Information about Regge-Pole Couplings from Vector-Meson Production

LORELLA JONES
California Institute of Technology, Pasadena, California
(Received 24 April 1967; revised manuscript received 11 August 1967)

EXPERIMENTAL density matrices of the vector mesons and isobars produced in reactions of the form \(\pi B \rightarrow V B \) and \(\pi B \rightarrow V \Delta \) are compared with predictions obtained by assuming particular couplings at the Regge-baryon-baryon vertex. Couplings are classified according to the total angular momentum \(J \) (orbital combined with intrinsic) of the Regge trajectory relative to the incident nucleon in the direct channel. For the \(\pi B \rightarrow V \Delta \) case, it is found that the present Regge-pole treatment of unequal-mass kinematics allows one to distinguish between couplings for different \(J \), and that all data are consistent with \(J = 1 \). Data for \(\pi B \rightarrow V B \) charge-exchange reactions are also consistent with \(J = 1 \) dominance.

INTRODUCTION

REGGE-POLE model analysis of reactions in which several of the external particles have spin is complicated by the large number of independent residue functions (limited only by the requirements of factorization and over-all conservation of parity). Hence it is of great interest to find a model which both fits the data and reduces the number of independent \(t \)-channel amplitudes. The first step in this direction was taken by Gottfried and Jackson, who remarked that certain restrictions on couplings due to parity conservation would apply to all exchanged particles with a particular relation between intrinsic parity and spin (e.g., \(P = (-1)^{\frac{s+1}{2}} \) or \(P = (-1)^{s} \)). Since then, a number of persons have studied the residue functions in various models. The work most relevant to the discussion here is a static model bootstrap calculation by Dashen and Frautschi, in which self-consistent couplings of a Regge trajectory and a nucleon to either a meson or a \(\Delta \) were determined. This model predicted that dipole coupling should dominate the Regge-\(N-\Delta \) vertex regardless of the relation between spin and parity for the trajectory; and that spin-flip and non-spin-flip couplings of meson octet trajectories at the Regge-\(V-N \) vertex should appear with a certain \(SU(3) \) \(F-t \)-d ratio.

The purpose of this paper is to compare experimental vector-meson and nucleon isobar density matrices with predictions calculated using various Regge-baryon-baryon couplings. Couplings are classified according to the total angular momentum (intrinsic combined with orbital) of the exchanged object relative to the incident nucleon in the \(s \)-channel. An approximate form of the helicity amplitude crossing relations is used to determine the restrictions placed by a particular coupling on the \(t \)-channel helicity amplitudes; the resulting \(t \)-channel amplitudes are then used to compute the density matrix elements.

It is found that magnetic dipole coupling at the Regge-\(N-\Delta \) vertex requires \(\rho_{00}/(p_{11}+p_{L-1}) = \frac{1}{3} \) (\(p_{11}, p_{00}, p_{L-1} \), and \(p_{00} \) are elements of the \(\Delta \) density matrix; \(p_{11}, p_{00}, p_{L-1} \), and \(p_{00} \) are elements of the \(V \) density matrix), and places no restriction on \(\lim_{t \rightarrow t_{\min}} \rho_{00} \). Electric quadrupole coupling, on the other hand, requires \(\lim_{t \rightarrow t_{\min}} \rho_{00} = 0 \), but does not specify any simple linear relation between the \(V \) and \(\Delta \) density matrix elements. These predictions are independent of the parity exchanged. Examination of the data for these processes indicates that \(\rho_{00} \) does not approach 0 at low \(t \), and that \(\rho_{00}/p_{11}+p_{L-1}) = \frac{1}{3} \) is consistent with the range of \((0.6, 0.8) \) defined by experiment; these facts support a picture of predominantly dipole coupling. For those reactions in which \(P = (-1)^{\frac{s+1}{2}} \) exchange is expected to dominate (production of \(\rho \) and \(K^{*} \)), the experimental value \(\lim_{t \rightarrow t_{\min}} \rho_{00} = 0.8 \) indicates that quadrupole coupling contributes at most \(\frac{1}{3} \) of the cross section at \(t_{\min} \); dipole dominance for \(P = (-1)^{s} \) exchanges is consistent with all the data for \(\pi N \rightarrow \pi \Delta \). Hence the data for both parities individually agrees with the Dashen-Frautschi prediction.

