HYPersonic RESEARCH Project

Memorandum No. 41
November 1, 1957

MEASUREMENT OF TURBULENT HEAT TRANSFER RATES ON THE AFT PORTION AND BLUNT BASE OF A HEMISPHERE-CYLINDER IN THE SHOCK TUBE

by
Josef Rabinowicz

ARMY ORDNANCE CONTRACT NO. DA-04-495-Ord-19
MEASUREMENT OF TURBULENT HEAT TRANSFER RATES
ON THE AFT PORTION AND BLUNT BASE
OF A HEMISPHERE-CYLINDER IN THE SHOCK TUBE

by

Josef Rabinowicz

Clark B. Millikan, Director
Guggenheim Aeronautical Laboratory
SUMMARY

Turbulent heat transfer rates on the aft portion and on the blunt base of a hemisphere cylinder were measured in the 2-7/8" x 2-7/8" GALCIT shock tube over a range of shock Mach numbers between 3.25 and 5.1 and initial pressures between 3 and 17 cm. Hg. The local Reynolds numbers on the cylindrical afterbody varied between 3.5×10^4 and 3.0×10^5 per cm. A side support was used for the model in order to eliminate the disturbing effect of a rear sting support.

The measured turbulent heat transfer rates on the cylindrical portion agreed very well with previous flat plate measurements for small temperature differences, although the ratio of stagnation to surface enthalpy varied between 3 to 8 in the present tests. Only a slight effect of this large variation in h_s/h_w was detected in this range of local Mach numbers, i.e., $1.25 < M_e < 1.5$. The measured heat transfer rate on the base indicated that at the center of the base the heat transfer rate is comparable to that on the surface just ahead of the base, while the heat transfer rate falls off to 1/2 to 1/3 of this value towards the rim of the base. This unexpected distribution of heat transfer rate over the base, and particularly the high value at the center, shows the necessity for a careful study of wake phenomena.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PART</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>v</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Experimental Technique</td>
<td>3</td>
</tr>
<tr>
<td>A. Shock Tube and Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>B. The Hemisphere-Cylinder Model</td>
<td>3</td>
</tr>
<tr>
<td>III. Experimental Results</td>
<td>5</td>
</tr>
<tr>
<td>A. Range of the Experiments</td>
<td>5</td>
</tr>
<tr>
<td>B. Turbulent Heat Transfer Rate Measurements on the Cylindrical Surface</td>
<td>7</td>
</tr>
<tr>
<td>C. Turbulent Base Heat Transfer Measurements</td>
<td>11</td>
</tr>
<tr>
<td>References</td>
<td>13</td>
</tr>
<tr>
<td>Figures</td>
<td>14</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-7/8" x 2-7/8" GALCIT Shock Tube</td>
</tr>
<tr>
<td>2</td>
<td>Instrumentation Block Diagram</td>
</tr>
<tr>
<td>3</td>
<td>Hemisphere Cylinder Model</td>
</tr>
<tr>
<td>4</td>
<td>Diagram of Gage Positions on the Model</td>
</tr>
<tr>
<td>5</td>
<td>Schlieren Studies of Flow over the Aft-Portion of the Model</td>
</tr>
<tr>
<td>6</td>
<td>Representative Gage Output at Various Positions on the Model</td>
</tr>
<tr>
<td>7</td>
<td>Turbulent Heat Transfer Rate Variation with Pressure at (\bar{M}_s) = 3.8</td>
</tr>
<tr>
<td>8</td>
<td>Turbulent Heat Transfer Rate Variation with Shock Mach Number</td>
</tr>
<tr>
<td>9</td>
<td>Comparison of Turbulent Heat Transfer Rate with Flat Plate Measurements</td>
</tr>
<tr>
<td>10</td>
<td>Measurements of Turbulent Heat Transfer Rates on a Flat Plate, (T_0 \geq T_w) (Refs. 6, 7, 8, 9, and 10)</td>
</tr>
<tr>
<td>11</td>
<td>Comparison of the Shock Tube Turbulent Heat Transfer Rates with the Flat Plate Results</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

C_H Stanton number $= \frac{\dot{q}}{\rho_e u_e \left(h_{aw} - h_w \right)}$

h enthalpy, cal./gr.

M Mach number

$Nu_{\bar{x}}$ Nusselt number $= C_H \cdot Pr \cdot Re_{\bar{x}}$

$Re_{\bar{x}}$ Reynolds number $= \frac{\rho_e u_e \bar{x}}{\mu_e}$

Pr Prandtl number $= \frac{c_p \mu_e}{k_e}$

R body radius, cm.

p pressure, cm. Hg. abs.

\dot{q} heat transfer rate, cal./cm.2/sec.

r recovery factor

u velocity, cm./sec.

δ boundary layer thickness, cm.

ρ density, gr./cm.2

μ viscosity coefficient, gr./cm.-sec.

