Neutrons from the Bombardment of Li6 by Deuteron*

WARD WHALING† and J. W. BUTLER

The Rice Institute, Houston, Texas

February 14, 1950

WHEN lithium enriched in the mass six isotope became available through the AEC, it was felt worth while to examine the neutrons from the following reactions:

\[\text{Li}^6 + \text{H} \rightarrow \text{Be}^7 + n^1 + 3.30 \text{ MeV} \] \hspace{1cm} (1)

\[\text{Li}^6 + \text{H} \rightarrow \text{He}^4 + \text{He}^3 + n^1 + 1.68 \text{ MeV}. \] \hspace{1cm} (2)

The yield curve for neutrons from these reactions has already been reported.\(^1\)

In the present experiments the neutron energy spectrum has been analyzed from cloud-chamber photographs of recoil protons in the direction of the deuteron beam. A target of Li$_2$SO$_4$, 375 µg per cm2 (about 150 keV at the bombarding energy used) was irradiated with 595-kev deuterons from the Rice Institute Van de Graaff generator. The low bombarding energy was chosen to minimize the neutrons from deuteron bombardment of carbon contamination on the target and on the tube wall in the analyzing magnet.

The neutron energy was determined from the range of the recoil protons in a Wilson cloud chamber filled with CH$_4$ and C$_2$H$_5$OH at 2 atmos. pressure. The cloud chamber was 17 cm from the target in the direction of the deuteron beam, the sensitive volume subtending a maximum angle of 16° at the target. Only tracks within 10° of the direction of the incident neutrons were accepted. Tracks shorter than 8 mm (corresponding to a 1-Mev recoil) were not counted because of the difficulty of determining their direction.

From some 6000 photographs, 1100 acceptable tracks were found. The number of tracks lying within 250-kev intervals are plotted in the histogram of Fig. 1. The curve in Fig. 1 gives the relative neutron spectrum and was obtained from the histogram by dividing by the neutron-proton scattering cross section.\(^2\)

To extend the energy measurements to lower values, the chamber was filled with H$_2$ and C$_2$H$_5$OH at 2 atmos. These tracks were not as sharp as before, and only tracks longer than 1.3 cm (500 kev) were counted. With the same geometry as before, 160 tracks were measured for neutron energies below 1500 kev. The energy distribution, corrected for cross section and fitted to the higher energy spectrum, is shown by the open circles in Fig. 1.

In order to determine whether or not the 435-kev state of Be7 reported by Brown, Chao, Fowler, and Lauritsen\(^3\) appears in this reaction, the tracks corresponding to neutrons in the 3- to 4-Mev energy range have been analyzed in smaller energy intervals. The number of tracks in 100-kev intervals is shown in Fig. 2. The asymmetric shape of the spectrum and the one high point at 3.35 Mev (400 kev below the energy of neutrons from the formation of Be7 in the ground state) may be interpreted as an indication that this 435-kev state in Be7 is formed in this reaction. Although it is not definite from Fig. 2 that this excited state does appear in this reaction, one might conclude that if it is formed, only about 30 percent or less of the disintegrations result in the excited state. Using the peak of the curve at 3.75 Mev in Fig. 2, as the energy of the neutrons from the formation of Be7 in the ground state, the Q-value calculated for the reaction is 3.27 Mev.
Neutron Groups from the Reaction Li7(p, n)Be7

BERNARD HAMERMESH AND VIRGINIA HUMMEL
Argonne National Laboratory, Chicago, Illinois
February 7, 1950

RECENT reports indicate the existence of at least one excited state in Be7 within 1 Mev of the ground state. Therefore, the reaction Li7(p, n)Be7 should give rise to at least two groups of neutrons of different energies depending upon whether the reaction leads to Be7 in the ground state or in an excited state.

Photographic plates (Ilford C2 emulsions 50μ thick) have been exposed to neutrons produced in this reaction by protons with energies of 2.705 and 3.120 Mev from the Argonne electrostatic accelerator. By studying the recoil protons in the emulsions the energies of the neutrons can be found. The photographic plates were mounted at 0° to the proton beam and 10 cm from the 10-kev thick metallic lithium target.

After processing the plates, the tracks were measured in a microscope with an oil immersion objective. Tracks were considered to be acceptable for measurement if they showed no detectable drop into the emulsion and if they deviated from the incident neutron direction by an angle less than arctan $\frac{1}{4}$. This procedure leads to a larger acceptable range of solid angles for the short tracks than for the long tracks. This will accentuate the intensity of a group of neutrons arising from an excited state relative to the group arising from transitions leading to the ground state of Be7.

The energies of the recoil protons were determined from their ranges by using the Ilford range-energy curves. The neutron energy is found from the recoil proton energy E_p by the use of the relation $E_n = E_p / \cos \theta$ where θ is the angle between the incident neutron direction and the recoil proton.

Figure 1 shows a histogram of the number of neutrons in a 25-kev range for each of the incident proton energies. The letter A locates the center of gravity of the main group of neutrons and B the center of gravity of a clearly resolved group arising from an excited state in Be7. The centers of gravity were found first by subtracting a constant background of two tracks from each block in the histogram and then locating the center of gravity in the usual fashion. For the 2.705-Mev data A is found to be at 937 kev and B at 472 kev. For the 3.120-Mev data, A is at 1364 kev and B is at 896 kev. In the forward direction the neutrons in the main groups should have energies of 1.000 and 1.423 Mev, respectively.

In each case the center of gravity of the group A is found 63 kev below its calculated position in terms of the accelerator calibration, but the energy difference between the two values of A is 427 kev which is a remarkable coincidence and indicates that the Ilford range-energy curve used is quite good. Since the value of B from the 3.120-Mev data is relatively close to that of A from the 2.705-Mev data, one would expect to find a reliable value for the separation of the B state from the ground state if the 3.120-Mev data is used. The energy difference from A to B in the 3.120-Mev data yields a value of 428±20 kev for the level separation. The 2.705-Mev data cannot be expected to yield a very reliable result since the B group now corresponds to proton recoils of approximately 3μ in length. In this region the slope of the range-energy curve is changing rapidly so relatively large errors may be expected. The A to B difference in this case yields a value of 408±35 kev for the height of the corresponding excited state of Be7 above the ground state. The points labeled C indicate the expected location of the 205-kev group reported by Grosskreutz and Mather and the point D indicates their 745-kev group. The latter group cannot be excited at 2.705 Mev bombarding proton energy.

To compare the relative intensities in the various groups, one must correct for the following: (1) different accepted solid angles for different track lengths; (2) different probability of leaving the