For octet trajectories, the Dashen-Frautschi calculation predicts that the ratio of couplings \(g_{N-\Delta}^{\pi} / g_{N-N}^{\pi} \) for \(J = 1 \) vertices should have a particular value. It also predicts that the \(\rho NN \) and \(A_{2}NN \) \(J = 0 \) (non-spin-flip) couplings will be small. A calculation incorporating only these predictions \([a]\) both Regge-\(N-\Delta \) and Regge-\(N-N \) charge-exchange vertices are dominated by \(J = 1 \); and \(b \) the Regge-\(N-\Delta \) and Regge-\(N-N \) vertices have the predicted ratio \(\rho_{01}/\rho_{00} \), while \(\rho_{01} \) is the vector-meson density matrix in charge-exchange \(\pi B \rightarrow V B \) and \(\rho_{00} \) is the vector-meson density matrix for the comparable \(\pi B \rightarrow V \Delta \) reaction. This relation is also well satisfied experimentally.

The approximations made in this calculation are such that predictions of limits at \(t \rightarrow t_{\min} \) and shapes of density matrix elements near this point should be taken more seriously than average values. The agreement with experimental data averaged over a larger range of \(t \) is, however, impressive.
METHOD

For purposes of comparison with other authors, it is most convenient to define couplings in the rest system of one of the particles involved. Consider the coupling of a meson trajectory with an incident baryon to produce a final baryon. In order to couple to a spin-½ particle at rest, the total angular momentum \(J = S + L \) of the Reggeon relative to the incident nucleon must be 0⁺ or 1⁺.

As examples of relativistic couplings with this character which are nonvanishing in the static limit, consider

\[
\mathcal{N}_{s2N_1} \sim X^+ \phi \left[1 - \frac{p^2}{(E_1 + M)(E_2 + M)} \right],
\]

\[
\mathcal{N}_{s\gamma\ell_\gamma N} \sim (A_0 A),
\]

\[
A_0 = X^+ \phi \left[\frac{p_1}{E_1 + M} + \frac{p_2}{E_2 + M} \right],
\]

\[
\Lambda = X^+ \phi \left[1 - \frac{p^2}{(E_1 + M)(E_2 + M)} \right] + \frac{2p_1 p_2 X^+ \phi}{(E_1 + M)(E_2 + M)} + \frac{X^+ \phi}{(E_1 + M)(E_2 + M)},
\]

where \(X \) and \(\phi \) are two-component spinors. At \(p_1 = 0 \), coupling (a) between the two spinors is purely of type \(X^+ \phi (0^+) \) and coupling (b) is purely of type \(X^+ \phi (1^+) \). For \(p_2 \neq 0 \), admixtures of other types of couplings are proportional to \(p_1 - p_2 \). Hence the momentum transfer between the nucleons \((p_1 - p_2) \) remains small, the \(J \) character of the coupling (whether it is 0⁺ or 1⁺) is independent of the system of coordinates.

Similar results can be obtained for the coupling of a meson trajectory with a nucleon to yield a \(\Delta (J_{\Delta} = \frac{3}{2}) \). Here the 1⁺ (dipole) coupling is obtained, for example, from (a) by allowing \(N_3 \) to be one component of the four-vector \(\Delta_3 \); the 2⁺ (quadrupole) coupling may be obtained from (b) by the same substitution.

These examples indicate that if a trajectory couples principally by a particular type of coupling (scalar, dipole, or quadrupole) in the static limit \(p_1/M = p_2/M = 0 \), then it should have roughly the same type of coupling at small \(t \) regardless of the energies of the nucleons involved. This allows us to work in the s-channel center-of-mass system for high energy, while comparing our results with those of computations performed by Dashen and Frautschi in a static model.