Subscripts

e value at the outer edge of the boundary layer

1 ahead of shock front

2 behind shock front

s stagnation

aw recovery

w wall
I. INTRODUCTION

The use of the shock tube to simulate various aspects of hypersonic flight is now widely accepted. Recent development of the film resistance thermometer has made possible accurate heat transfer studies in the extremely short testing times available in the shock tube. Measurements of laminar heat transfer rates at and near the stagnation region of a blunt-nosed body (References 1 and 2) indicated a very good agreement with the equilibrium laminar boundary layer theory for hypersonic flight speeds as developed by Lees (Reference 3) and Rose and Riddell (Reference 4). The present work extends these measurements to the aft-region of a blunt body, i.e., to the aft surface and to the model base. For reasons which will be explained in detail in Section III, it is very difficult to obtain undisturbed laminar boundary layer flow on the aft portion of a long model in the present straight section of the 2-7/8" x 2-7/8" shock tube. Thus the work was confined to turbulent heat transfer studies.

Published experimental data on turbulent heat transfer rates with large temperature differences across the boundary layer are scarce. In a recent report, Libby and Cresci (Reference 5) compare their turbulent heat transfer rate data measured on a blunt nosed body in a wind tunnel with several analyses and find the data to agree best with the local flat plate approximation. However, they suggest that their result should be substantiated at a higher stagnation enthalpy, since their wind tunnel tests were limited to ratios of stagnation enthalpy to surface enthalpy of 1.3 to 2.0. The shock tube enables us to realize much higher ratios of stagnation to surface enthalpy, and in the present
work this ratio lies between 3 and 8. The results of the present investigation tend to confirm the previous conclusion of the validity of the flat plate analysis. This result, which is at first somewhat surprising, fits well into the overall trend indicating no startling or unexpected phenomena associated with high temperatures at ordinary pressures.

The heat transfer problem on a blunt base is considerably more difficult. Much experimental and theoretical work has been done on the base pressure problem from the point of view of an overall "mixing" analysis. However, the heat transfer rate probably depends also on local conditions, so that a knowledge of the flow field near the base surface is required before local heat transfer rates can be predicted. The measurement of base heat transfer rates in the shock tube is also complicated by the question of the time required to establish a steady wake behind a model. Thus the present experiment has two main objectives: (1) to determine whether time-independent heat-transfer rates on a blunt base are established in the time interval available in the shock tube (about 400 - 600 μ sec.); (2) to investigate heat transfer rates on a blunt base when the body is supported from the side, in order to eliminate the usual disturbing effect of a rear sting support.

The shock tube and the instrumentation used in this investigation are described in Reference 1; therefore, only a brief summary will be included in Section II. Section III presents the experimental results, including a discussion and indication of future work on this problem.

The author would like to thank Professor L. Lees for suggesting the problem and for his many helpful discussions and suggestions.
II. EXPERIMENTAL TECHNIQUE

A. Shock Tube and Instrumentation

This investigation was performed in the 2-7/8" x 2-7/8" GALCIT shock tube (Figure 1). Heat transfer rate and schlieren studies were carried out with the model placed at the 19' station of the straight section. The instrumentation block diagram is shown in Figure 2. (See Reference 1.) Shock speed is determined by measuring the time for the shock to travel between two monitoring stations spaced 2' apart. The heat transfer gages are used for detection, and the time is measured by the 7360 Berkeley counter. The schlieren spark is triggered through a time delay, which is activated by the downstream wave-speed monitoring gage.

The heat transfer gages are sputtered directly on the model. Their initial resistance was measured by a Wheatstone bridge and the current was measured by a milliammeter. The gage output is fed through a Tektronix 121 wide band amplifier to a 535 Tektronix oscilloscope, and the records are obtained by a polaroid camera.

The gages are calibrated for quantitative heat transfer measurements utilizing the method described in Reference 1. The overall accuracy of the heat transfer instrumentation is about + 5 per cent as demonstrated in Reference 1.

B. The Hemisphere-Cylinder Model

The model consists of a brass cylinder 3/4" in diameter and 2-5/8" long, with a hemispherical nose. A 3/16" spike 3/4" long is attached to the nose in order to produce a separated region and thus
insure a fully-developed turbulent boundary layer upon reattachment of the flow to the cylinder surface (Figure 3). The aft portion of the model consists of a hollow pyrex glass "cup" 3/4" diameter and 1" long, which is waxed on the mating brass cylinder. The outside diameter of the glass and brass parts are matched to provide a continuous smooth surface, and the platinum film resistance gages are sputtered on the glass "cup" (Figure 3). Four gages are positioned on the flat base -- No. 1 at the center and Nos. 2, 3, and 4 on the circumference of a 1/2" circle as shown in Figure 4. Three additional gages are positioned on the cylindrical surface .082", .442", and .772", respectively, from the base, and are denoted as gages Nos. 5, 6, and 7 on Figure 4.

