According to this conjecture, the topological string coupling is dual to the expectation

value of the RR 3-form. Thus this proposal seems to be closely related to the results of

ref. [12] relating Type IIA LST on X and the B-model on X. One may speculate that the

Type IIA LST admits some sort of BPS membranes, which can be thought of as Euclidean

D2-branes stuck to the NS5 worldvolume, and that the path-integral of the LST localizes

on Euclidean membranes wrapping special lagrangian 3-cycles in X. By analogy with the

case of D5-branes, one expects that such BPS membranes exist as nonsingular solutions

after one regularizes the LST, by turning on a suitable flat RR form (the analogue of the

B-field). Since X is simply connected, the only candidate RR form is the 3-form C3. It

would be very interesting to prove or disprove these conjectures.
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