Classification of couplings by \(J \) allows us to find relations between different amplitudes containing the same coupling. For example, in an amplitude of the form \(f = X^+ \phi \cdot V \) (\(X \) and \(\phi \) are two-component nucleon spinors), there is the definite relation \(f_{s+} = V_{s+} = f_{s-} \).

In order to generalize these equations for different \(J \)'s and different processes, it is convenient to notice the following fact: Provided the momentum of the new baryon is collinear with that of the incident nucleon, the ratio of two helicity amplitudes with the same change of baryon helicity is given by the ratio of Clebsch-Gordan coefficients for coupling to the nucleon. For example,

\[
\frac{f_{s+} \cdot 0^+}{f_{s-} \cdot 0^-} = \left(\begin{array}{c} J \frac{3}{2} \begin{array}{c} \frac{1}{2} \end{array} \frac{3}{2} \end{array} \right), \]

if the Reggeon couples with total angular momentum \(J \).

These relations are exact only at \(\theta_i = 0^\circ \). In order to simplify calculations, they will be assumed to hold over a range of small \(t \) in the s-channel center-of-mass system.

As in any Regge-pole model, it is most convenient to express the differential cross sections and density matrix elements in terms of \(t \)-channel helicity amplitudes. These are related to the s-channel amplitudes by the Trueeman-Wick crossing relations

\[
f_{\epsilon A \cdot a} = \sum_{A', \alpha', c'} d_{A' \alpha' \cdot} X_{A}(\epsilon) \times d_{\alpha c' \epsilon} X_{A}(\epsilon) f_{A' \cdot a},
\]

where indices \(b \) and \(b' \) refer to the incident nucleon, \(a \) and \(A' \) to the final baryon, \(c \) and \(c' \) to the vector meson, and \(d = d' = 0 \) to the pion, and

\[
\sin X_{\alpha} = \frac{2m_{\epsilon} \sqrt{\phi(s,f)}}{\tau_{\alpha \delta}}, \quad \sin X_{\epsilon} = \frac{2m_{\epsilon} \sqrt{\phi(s,f)}}{\tau_{\epsilon \delta}},
\]

\[
\tau_{ij} = \left[(m_i + m_j)^2 \right]^{1/2} \left[(m_i - m_j)^2 \right]^{1/2}, \quad \tau_{ij} = \left[(s - (m_i + m_j)^2) \right]^{1/2} \left[(s - (m_i - m_j)^2) \right]^{1/2}, \quad \phi(s,f) = s(t - (m_i + m_j)^2) - (m_i^2 - m_j^2)(m_i^2 - m_j^2) - s(m_i^2 - m_j^2)(m_i^2 - m_j^2),
\]

where \(\phi(s,f) = 0 \) is the boundary of the physical region.

Equation (3) as it stands is rather complicated and cumbersome to apply. To simplify the form of conditions on \(t \)-channel amplitudes caused by the coupling relations, we make a number of approximations based on the fact that the results derived are to be tested at high energies and very close to the forward direction.

For the reaction \(\pi B \rightarrow VB \), Eq. (4) shows that \(X_{\epsilon}(t) = X_{\epsilon}(s) \) at large \(s \). To the extent that \(X_{\epsilon}(t) = X_{\epsilon}(s) \), the s-channel relations for scalar coupling \(f_{s+} \cdot 0^+ = f_{s-} \cdot 0^- \) imply simi-
Table I. Predictions of the model for reactions of the form $\pi B \rightarrow VB$.

(1) Scalar coupling at the Regge-$N-N$ vertex. This coupling is allowed only for $P = (-1)^8$ exchanges.

(a) Restrictions due to coupling:

$f_{e_0,-4}^4 = 0 = f_{e_0,1}^1$,

(b) Restrictions due to parity:

$f_{e_0,0}^0 = 0$.