The model is side-supported by a 45° swept-back, double wedge that is 3/4" wide and 0.100" thick. This support enables schlieren observation of the aft-part of the model and portions of the wake, and eliminates the need for a rear-sting.

The leads on the glass "cup" are provided by a thick layer of silver paint to which wires are soldered on the unexposed edge of the glass "cup" (Figure 3). The wires are then led through machined grooves in the model surface, then along the side support to the outside of the shock tube. The "cup" is aligned so that gages Nos. 3, 5, 6, and 7 are opposite the wake of the side support in order to minimize the effect of this wake on the readings of these gages (Figures 3 and 4).
III. EXPERIMENTAL RESULTS

A. Range of the Experiments

A preliminary investigation was undertaken to determine the maximum size of the heat transfer model permitted by the blockage effects -- specifically by the effect of the reflection of the bow shock wave from the shock tube wall. It was determined that a 3/4" diameter body can be accommodated in the 2-7/8" x 2-7/8" section without choking the flow. For this model the ratio of blocked area to the tube cross section area is .07, including the projected area of the side support. However, the flow Mach number is only 1.3 to 2.0, which presents a more difficult problem so far as model length is concerned. The bow wave angle is relatively steep, and the first shock reflection from the shock tube wall reaches the model at a station between 3/4" and 1-1/2", measured from the model nose. Thus it is impractical to attempt to test a model which is shorter than the distance of the first shock reflection from the nose. The model was designed to extend about 1" behind the first shock reflection, thus anticipating a range of shock strengths within which the second shock reflection from the tube wall will be weak enough and will strike the wake far enough downstream of the base so as to have little or no effect on the wake structure and the base heat transfer rate.

The flow around the actual heat transfer model is shown in the schlieren photographs in Figure 5. Figures 5a and 5b show the developing flow at $\Delta t = 40 \mu$sec. and 140μsec., respectively, for a shock Mach number M_s of 3.8. Figure 5c shows the flow at $\Delta t = 350 \mu$sec. for $M_s = 3.0$. Figure 5b indicates a fully-developed wake and a relatively weak second reflection, while at the lower Mach number (Figure 5c)
the flow is obviously choked. At high Mach number $M_s > 4.5$ the reflected shocks again increase in strength, and a choking effect again appears. Thus the base heat rate measurements were limited to a narrow range of shock Mach numbers ($3.5 < M_s < 4.0$) because of the particular combination of flow Mach number and test section geometry.

The initial pressures were varied between 3 and 17 cm. Hg. corresponding to Reynolds numbers/cm. in the range 3.5×10^4 to 3×10^5. The lower limit is imposed by the minimum pressure required for a fully-developed turbulent boundary layer, and the upper limit is set by structural considerations. The advantage of larger tube cross section dimensions and of higher flow Mach number are obvious. These considerations indicate the advantages of using an expansion nozzle as the test area for this type of an investigation.

The limitations on the range of shock Mach numbers for the turbulent heat rate measurements on the cylindrical surface are not as severe, because the expansion around the shoulder limits the feedback from the wake. Good results are obtained for shock Mach numbers in the range of 3.25 to 5.1.

The disturbance caused by the shock wave reflection on the model surface ahead of the heat transfer gages causes disturbances in the laminar boundary layer when one attempts to obtain laminar heat rate measurements. However, the effect is negligible for turbulent boundary layers, so the present investigation was confined to the turbulent case.
B. Turbulent Heat Transfer Rate Measurements on the Cylindrical Surface

Representative gage outputs at various positions on the model are shown in Figure 6. Figure 6d is a record of gage No. 7 on the surface of the cylinder. Measured heat transfer rates from gages Nos. 5, 6, and 7 at \(M_s = 5.8 \) are shown in Figure 7 as a function of initial pressure \(p_1 \). The lines drawn show a relation \(q \sim p_1^{0.8} \). The heat transfer rate measured by gage No. 1 on the base is also shown for comparison. These base measurements will be discussed in Section III.C.

In Figure 8 the heat transfer rates measured at the various locations on the cylindrical surface of the model are plotted as \(\dot{q}/p_1^{0.8} \) vs. \(M_s \) (where \(p_1 \) is measured in cm. Hg. abs. and \(\dot{q} \) is cal./cm.\(^2\)/sec.). For comparison the stagnation point heat transfer rate for \(p_1 = 1 \) cm. Hg. abs. calculated for the equilibrium laminar boundary layer according to Reference 3, is also shown. Turbulent heat transfer rates on the cylindrical afterbody are 1/4 to 1/3 of the laminar stagnation point heat transfer rate for comparable free stream conditions.

Turbulent heat transfer rates are generally expressed in terms of the Stanton number, \(C_H \), where

\[
\dot{q} = \rho_e u_e C_H (h_{aw} - h_w).
\]

Semi-empirical correlations of the available experimental data give

\[
C_H = B \, \text{Re}^a \, \text{Pr}^b
\]

* The actual Mach number varies between 3.5 and 4.0 and the heat transfer rates are normalized to \(M_s = 3.8 \) by the factor \((M_s/M)^3 \).
where \(a = -0.2, \ b = -2/3, \) and \(B \) depends on the local Mach number and the temperature (or enthalpy) ratio across the boundary layer. Also

\[
h_{aw} = h_{se} \left[1 - (1 - r) \frac{u_e^2}{2h_{se}} \right],
\]

where the recovery factor \(r \) is approximately \(Pr^{1/3} \), i.e., \(r = 0.89 \) for \(Pr = 0.7 \). According to Eqs. (1) and (2),

\[
\dot{q} = B (pu)_e^{0.8} \mu_e^{0.2} (Pr)^{-2/3} (h_{aw} - h_w) (\bar{x})^{-0.2},
\]

where \(\bar{x} \) is some effective length of run for the fully-developed turbulent boundary layer. In other words in the present experiments the quantity \(\frac{\dot{q} \bar{x}^{0.2}}{p_1^{0.8}} \) should be the same for all three gage locations at the same shock Mach number. This effective distance \(\bar{x} \) is determined directly from the measured values of \(\dot{q} \), and turns out to be remarkably constant for all three gages over the range \(3 < M_s < 5.1 \), with the following values: \(\bar{x}_7 = 0.50'' \), \(\bar{x}_6 = 0.82'' \), \(\bar{x}_5 = 1.19'' \) within \(\pm 5 \) per cent. In Figure 9 the quantity \(\frac{\dot{q} \bar{x}^{0.2}}{p_1^{0.8}} \) is plotted against shock Mach number; evidently the "spread" between the three gages shown in Figure 8 is practically eliminated.

Previous measurements of turbulent heat transfer rates with zero pressure gradient are correlated very well by Eq. (3), where

* This effective distance \(\bar{x} \) for any gage is very nearly equal to the distance measured from the point on the model at which the bow shock reflected from the shock tube wall strikes the model surface (Figure 5).
B = 0.03 for M_e < 0 with $T_w/T_e < 1$; $B = 0.0266$ for $M_e = 0.87$ and $B = 0.021$ for $M_e = 1.62$, with $T_w/T_{aw} < 1$, i.e., small temperature differences. These data are obtained from References 6, 7, 8, 9, and 10 and are reproduced in Figure 10. In order to compare the present results with this earlier work the "external" flow quantities $(\rho u)_e$ and μ_e for the present experiments were computed by assuming a normal shock ahead of the model nose and an isentropic expansion along the body surface from the stagnation point to the free stream pressure, p_2. The turbulent heat transfer data obtained in the shock tube agree remarkably well with the earlier data of References 6, 7, and 8 in which $T_w/T_{aw} < 1$. In Figure 9 the curves representing the average of these data (obtained from Figure 10) at Mach numbers $M = 0$, $M = 0.87$, and $M = 1.62$ are shown. The shock tube data which corresponds to local Mach numbers between 1.25 and 1.5 fall between the curves for $M = 0.87$ and $M = 1.62$. The remarkable fact here is that the corresponding ratio of stagnation to surface enthalpy increases from 3 to 8 in the present tests.

When one plots the data in the form Nu_x vs Re_x disregarding the variation in enthalpy level (Figure 11), the scatter in the data increases slightly as compared to Figure 9. This scatter indicates a slight effect caused by the variation of h_s/h_w. One can conclude that in this Mach number range* the effect of enthalpy level is surprisingly small. This conclusion is in agreement with the previous results of Libby and Cresci (Reference 5).

* This result does not imply that the effect of h_s/h_w is small also at high local Mach numbers.
The experiments of Libby and Cresci (Reference 5) can also be
used to observe the effect of falling pressure gradients on turbulent
heat transfer rates. These experiments were performed in a blow-
down wind tunnel with varying stagnation pressures and temperatures
during the run. In order to correlate the accumulated data, modified
Reynolds and Nusselt numbers, based on stagnation conditions, were
used. It is difficult without recomputing the data to obtain local heat
transfer values. However, a comparison with flat plate analysis is
presented in Reference 5, from which the agreement with the local
flat plate data can be examined.* The geometrical distance from the
stagnation point has been used in evaluating the Reynolds and Nusselt
numbers. This procedure is consistent with most turbulent boundary
layer studies on flat plates. The fact that it seems to give good results
in the case of an axially symmetric body with a falling pressure
gradient is worth noting. Figure 7 of Reference 5 shows that the
measured heat transfer rates fall within \(\pm 10\) per cent of the curve
described by Eq. (6) of Reference 5. Translating the particular
definition of the modified Reynolds and Nusselt numbers into their
conventional form results in the following relation

\[
\text{Nu}_x = 0.03 \left(\frac{\rho'}{\rho_e}\right)^{0.8} \left(\frac{\mu'}{\mu_e}\right)^{0.2} (\text{Pr})^{1/3} (\text{Re}_x)^{0.8}
\]

where \(\rho'\) and \(\mu'\) are defined at reference conditions determined by the
local pressure and reference enthalpy