(c) Predicted vector-meson density matrix:

$\rho_0 = 0, \rho_1 = \frac{1}{2}, \rho_{-1} = 1$.

(d) Predicted cross-section shape at low t:

$\sigma \sim \sin^2 \theta$.

(2) Dipole coupling at Regge-$N-N$ vertex.

(a) Restrictions on t-channel amplitudes due to coupling:

$f_{e_0,1}^1 = -f_{e_0,-4}^4$.

(b) Further predictions if only $P = (-1)^8$ is exchanged:

Parity: $f_{e_0,0}^0 = 0$,

Vector-meson density matrix:

$\rho_0 = 0 = \rho_4, \rho_1 = \frac{1}{2}, \rho_{-1} = 1$.

(c) Further predictions if only $P = (-1)^8$ is exchanged:

Kinematical restrictions only (Ref. 6).

Further restrictions are imposed on the t-channel helicity amplitudes by:

(i) overall conservation of parity, which gives

$f_{e_0,ab}^t = (-1)^{12}f_{e_0,ab}^t = (-1)^{p+q}f_{e_0,ab}^t$;

and (ii) specification of definite spin parity $P = (-1)^8$ or $P = (-1)^{p+q}$ for the exchanged trajectory. Exchange of a definite spin parity requires $T_{e_0,ab}^i = P(-1)^8T_{e_0,ab}^i$ for the partial-wave amplitude T^i defined by $f_{e_0,ab}^t$.

Table II. Predictions of the model for reactions of the form $\pi B \rightarrow V\Delta$.

(1) Dipole coupling at the Regge-$N-\Delta$ vertex.

(a) Restrictions on t-channel amplitudes due to coupling:

$f_{e_0,-4}^4 = 0 = f_{e_0,1}^1$,

Vector-meson density matrix:

$\rho_0 = 0 = \rho_4, \rho_1 = \frac{1}{2}, \rho_{-1} = 1$.

(c) Further predictions if only $P = (-1)^8$ is exchanged:

Parity: $f_{e_0,0}^0 = 0$,

Vector-meson density matrix:

$\rho_0 = 0 = \rho_4, \rho_1 = \frac{1}{2}, \rho_{-1} = 1$.

Δ density matrix:

$\rho_{\Delta} = 0 = \rho_3, \rho_1 = \frac{1}{2}, \rho_{-1} = 8 (\cos \theta_{\Delta} - 1)$.

(d) Further predictions if only $P = (-1)^8$ is exchanged:

Kinematical restrictions only (Ref. 6).

(2) Quadrupole coupling at the Regge-$N-\Delta$ vertex.

(a) Restrictions on t-channel amplitudes due to coupling:

$f_{e_0,1}^1 = -f_{e_0,-4}^4$,

$f_{e_0,1}^1 = 1$.

(b) General effects of quadrupole coupling:

Parity: $f_{e_0,0}^0 = 0$,

(c) Further predictions if only $P = (-1)^8$ is exchanged:

Kinematical restrictions only (Ref. 6).

(d) Further predictions if only $P = (-1)^8$ is exchanged:

$\sigma \sim (\sin \theta_{\Delta})^2$.

scattering, and (b) the well-known Stodolsky-Sakurai results for $\pi N \rightarrow \pi \Delta$.

For energies in the range $4-8$ GeV, however, the angles $X_{e_0,ab}$ and $X_{e_0,ab}$ in $\pi N \rightarrow V\Delta$ can be considered small $(\leq 40^\circ)$ only in the range $(\theta_{\Delta}, \theta_{\Delta} \sim 0.05)$ GeV. Thus the agreement found below between predictions for dipole coupling using Eq. (5) and experiments averaged over a much larger range of t is somewhat surprising.