* It may be that some of the scatter of the experimental
results may be due to the correlation with respect to stagnation rather
than local conditions. A replotting of the data in terms of the con-
ventional local quantities would be very helpful in generalizing these
data to other heat transfer applications.
\[h' = 0.5 h_w + 0.22 h_s + 0.28 h_e \] (4)

Now for Libby and Cresci experiments \(\frac{h_s}{h_w} \) varies between 1.3 and 1.7, thus \(h' \approx h_e \). The local Mach number at the thermocouple positions in these experiments varied between 0.5 to 0.8. Thus one observes that these data agree with the flat plate data with no pressure gradients at the corresponding Mach numbers.

One can conclude from the collection of data presented here that for subsonic and low supersonic flow Mach numbers, the turbulent heat transfer rates seem to be to a surprising degree independent of falling pressure gradients, stagnation to wall enthalpy ratio, and radius of curvature when \(\delta/R < < 1 \). The only appreciable effect is found to be the local Mach number, which is responsible for about 15 per cent reduction in the heat transfer coefficient by the increase of local Mach number from 0 to about 1.5.

C. Turbulent Base Heat Transfer Measurements

The arrangement of the four heat transfer gages on the blunt base is shown in Figure 4, and representative outputs of gages Nos. 1, 3, and 4 are shown in Figures 6a, 6b, and 6c. The output of these gages is not as smooth as that of the surface gages Nos. 5, 6, and 7. However, the output of gages Nos. 1 and 3 indicates a steady heat transfer rate after a "building-up" period of about 100 - 150 \(\mu \) sec. Gage No. 4 lies in the wake of the side support and the output of this gage never gave a steady heat transfer rate. The comparison of the base heat rate at the center and at a location \(1/4'' \) from center as measures with gages Nos. 1 and 3, is shown in Figure 8. Gage No. 1 at the center of the base indicates a heat rate comparable with
that of gage No. 5 on the surface just ahead of the base. At gage No. 3 position the heat rate is only 1/2 to 1/3 of this value. One should note that the output of gage No. 4 (though disturbed) is comparable to that of gage No. 3, which increases the confidence in this result.

The experimental data indicate that a "steady" heat transfer rate is established after about 100 - 200 \(\mu \)sec. However, the total testing time is about 400 - 600 \(\mu \) sec., which may not be long enough to establish steady equilibrium wake flow such as may be experienced in a wind tunnel or in free flight. Until this question is settled the present base heat transfer data is considered to be preliminary and is reported mainly to call attention to this result and stimulate further thought and research into this effect. However, the fact that these measurements are repeatable, that the heat rate is steady and uniform with time after about 100 - 150 \(\mu \) sec., and that the heat rate at the base center varies like \(p_1^{0.8} \), may be used as arguments to indicate that these effects are real.

The unexpected distribution of heat transfer rate over the base, particularly the high value at the center of the base, shows the necessity for careful study of wake phenomena. One way to attack this problem is to perform similar experiments in the shock tube with a wide range of model sizes. If the observed effect is caused by the unsteady flow conditions, the size of the model should affect the results. Because of the limitation in size of the present shock tube such a program could not be undertaken at this time. In order to shed more light on this problem, an investigation of base and wake flows is now underway in the GALCIT 5" continuous-flow hypersonic tunnel.
REFERENCES

FIG. 1 - \(2\frac{7}{8} \times 2\frac{7}{8} \) GALCIT SHOCK TUBE
Fig. 2 - Instrumentation Block Diagram

1. D.C. Power Supply
2. Heating Panels
3. Resistance Bridge
(a)
Side View

(b)
Back View

FIG. 3
HEMISPHERE CYLINDER MODEL
FIG. 4
DIAGRAM OF GAGE POSITIONS ON THE MODEL
$M_s = 3.8; p_1 = 11.7 \text{ cm. Hg.};$
$\Delta t = 40 \mu\text{sec}.$

$M_s = 3.8; p_1 = 11.3 \text{ cm. Hg.};$
$\Delta t = 140 \mu\text{sec}.$

$M_s = 3.0; p_1 = 12.5 \text{ cm. Hg.}; \Delta t = 360 \mu\text{sec}.$

FIG. 5
SCHLIEREN STUDIES OF FLOW OVER THE AFT-PORTION OF THE MODEL
Gage No. 1

\[M_s = 3.5; \, p_1 = 8.0 \, \text{cm. Hg.} \]

Sweep = 100 \(\mu \text{sec./div.} \)

\[R_o = 24.9 \Omega; \, I_o = 20 \, \text{ma.} \]

Sensitivity = 10 mv./div.

Gage No. 3

\[M_s = 3.6; \, p_1 = 6.6 \, \text{cm. Hg.} \]

Sweep = 100 \(\mu \text{sec./div.} \)

\[R_o = 19.0 \Omega; \, I_o = 20 \, \text{ma.} \]

Sensitivity = 5 mv./div.

Gage No. 4

\[M_s = 3.5; \, p_1 = 6.9 \, \text{cm. Hg.} \]

Sweep = 100 \(\mu \text{sec./div.} \)

\[R_o = 20.5 \Omega; \, I_o = 20 \, \text{ma.} \]

Sensitivity = 5 mv./div.

Gage No. 7

\[M_s = 3.81; \, p_1 = 6.86 \, \text{cm. Hg.} \]

Sweep = 100 \(\mu \text{sec./div.} \)

\[R_o = 19.3 \Omega; \, I_o = 20 \, \text{ma.} \]

Sensitivity = 10 mv./div.

FIG. 6

REPRESENTATIVE GAGE OUTPUT AT VARIOUS POSITIONS ON THE MODEL
FIG. 7 TURBULENT HEAT TRANSFER RATE VARIATION WITH PRESSURE AT \((M_s) = 3.8 \)
FIG. 8 TURBULENT HEAT TRANSFER RATE VARIATION WITH SHOCK MACH NUMBER
FIG. 9 COMPARISON OF TURBULENT HEAT TRANSFER RATE WITH FLAT PLATE MEASUREMENTS
FIG. 10 MEASUREMENTS OF TURBULENT HEAT TRANSFER RATES ON A FLAT PLATE, $T_0 = T_W$ (REF. 6, 7, 8, 9 AND 10)
FIG. 11 COMPARISON OF THE SHOCK TUBE TURBULENT HEAT TRANSFER RATES WITH THE FLAT PLATE RESULTS
U. S. Government Agencies

Los Angeles Ordnance District
55 South Grand Avenue
Pasadena 2, California
Attention: Mr. E. L. Stone
2 copies

Los Angeles Ordnance District
55 South Grand Avenue
Pasadena 2, California
Attention: ORDEV-00-
Mr. Z. Typaldos

Chief of Ordnance
Department of the Army
ORDTB - Ballistic Section
The Pentagon
Washington 25, D. C.
Attention: Mr. G. Stetson
2 copies

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDTB
For Transmittal To
Department of Commerce
Office of Technical Information
2 copies

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDTB
For Transmittal To
Director of Intelligence
Headquarters, USAF
Washington 25, D. C.
Attention: Foreign Liaison Branch
For: The Aeronautical Research
Institute of Sweden
Ulvsunda 1, Sweden
Attention: Mr. Georg Drougge

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDGU-SE
For Transmittal To
Canadian Joint Staff

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDGU-SE
For Transmittal To
Foreign Relations Section
For Australian Joint Services Mission

Office of Ordnance Research
Box CM, Duke Station
Durham, North Carolina
10 copies

Ordnance Aerophysics Laboratory
Daingerfield, Texas
Attention: Mr. R. J. Valluz

Commanding General
Army Ballistics Missile Agency
Huntsville, Alabama
Attention: ORDAB-1P
2 copies

Commanding General
Army Ballistics Missile Agency
Huntsville, Alabama
Attention: ORDAB-DA
Mr. T. G. Reed
3 copies

Commanding General
Redstone Arsenal
Huntsville, Alabama
Attention: Technical Library

Commanding General
Redstone Arsenal
Huntsville, Alabama
Attention: Dr. E. Geissler
Deputy Chief of Staff for Logistics
U. S. Army
Research and Development Division
Washington, D. C.
Attention: Research Branch

Exterior Ballistic Laboratories
Aberdeen Proving Ground
Maryland
Attention: Mr. C. L. Poor

Ballistic Research Laboratories
Aberdeen Proving Ground
Maryland
Attention: Dr. Joseph Sternberg

Commanding General
White Sands Proving Ground
Las Cruces, New Mexico

Western Division
Headquarters
Office of Scientific Research
Air Research and Development
Command
P. O. Box 2035
Pasadena 2, California
Attention: Dr. M. Alperin

Commanding General
Headquarters
Office of Scientific Research
Air Research and Development
Command
P. O. Box 1395
Baltimore 3, Maryland
Attention: RDTRRF

Mechanics Division
Office of Scientific Research
Air Research and Development
Command
P. O. Box 1395
Baltimore 3, Maryland

Air Force Armament Center
Air Research and Development
Command
Eglin Air Force Base
Florida
Attention: Technical Library

Air Research and Development
Command
European Office
Shell Building
60 Rue Rabenstein
Brussels, Belgium
Attention: Col. Lee Gossick, Chief
5 copies

Commander
Wright Air Development Center
Wright-Patterson Air Force Base
Ohio
Attention: WCLSR

Commander
Wright Air Development Center
Wright-Patterson Air Force Base
Ohio
Attention: WCLSW