Table III. Experimental information on $\pi B \to V\Delta$ density matrices. The range of R consistent with all limits is $0.6 \leq (p_{23} + \sqrt{3}p_{23-1})/(p_{11} + p_{1-1}) \leq 0.8$.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>ρ_{23}</th>
<th>ρ_{1-1}</th>
<th>$\lim_{t \to 0} p_{23}$</th>
<th>p_{11}</th>
<th>p_{1-1}</th>
<th>$R = (p_{23} + \sqrt{3}p_{23-1})/(p_{11} + p_{1-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^+ p \to \omega N^{++}a$</td>
<td>0.05±0.03</td>
<td>0.015±0.028</td>
<td>~0.8</td>
<td>0.12±0.03</td>
<td>~0.035±0.024</td>
<td>0.895 ± 0.040</td>
</tr>
<tr>
<td>$4 \text{ GeV/}c$</td>
<td>0.08±0.03</td>
<td>0.01±0.03</td>
<td>0.12±0.03</td>
<td>0.04±0.03</td>
<td>1.25±1.14</td>
<td></td>
</tr>
<tr>
<td>$\pi^+ p \to \omega N^{++}b$</td>
<td>0.24±0.08</td>
<td>0.017±0.085</td>
<td>0.37±0.05</td>
<td>0.17±0.08</td>
<td>0.55±0.04</td>
<td></td>
</tr>
<tr>
<td>$4 \text{ GeV/}c$</td>
<td>0.15±0.04</td>
<td>0.04±0.04</td>
<td>0.27±0.03</td>
<td>0.13±0.05</td>
<td>0.55±0.04</td>
<td></td>
</tr>
<tr>
<td>$\pi^+ p \to \omega N^{++}b$</td>
<td>0.18±0.05</td>
<td>~0.02±0.05</td>
<td>0.28±0.05</td>
<td>0.19±0.07</td>
<td>0.32±0.08</td>
<td></td>
</tr>
<tr>
<td>$2.75 \text{ GeV/}c$</td>
<td>0.15±0.01</td>
<td>0.03±0.01</td>
<td>0.22±0.01</td>
<td>0.02±0.02</td>
<td>0.83±0.08</td>
<td></td>
</tr>
<tr>
<td>$\pi^+ p \to \omega N^{++}b$</td>
<td>0.12±0.1</td>
<td>0.07±0.07</td>
<td>0.15±0.06</td>
<td>0.13±0.06</td>
<td>2.5±0.08</td>
<td></td>
</tr>
<tr>
<td>$5 \text{ GeV/}c$</td>
<td>0.08±0.07</td>
<td>0.01±0.01</td>
<td>0.14±0.06</td>
<td>0.03±0.08</td>
<td>0.55±0.04</td>
<td></td>
</tr>
<tr>
<td>$\Delta^+ = 0.08 \text{ GeV}^2$</td>
<td>0.18±0.08</td>
<td>0.03±0.06</td>
<td>0.09±0.08</td>
<td>0.06±0.06</td>
<td>1.67±0.08</td>
<td></td>
</tr>
<tr>
<td>$\Delta^+ = 0.08 \text{ GeV}^2$</td>
<td>0.4</td>
<td>0.2±0.01</td>
<td>0.19±0.1</td>
<td>0.08±0.08</td>
<td>0.93±0.08</td>
<td></td>
</tr>
</tbody>
</table>

The combination of parity restrictions (i) and (ii) with the restrictions imposed by s-channel coupling serves to eliminate further amplitudes. Those t-channel helicity amplitudes which survive are then inserted into the density matrix formula

$$
\rho_{ij} = \sum \lambda g_\lambda g_\lambda^*/|\sum g_\lambda^2|^2,
$$

where the sum is over all sets λ of helicities for particles other than the one under consideration.

Conditions due to couplings and parity conservation are listed in Tables I and II for the reactions under consideration. Also listed are the values of ρ_{ij} obtained in cases where the model gives a definite prediction. In the remaining cases, only predictions due to unequal mass kinematics can be made. These have been discussed.