Commander
Wright Air Development Center
Wright-Patterson Air Force Base
Ohio
Attention: WCLSW, Mr. P. Antonatos

Commander
Wright Air Development Center
Wright-Patterson Air Force Base
Ohio
Attention: Dr. H. K. Doetsch

Director of Research and Development
DCS/D
Headquarters
USAF
Washington 25, D. C.
Attention: AFDRD-RE

Commander
Western Development Division
P. O. Box 262
Inglewood, California

Commander
Western Development Division
5760 Arbor Vitae Street
Los Angeles, California
Attention: Brig. Gen. B. A. Schriever

Commander
Arnold Engineering Development Center
Tullahoma, Tennessee
Attention: AEORL

Commander
Arnold Engineering Development Center
Tullahoma, Tennessee
Attention: Col. F. H. Richardson

Air University Library
Maxwell Air Force Base
Alabama

Homemann Air Force Base
Alamogordo, New Mexico
Attention: Dr. G. Eber
National Advisory Committee for Aeronautics
Langley Aeronautical Laboratory
Langley Field, Virginia
Attention: Mr. M. Bertram

National Advisory Committee for Aeronautics
Langley Aeronautical Laboratory
Langley Field, Virginia
Attention: Dr. A. Buseman

National Advisory Committee for Aeronautics
Langley Aeronautical Laboratory
Langley Field, Virginia
Attention: Mr. C. McLellan

National Advisory Committee for Aeronautics
Langley Aeronautical Laboratory
Langley Field, Virginia
Attention: Mr. John Stack

National Advisory Committee for Aeronautics
Lewis Flight Propulsion Laboratory
Cleveland Municipal Airport
Cleveland 11, Ohio
Attention: Dr. J. C. Evvard

National Advisory Committee for Aeronautics
Lewis Flight Propulsion Laboratory
Cleveland Municipal Airport
Cleveland 11, Ohio
Attention: Dr. A. Silverstein

Technical Information Service
P. O. Box 62
Oak Ridge, Tennessee
Universities and Non-Profit Organizations

Brown University
Graduate Division of Applied Mathematics
Providence 12, Rhode Island
Attention: Professor W. Prager

Brown University
Graduate Division of Applied Mathematics
Providence 12, Rhode Island
Attention: Dr. R. Probst

University of California
Low Pressures Research
Institute of Engineering Research
Engineering Field Station
1301 South 46th Street
Richmond, California
Attention: Professor S. A. Schaaf

University of California at Los Angeles
Department of Engineering
Los Angeles 24, California
Attention: Dr. L. M. K. Boelter

Case Institute of Technology
Cleveland, Ohio
Attention: Dr. G. Kuerti

Catholic University of America
Department of Physics
Washington 17, D. C.
Attention: Professor K. F. Herzfeld

Cornell Aeronautical Laboratory
Buffalo, New York
Attention: Dr. A. Flax

Cornell Aeronautical Laboratory
Buffalo, New York
Attention: Dr. Ira G. Ross, Director

Cornell University
Graduate School of Aeronautical Engineering
Ithaca, New York
Attention: Dr. W. R. Sears

Harvard University
Department of Applied Physics and Engineering Science
Cambridge 38, Massachusetts
Attention: Dr. A. Bryson

Harvard University
Department of Applied Physics and Engineering Science
Cambridge 38, Massachusetts
Attention: Dr. H. W. Emmons

University of Illinois
Department of Aeronautical Engineering
Urbana, Illinois
Attention: Professor C. H. Fletcher

The Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland
Attention: Dr. E. A. Bonney

The Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland
Attention: Dr. F. N. Frenkel

The Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland
Attention: Dr. F. K. Hill

The Johns Hopkins University
Department of Aeronautical Engineering
Baltimore 18, Maryland
Attention: Dr. F. H. Clauser

The Johns Hopkins University
Department of Aeronautical Engineering
Baltimore 18, Maryland
Attention: Dr. L. Kovasznay

The Johns Hopkins University
Department of Mechanical Engineering
Baltimore 18, Maryland
Attention: Dr. S. Corrsin

Lehigh University
Physics Department
Bethlehem, Pennsylvania
Attention: Dr. R. Emrich

University of Maryland
Department of Aeronautical Engineering
College Park, Maryland
Attention: Dr. S. F. Shen

University of Maryland
Institute of Fluid Dynamics and Applied Mathematics
College Park, Maryland
Attention: Director

University of Maryland
Institute of Fluid Dynamics and Applied Mathematics
College Park, Maryland
Attention: Professor F. R. Hama
Industrial Companies

Aeronutronic Systems, Inc.
1234 Air Way
Glendale, California
Attention: Dr. J. Charyk

Aeronutronic Systems, Inc.
1234 Air Way
Glendale, California
Attention: Dr. L. Kavanau