DISCUSSION

$\pi N \to V\Delta$ (Tables II and III)

Regardless of the combination of trajectories exchanged or their parities, our set of approximations leads to the requirement for dipole coupling that

$$
R = (p_{23} + \sqrt{3}p_{23-1})/(p_{11} + p_{1-1}) = \frac{3}{2} \tag{6}
$$

where p_{23} and p_{1-1} are elements of the Δ density matrix and p_{11}, p_{1-1} belong to the vector-meson density matrix. It is possible that quadrupole coupling might also produce this value for R. However, because quadrupole coupling requires $f_{0, 1} = 0$, it imposes on the vector-meson density matrix the behavior $\rho_{23} \sim \sin^2 \phi/1 - \phi$ near $\phi = 0$. Thus a large value of ρ_{23} at t_{min} implies that dipole coupling is important; this can then be checked by computing R.\(^7\)

\(^7\) $F = (-1)^n$ exchanges cannot contribute to ρ_{23}; hence if only such exchanges were present, one criterion for dipole coupling would be absent. All experiments to date, however, have measured appreciable values for ρ_{23}.
calculated error bars for all the reactions, the ratio falls in the range from 0.6 to 0.8).

(iii) The ω production reactions define the ratio R better than the others; they are the ones which tend to limit it to the range (0.6, 0.8). This "compensates" for lack of information on $\lim_{t\to\infty}I_{\omega(p)}}$ in these reactions.\cite{Goldhaber:1965}

These results strongly indicate dipole dominance at the Regge-N-Δ vertex. However, the ρ_0 test is weak in the sense that it depends only on $P = (-1)^{2\pi_{\pi}+1}$ exchanges.\cite{Goldhaber:1965} Furthermore, because $P = (-1)^{2\pi_{\pi}}$ exchanges are relatively suppressed at low t in these reactions by kinematic effects,\cite{Goldhaber:1965} a conservative interpretation of the data would be that dipole dominance is established only for $P = (-1)^{2\pi_{\pi}+1}$ exchanges.

Fortunately, an independent test of dipole dominance for $P = (-1)^{2\pi_{\pi}}$ exchanges is provided by the reaction $\pi^+ p \to \omega^{\pm} \Delta^+$, because only $P = (-1)^{2\pi_{\pi}}$ trajectories can couple to the $\pi\pi$ system. The predictions of dipole coupling in our approximate model are compared with experiment in Table IV. It can be seen that the agreement is quite reasonable. Hence, dipole dominance can be accepted as a feature of the Regge-N-Δ vertex regardless of the parity exchanged.

$\pi B \to VB$ (Tables I and V)

Study of the results in Table I shows that little information on possible dominance of dipole or scalar coupling can be obtained from isolated study of the shapes in t of vector-meson density matrix elements. There are two main reasons for this:

(a) Many of the data are concentrated at very small t, where the exchange of $P = (-1)^{2\pi_{\pi}+1}$ trajectories is relatively enhanced by kinematic effects.\cite{Ghabol:1965} This parity

$\pi B \to VB$ (Table V)

Table V. Comparison of experimental vector-meson density matrices in charge-exchange $\pi B \to VB$ reactions with corresponding $\pi B \to V\Delta$ reaction.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Energy (GeV/c)</th>
<th>ρ_{00}</th>
<th>ρ_{10}</th>
<th>ρ_{20}</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^- p \to K^0 p$</td>
<td>2.3</td>
<td>0.60±0.10</td>
<td>-0.02±0.08</td>
<td>-0.20±0.05</td>
<td>a</td>
</tr>
<tr>
<td>$K^+ p \to K^0 N^{++}$</td>
<td>3.5</td>
<td>0.70±0.12</td>
<td>0</td>
<td>-0.11±0.07</td>
<td>b</td>
</tr>
<tr>
<td>$K^+ p \to K^0 N^{+}$</td>
<td>5</td>
<td>0.70±0.2</td>
<td>0.01±0.08</td>
<td>-0.15±0.08</td>
<td>b</td>
</tr>
<tr>
<td>$\pi^- p \to \gamma p$</td>
<td>2.7</td>
<td>0.77±0.1</td>
<td>0.08±0.07</td>
<td>-0.2±0.05</td>
<td>c</td>
</tr>
<tr>
<td>$\pi^- p \to \rho N^{++}$</td>
<td>8</td>
<td>0.77±0.04</td>
<td>-0.03±0.024</td>
<td>-0.12±0.03</td>
<td>d</td>
</tr>
<tr>
<td>$\pi^- p \to \rho N^{++}$</td>
<td>4</td>
<td>0.77±0.04</td>
<td>-0.04±0.03</td>
<td>-0.06±0.03</td>
<td>d</td>
</tr>
<tr>
<td>$\pi^- N \to \omega p$</td>
<td>1.7</td>
<td>0.56±0.04</td>
<td>-0.05±0.06</td>
<td>-0.06±0.04</td>
<td>d</td>
</tr>
<tr>
<td>$\pi^- N \to \omega p$</td>
<td>3.25</td>
<td>0.62±0.15</td>
<td>0.19±0.05</td>
<td>0.25±?</td>
<td>d</td>
</tr>
<tr>
<td>$\pi^- p \to \omega N^{++}$</td>
<td>2.75</td>
<td>0.44±0.1</td>
<td>0.19±0.07</td>
<td>-0.05±0.04</td>
<td>e</td>
</tr>
<tr>
<td>$\pi^- p \to \omega N^{++}$</td>
<td>2.75</td>
<td>0.56±0.02</td>
<td>0.02±0.02</td>
<td>-0.02±0.02</td>
<td>e</td>
</tr>
<tr>
<td>$\pi^- p \to \omega N^{++}$</td>
<td>2.8</td>
<td>0.58±0.04</td>
<td>0.13±0.05</td>
<td>-0.10±0.005</td>
<td>e</td>
</tr>
<tr>
<td>$\pi^- p \to \omega N^{++}$</td>
<td>4</td>
<td>0.47±0.05</td>
<td>0.17±0.08</td>
<td>-0.03±0.06</td>
<td>d</td>
</tr>
</tbody>
</table>

\cite{Goldhaber:1965} This is consistent with the dominance of spin-flip coupling found in πN charge-exchange reactions.
elements are calculated for both reactions in terms of the parameters $f_{3K}b_3^*sB^+=\nu B$, one discovers that $\rho_{ij}^{B+}\nu B(s,\ell) = \rho_{ij}^{B^+}(s,\ell)$ for the vector meson ρ_i's. Table V displays the density matrices (averaged over low ℓ) for several pairs of reactions; the resemblance between the vector-meson density matrices with and without isobar production is quite marked.

We conclude that the predictions of the Dashen-Frautschi static model bootstrap for $J=1$ and $J=2$ couplings agree in all respects with experiment. At present, it does not seem feasible to test the results for $J=0$ in this fashion.

ACKNOWLEDGMENT

The author would like to thank Dr. Christoph Schmid for helpful discussions and for reading the manuscript.

I. INTRODUCTION

The production of a π meson during the inelastic scattering of an electron by a nucleon (pion electroproduction) is considered as a function of k^2, the square of the three-dimensional momentum transferred from the electron to the final pion-nucleon system. At energies high enough that the pion-nucleon center-of-mass energy is above the region of the $N^*(1238)$ resonance, no complete cross-section calculation exists, largely because the presence of inelastic channels makes the calculation difficult. However, the effect of an important set of one-particle-exchange diagrams can be evaluated, and it is proposed that they provide a way of examining the qualitative behavior of the electroproduction cross section as a function of k^2. The cross sections in several partial waves, due to these diagrams, are evaluated and are compared with published experimental results at several energies. It is found that the S_{11} and P_{11} partial waves are likely to be important at large values of k^2 and at high energies. Furthermore, the dependence of the cross section on k^2 in these partial waves is qualitatively like the dependence indicated by the experiments at 1512-MeV pion-nucleon center-of-mass energy.

*Work supported in part by the U. S. Atomic Energy Commission.

†Now at Convair Division of General Dynamics, San Diego, California.