Aerophysics Development Corp.
P. O. Box 689
Santa Barbara, California
Attention: Librarian

ARO, Inc.
P. O. Box 162
Tullahoma, Tennessee
Attention: Dr. B. Goethert

ARO, Inc.
P. O. Box 162
Tullahoma, Tennessee
Attention: Mr. R. Smelt

AVCO Manufacturing Corp.
2385 Revere Beach Parkway
Everett 49, Massachusetts
Attention: Library

AVCO Manufacturing Corp.
2385 Revere Beach Parkway
Everett 49, Massachusetts
Attention: Dr. A. Kantrowitz

Bell Aircraft Corp.
Aerodynamics Section
P. O. Box 1
Buffalo 5, New York
Attention: Dr. Joel S. Isenberg

Boeing Airplane Company
P. O. Box 3107
Seattle 14, Washington
Attention: Mr. G. Snyder

Chance Vought Aircraft, Inc.
P. O. Box 5907
Dallas, Texas
Attention: Mr. J. R. Clark

Chance Vought Aircraft, Inc.
P. O. Box 5907
Dallas, Texas
Attention: Dr. R. Wilson

CONVAIR
A Division of General Dynamics Corp.
San Diego 12, California
Attention: Mr. C. Bossart

CONVAIR
A Division of General Dynamics Corp.
San Diego 12, California
Attention: Mr. W. H. Dorrance
Dept. 1-16

CONVAIR
A Division of General Dynamics Corp.
San Diego 12, California
Attention: Mr. W. B. Mitchell

CONVAIR
A Division of General Dynamics Corp.
Fort Worth 1, Texas
Attention: Mr. W. B. Fallis

CONVAIR
A Division of General Dynamics Corp.
Fort Worth 1, Texas
Attention: Mr. E. B. Maske

CONVAIR
A Division of General Dynamics Corp.
Fort Worth 1, Texas
Attention: Mr. W. G. McMullen

CONVAIR
A Division of General Dynamics Corp.
Fort Worth 1, Texas
Attention: Mr. R. H. Widmer

Cooperative Wind Tunnel
950 South Raymond Avenue
Pasadena, California
Attention: Mr. F. Felberg

Cooperative Wind Tunnel
950 South Raymond Avenue
Pasadena, California
Attention: Mr. E. I. Pritchard

Douglas Aircraft Company
Santa Monica, California
Attention: Mr. J. Gunkel

Douglas Aircraft Company
Santa Monica, California
Attention: Mr. Ellis Lapin
Douglas Aircraft Company
Santa Monica, California
Attention: Mr. H. Lusk

Douglas Aircraft Company
Santa Monica, California
Attention: Dr. W. B. Oswald

General Electric Company
Research Laboratory
Schenectady, New York
Attention: Dr. H. T. Nagamatsu

General Electric Company
Campbell Avenue Plant
Schenectady, New York
Attention: Mr. G. Metcalf

The Glenn L. Martin Company
Baltimore 3, Maryland
Attention: Mr. G. S. Trimble, Jr.

Grumman Aircraft Engineering Corp.
Bethpage, New York
Attention: Mr. C. Tilgner, Jr.

Hughes Aircraft Company
Culver City, California
Attention: Dr. A. E. Puckett

Lockheed Aircraft Corp.
Missiles Division
Van Nuys, California
Attention: Library

Lockheed Missile Systems Division
P. O. Box 504
Sunnyvale, California
Attention: Mr. Maurice Tucker

Lockheed Missile Systems Division
P. O. Box 504
Sunnyvale, California
Attention: Dr. L. H. Wilson

Marquhardt Aircraft Company
P. O. Box 2013 - South Annex
Van Nuys, California
Attention: Mr. E. T. Pitkin

McDonnell Aircraft Corp.
Lambert-St. Louis Municipal Airport
P. O. Box 516
St. Louis 3, Missouri
Attention: Mr. K. Perkins

North American Aviation, Inc.
Aeronautical Laboratory
Downey, California
Attention: Dr. E. R. Van Driest

Northrop Aircraft, Inc.
1001 East Broadway
Hawthorne, California
Attention: Mr. E. Schmued

Ramo-Wooldridge Corporation
409 East Manchester Blvd.
Inglewood, California
Attention: Dr. M. U. Clauser

Ramo-Wooldridge Corporation
409 East Manchester Blvd.
Inglewood, California
Attention: Dr. Louis G. Dunn

The RAND Corporation
1700 Main Street
Santa Monica, California
Attention: Librarian

The RAND Corporation
1700 Main Street
Santa Monica, California
Attention: Dr. C. Gazley

The RAND Corporation
1700 Main Street
Santa Monica, California
Attention: Mr. E. P. Williams

Republic Aviation Corporation
Conklin Street
Farmingdale, L. I., New York
Attention: Dr. W. J. O'Donnell

United Aircraft Corporation
East Hartford, Connecticut
Attention: Mr. J. G. Lee